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Summary. This documentation describes the how to use the script mkgalaxy and
the falcON programs mkhalo and mkWD99disc to build a halo-bulge-disc galaxy
model. For a full explanation of the ideas behind the programs, see McMillan &
Dehnen (2007) and references therein.

0 Using mkgalaxy
The script mkgalaxy has been provided as an (hopefully) easy-to-use way to generate galaxy initial condi-
tions according to McMillan & Dehnen (2007). In order to invoke it, type at the command line

mkgalaxy name=name [parameter list]
where “[parameter list]” refers to an optional list of parameters given in the same way as NEMO keywords, i.e.
‘parameter name=value’ for instance ‘Nh=1000000’. A complete list of all parameters recognised as well
as their default settings is given in table 1, while the remaining sections explain their detailed meaning. Upon
successful completion, the script should have generated the following files:

name.err error output (with a list of actual parameters, all debugging info and error messages)
name.S NEMO snapshot with halo & bulge adjusted to full disc
name.grow log output from the gyrfalcON simulation (see section 2)
name.snp NEMO snapshot with full galaxy model

By using the default settings, a galaxy consisting of a truncated Dehnen & McLaughlin (2005) halo, a
Hernquist (1990) bulge, and an exponential disc with, respectively, 1200000, 40000, and 200000 bodies will
be created. In order to deviate from this default, users may either override the defaults by command-line
parameters, or edit (a copy of) the script before running it, or both.

If the parameter spheroid is given, it must refer to a NEMO snapshot file containing the halo & bulge
component adjusted to the full disc, i.e. a file like name.S generated by mkgalaxy. In this case, mkgalaxy
will skip the generation of name.S (described in sections 1 and 2 below) and instead use the file referred to
by spheroid. N.B. this works correctly only if the values of the parameters marked by a ‘∗’ in table 1 are
identical to those used in the generation of the file referred to by spheroid. mkgalaxy has no way to check
that this is actually the case (except for checking that the total number of bodies matches), and therefore extra
care is required by the user. You have been warned!

The script mkgalaxy as well as the falcON programs it uses are not heavily tested, in particular for other
than the default parameters. Therefore, errors (“bugs”) may still be present. Please report any anomalies to
Walter ¡wd11@astro.le.ac.uk¿ (ideally, send the error output in name.err generated with a value for debug,
i.e. 10).

The following sections describe in some detail the process encoded in mkgalaxy and its usage of the
falcON programs mkhalo and mkWD99disc.

1 Building the initial spheroid models
In the first step, we generate spherical initial conditions for halo and (if desired) bulge in the presence of the
monopole part of the disc potential. Note that we first sample only half of the intended number of bodies and
double them later (described in section 2).

The bulge and halo models are both built with the program mkhalo, which recognises parameters char-
acterising the spheroid properties and describing any additional (spherical) gravitational potential (e.g. the
monopole of the disc).

1

http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo


parameter ∗ default meaning
disc parameters
Md ∗ 1 disc mass
Nd 200000 number of disc bodies
Rd ∗ 1 disc scale radius Rd

Zd ∗ 0.1 disc scale height zd

Rsig 0 if 6= 0: scale radius Rσ for σR

Q 1.2 Toomre’s Q: constant if Rσ = 0, otherwise Q(Rσ) =Q
Nbpo 50 number of disc bodies sampled per orbit
ni 4 number of iterations in disc sampling
epsd 0.01 gravitational softening length εi for disc bodies
halo parameters
Mh ∗ 24 halo mass
Nh ∗ 1200000 number of halo bodies
innerh ∗ 1 halo inner logarithmic density slope γ0

outerh ∗ 3 halo outer logarithmic density slope γ∞
etah ∗ 1 halo transition exponent η
Rcoreh ∗ 0 halo core radius rc

Rh ∗ 6 halo scale length rs

Rth ∗ 60 halo truncation radius rt; Rth= 0 is interpreted as rt = ∞
betah 0 halo anisotropy parameter β0

r ah 0 halo Ossipkov-Merrit anisotropy radius ra; r ah= 0 is interpreted as ra = ∞
epsh 0.02 gravitational softening length εi for halo bodies
bulge parameters
Mb ∗ 0.2 bulge mass
Nb ∗ Nd(Mb/Md) number of bulge bodies
innerb ∗ 1 bulge inner logarithmic density slope γ0

outerb ∗ 4 bulge outer logarithmic density slope γ∞
etab ∗ 1 bulge transition exponent η
Rcoreb ∗ 0 bulge core radius rc

