Classical Equations of Motion

O Several formulations are in use
* Newtonian
* Lagrangian
* Hamiltonian
O Advantages of non-Newtonian formulations
* more general, no need for “fictitious” forces
* better suited for multiparticle systems
* better handling of constraints

* can be formulated from more basic postulates

O Assume conservative forces

—>

F=-VU Gradient of a scalar potential energy




Newtonian Formulation

O Cartesian spatial coordinates r. = (Xx,,y;,z;) are primary variables
* for N atoms, system of N 2nd-order differential equations

2

m dl‘z l l

O Sample application: 2D motion in central force field

mi=F-&, =—f(r)F-&, = —xf \/x2+y2)

. R . [2 2D
my=F-e,=—f(r)r-&,=—yf(yx +y )

Polar coordinates are more natural

and convenient

mr29 = (¢ | constant angular momentum

tedious to get 5
in general case /

mi' =—f(r)+

a3 || fictitious (centrifugal) force
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Lagrangian Formulation

O Independent of coordinate system
O Define the Lagrangian

* L(q,4)=K(q,9)-U(q)
O Equations of motion

Insight from Lagrange:
Action principle leads to Newton eqs.
d ( oL ]

IL _p j=1...N

di| 9g; | dq;

* N second-order differential equations

K -V form
O Central-force example you just figure K and V in your coordinates

L =%m 7 +r292)—U(r)

di\ 9r ) or di\ a6 | 96

d(aLj_E)L = | mi' = mr6* - f(r) d(aL)—aL = %‘(mrzé)zo

Fr :_er =—f(l")
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Hamiltonian Formulation 1. Motivation

O Appropriate for application to statistical mechanics and quantum

mechani cS phase.: space densit).f of the N-bod.y system
is the foundation of our project

O Newtonian and Lagrangian viewpoints take the ¢, as the
fundamental variables
*  N-variable configuration space
* g; appears only as a convenient shorthand for dq/dt

* working formulas are 2nd-order differential equations

O Hamiltonian formulation seeks to work with 1st-order

differential equations
phase space density of the N-body system

* 2N variables is the foundation of our project

* treat the coordinate and its time derivative as independent variables

* appropriate quantum-mechanically
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Hamiltonian Formulation 2. Preparation

O Mathematically, Lagrangian treats g and ¢ as distinct
¢ L(q],q],t)

oL

* identify the generalized momentum as | p; = FY
1

°eg. iszK—Uz%mq’z—U(q); p =0L/dg=mq

* Lagrangian equations of motion ;"= 4
qj

O We would like a formulation in which p is an independent
variable

° p,is the derivative of the Lagrangian with respect to di, and we re
looking to replacedi with p,

* weneed ...?




Hamiltonian Formulation 3. Defintion

O ...a Legendre transform!
O Define the Hamiltonian, H

H(q,p)=—[L(q Q)—Zpﬂ'f]
=—-K(q, Q)+U(‘1)+279'J
J
=—Y"a;q; +U(Q)+Y.(2a;4;)4;
=+Y a;4; +U(q)

=K+U
O H equals the total energy (kinetic plus potential)




Hamiltonian Formulation 4. Dynamics

O Hamilton’s equations of motion

Differential change in L

* From Lagrangian equations, written in terms of momentum

10

Conservation of energy

.dq .dp s ..
= pdt th pq+ qp

ap =p= B_L Lagrange’s equation
oL oL . dt 0 i
dL="—"dqg+— dg q of motion
— ; P==" Definition of momentum
pdq+ pdq g
Legendre transform
H=—(L- p¢
e
dH =—(pdq—gqdp (| 4=+5"
dH =—pdg+ gdp < al;[ Hamilton’s equations of motion
p=—"-
{ dq
dH
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Hamiltonian Formulation 5. Example

O Particle motion in central force field

3

H=K+U
Py . Ps
=14 +U
2m  2mr? ")

. OH lﬂ:& 2d9=p9
q_+ap ()dl m ()dl‘ mr2
OH | dp, _ Do dpy

p » ()dz‘ 3 f(r) ()dt

Lagrange’s equations

Fr :_er =—f(7‘)

mi‘ = mré® — f(r)

% (mr29 )= 0

O Equations no simpler, but theoretical basis is better
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Phase Space (again)

O Return to the complete picture of phase space

* full specification of microstate of the system is given by the values of
all positions and all momenta of all atoms
= G=(pN,r)