Rb ∗ 0.2 bulge scale length rs

Rtb ∗ 0 bulge truncation radius rt; Rtb= 0 is interpreted as rt = ∞
betab 0 bulge anisotropy parameter β0

r ab 0 bulge Ossipkov-Merrit anisotropy radius ra; r ab= 0 is interpreted as ra = ∞
epsb epsd gravitational softening length εi for bulge bodies
parameters controlling code
kmax 3 maximum timestep τmax = 2−kmax

kmin 7 minimum timestep τmin = 2−kmin

fac 0.01 time step control: τi < fac/|∇Φ|
fph 0.04 time step control: τi < fph/|Φ|
tgrow 40 disc growth time
seed 1 seed for random number generators
nmax 12 nmax in potential expansion
lmax 8 lmax in potential expansion
careful t t(rue) or f(alse): allow for non-monotonic halo/bulge distribution function?
debug 2 debugging level used when running falcON programs
spheroid optional: file with halo & bulge adjusted to full disc

Table 1: List of keyword recognised by mkgalaxy; for detailed explanations see text.
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1.1 Spheroid properties
The spheroid density profile is described by the parameters M =M (total mass), γ0 =inner (inner logarithmic
density slope), γ∞ =outer (outer logarithmic density slope), η =eta (transition strength between inner and
outer power-law), rc =r c (core radius), rs =r s (scale radius), and rt = |r t| (truncation radius). The latter
three should satisfy the relation 0 ≤ rc < rs < rt ≤ ∞ (in practice r t= 0 is interpreted as rt = ∞). The
functional form of the density is

ρs(r) =
C T(r/rt)

xγ0(xη + 1)(γ∞−γ0)/η
with x =

√
r2 + r2

c

rs
(1)

where the truncation function is taken to be

T(z) =


sech(z) =

2
exp(z) + 1/ exp(z)

for r t> 0,

2
sech(z) + 1/sech(z)

for r t< 0.
(2)

Both forms decay exponentially at large radii, but at small radii they differ: sech(z) ≈ 1− 1
2z2 for z � 1, while

the second form ≈ 1− 1
8z4, i.e. at radii r < rt the density is less affected. The constant C in (2) is determined

such that the total mass equals M . The distribution function is of Cuddeford (1991) type

f(E,L) = L−2β0 g

(
−E − L2

r2
a

)
, (3)

where β0 =b (central anisotropy) and ra =r a (anisotropy radius) are free parameters, to within the bounds of
what is physically possible (i.e. does not require g < 0), and limited by the implementation to β0 > −0.5 (the
code interpretes r a= 0 as ra = ∞). The exact limits depend on the density distribution and the underlying
external potential, but the code will complain if you stray outside. This choice of distribution function produces
a velocity anisotropy

β ≡ 1−
σ2

θ

σ2
r

=
r2 + β0 r2

a

r2 + r2
a

. (4)

The number of bodies in the spheroid is N=nbody. If you want to specify the softening length for the bodies
of each component individually (as opposed to having the same softening length for all bodies), you can use
the parameter eps to give all spheroid bodies the individual softening length εi =eps.

Finally, there is a danger that the distribution function may be non-monotonic in some cases. This does
not necessarily mean that the halo produced is unstable. However, it can cause trouble with the routines which
determine the body velocities. To work around this mkhalo has the parameter careful, which, if set to be
true (‘careful=t’) allows for this possibility and creates a halo even in case of a non-monotonic distribution
function, but at an increased computational cost.

1.2 Potential of other components
The potentials of the other components of the galaxy are given as NEMO external potentials. For this the
external potentials Halo, Monopole, DiscPot and (to be used later) PotExp are provided by falcON.
From the script mkgalaxy, we have1:

accname=Halo+Monopole
accpars="0,$Rb,$Mb,$innerb,$outerb,$etab,$Rtb,$Rcoreb;1,10"
accfile=";$name.prm"

1Here and below, when we cite from the shell script mkgalaxy, we give shell variables such as $innerb and $name instead of
their values, which are, of course, passed to the programs, such as mkhalo.
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The keyword accname specifies the name of the external potential routines (the program searches for
it in a certain path, but you can specify that path explicitly with the keyword accpath), in this case Halo
(for the potential of the bulge component) and Monopole (for the spherically averaged potential of the disc
component).

The keyword accpars provides the (comma-separated) parameter lists (separated by a semicolon2) for
the two external potentials. Halo provides the potential generated by a density model of the form (2) and
the parameters are (in order): Ω (ignored), rs, M , γ0, γ∞, η, rt, rc. (In the above example, we are telling
mkhalo about the potential of the bulge, so the parameters given are those of the bulge, which is reflected by
the names ending in ‘b’: $innerb, $outerb etc..) For Monopole the parameters control the growth of
the full potential (as described via keyword accfile, see below) from its monopole. The two numbers given
are the start and end time of the growth of the full potential. This is important when growing the full potential
from its monopole in simulation, but for finding the initial spheroid density profiles we just need to use the
monopole, so only need to ensure that the growth start time is after t = 0.