* view positions and momenta as completely independent coordinates

= connection between them comes only through equation of motion

O Motion through phase space
* helpful to think of dynamics as “simple’” movement through the high

-dimensional phase space
=% facilitate connection to quantum mechanics
=% basis for theoretical treatments of dynamics
=> understanding of integrators

phase space density of the N-body system
is the foundation of our project G
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Integration Algorithms

O Equations of motion in cartesian coordinates

ﬁ _P; r=(r.",) . .
dt m 2-dimensional space (for example)
p=(p))
P,
) Fj N
d F; = ZF,] pairwise additive forces
O

%]

o,

* minimal need to compute forces (a very expensive calculation)

O Desirable features of an integrator

* good stability for large time steps

* good accuracy
* conserves energy and momentum

© time-reversible More on these later
* area-preserving (symplectic)

13
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Verlet Algorithm
1. Equations

O Very simple, very good, very popular algorithm

O Consider expansion of coordinate forward and backward in time
r(t+680) =r(t)+Lp()dt + LF(©)8t% + L¥()6r +0(51Y)
r(t—581) =r(t) - Lp()8t + 5L F()d1* - L (6)51 + 0(51Y)

O Add these together
r(t+8t) +r(t—6t)=2r(t) + LF()1” + O(61*)

O Rearrange

l‘(t + 52‘) = 2r(t) — r(t — 5;) + lF(l‘)5t2 + 0(514) if I know the force at cqrrent time and
n the location at the previous

time step, I can predict the next step

* update without ever consulting velocities!
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Verlet Algorithm. 4. Loose Ends

O Initialization
* how to get position at “previous time step’’ when starting out?

* simple approximation

r(ty —ot) =r(ty) — v(ty)ot

O Obtaining the velocities
* not evaluated during normal course of algorithm

* needed to compute some properties, e.g.
= temperature
=% diffusion constant or in gravitational N-body problem

* finite difference
V() = zi&[r(t +81) —r(1 — 61) |+ O(51%)
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Verlet Algorithm 5. Performance Issues

O Time reversible
* forward time step
r(t+681)=2r(t)—r(t - 61)+ LF ()5t
° replace df with —dt
r(t+(=80) =2r()—r(t — (-60) + L F()(-61)°
r(t—5t)=2r(t) - x(t + 8) + LF (181>

* same algorithm, with same positions and forces, moves system
backward in time

O Numerical imprecision of adding large/small numbers
O(dt)) O(dt))

r(t+8t) = r(t) B r(e) —r(t — 8)HLF ()8t

[ 7 /

0(dt?)  O(dt) 0(dt2)
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Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(t+580) = v(t -0+ LF(1)dt




Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(1 +580) =|v(t =161+ LF(1)dt

O Mathematically equivalent}%\/erlet algorithm

r(t+60) =r(0)+| v(t - 166 + L F(1)6t |61
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Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(1 +580) =|v(t =161+ LF(1)dt

O Mathematically equivalent}%\/erlet algorithm

r(t+60) =r(0)+| v(t - 166 + L F(1)6t |61
T

f N
r(t) as eval'uated from r(£) = £(t — 51)+ v(t — L 51)51
previous time step 2




Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(1 +301) =|v(1 =160 + L F(1)dt

O Mathematically equivalent}%\/erlet algorithm

r(t+60) =r(0)+| v(t - 166 + L F(1)6t |61
T

f N
r(t) as eval'uated from r(£) = £(t — 51)+ v(t — L 51)51
previous time step 2

r(t+0t)=r(t)+ [(r(t) —r(t—061))+ %F(z‘)&z]




Leapirog Algorithm

O Eliminates addition of small numbers O(dt?) to differences in
large ones O(dt")

O Algorithm

r(t+38t) =r (1) + v(t + 5615t

V(1 +301) =|v(1 =160 + L F(1)dt

O Mathematically equivalent}%\/erlet algorithm

r(t+60) =r(0)+| v(t - 166 + L F(1)6t |61
T

- R
r(t) as eval'uated from r(£) = £(t — 51)+ v(t — L 51)51
previous time step 2

r(t+0t)=r(t)+ [(r(t) —r(t—061))+ %F(r)&z]

r(t+61) =2r(t) —r(t - 61) + iF(t)&z original algorithm
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Leapirog Algorithm. 3. Loose Ends

O Initialization

* how to get velocity at “previous time step”’ when starting out?

* simple approximation

v(tg 281) = v(ty) = L F(ty) 5 St

O Obtaining the velocities

° interpolate

V(1) = %[V(z‘ +160+v(@e-160]
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