The keyword accfile provides the names (separated by semicolon) of files which Halo or Monopole
need to find a specific potential. Halo does not need any, so there is no file name before the semicolon.
Monopole needs to know the contents of the file (referred to by) $name.prm, which tells Monopole the
full potential to provide the monopole of. In that file, we must put the full disc potential, described in much the
same way as here. mkgalaxy generates a file $name.prm with the contents

accname=DiscPot
accpars=0,$Sd_dp,$Rd,$Zd_dp,0,0

i.e. the disc potential is given by DiscPot with input parameters 0,$Sd dp,$Rd,$Zd dp,0,0. The ex-
ternal potential DiscPot provides the gravitational potential generated by a disc with spatial density

ρ(R, z) = Σ0 exp
(
−R0

R
− R

Rd
+ ε cos

R

Rd

)
×



1
2zd

exp
(
−|z|

zd

)
for zd > 0

δ(z) for zd = 0
1

4|zd|
sech2 z

2|zd|
for zd < 0

. (5)

It employs the GalPot package, which implements the Milky-Way mass models of Dehnen & Binney (1998)
and has been borrowed for this use. The input parameters provided via accpars are (in that order) Ω (ignored),
Σ0 (central surface density), Rd (scale length), zd (scale height), R0 (central hole radius, not used here), and ε
(cosine modulation, also not used here).

N.B. DiscPot uses the same system of units as GalPot, which for historic reasons differs from that usu-
ally employed. As a consequence, we must multiply any mass dimension by 222293.02, see also the example
shell script.

2 Growing the full disc potential
In the second step, we adjust the halo (and bulge) initial model to the presence of the full disc potential, rather
than only its monopole. This is done by running a constrained N -body simulation using gyrfalcON, with the
body distribution as our initial conditions and with an external potential that slowly changes from the monopole
of the disc to its full potential.

While we are doing this, there is a real danger of the body distribution drifting away from the origin, which
can cause serious problems in generating the disc initial conditions later. Therefore, it is essential to symmetrise
the body distribution of the halo and bulge before and throughout the simulation. This means that for every
body with phase-space coordinates w ≡ (x,v), we have another one at −w.

2Any keyword argument containing a semicolon must be enclosed in quotes, for otherwise the shell will be confused (independently
of whether run from within a script or from the command line).
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To ensure this for the initial model, we use the program symmetrize with the parameter use=1. This ar-
ranges the bodies in pairs such that w2i+1 = −w2i, and does so by doubling the total number of bodies (this is
why we originally generated only half as many bodies for halo and bulge). After this is done we run our simula-
tion in gyrfalcON, using the manipulator symmetrize pairs, which ensures after every block-step that
w2i+1 = −w2i. This is done by setting the gyrfalcON parameter manipname=symmetrize pairs.

The growth of the full disc potential from its monopole is handled by the routines in Monopole. Since
the DiscPot disc model, and the file that tells Monopole where to find the disc model were set up in step
1, this is relatively straightforward. The only new things are the timings for the start and end point of the disc
growth. We set accpars=0,$tgrow. We have found it appropriate to take $tgrow= 40 in the case where
we have disc mass = 1, disc scale length = 1, and G = 1. We run the simulation until t = 60 to allow the
N -body model to settle fully into the new potential. This choice has worked perfectly well for us, but has not
been rigorously tested to ensure that it is ideal. We include it only as a suggestion. Models with a different
choice of units will require a different value for $tgrow.

Other than this, the simulation is an ordinary gyrfalcON simulation, and we refer you to the documen-
tation on that in the user guide. One thing to note is that if you have given each component it’s own softening
length, you must set the parameter eps< 0, otherwise set it to the (global) softening length you desire. This
step takes by far the longest time in the whole process. One can save a great deal of computer time by using
pre-made haloes and bulges with disc models that have the same density profiles as in previous simulations, but
different kinematic properties, i.e. skipping the steps described in sections 1 and 2.

3 Populating the disc
The final step is to populate the disc component, using the program mkWD99disc. To do this, the program
needs to know the parameters of the disc model and the potential of any additional components (halo and bulge).

3.1 Disc parameters
The parameters of the disc model are Nd =nbody (number of bodies), Rd =R d (disc scale length), Σ0 =
Sig 0 (central surface density), zd =z d (disc scale height), Q0 =Q (normalisation for Toomre’s Q), and
Rσ =R sig (velocity-dispersion scale length). The disc has a target density profile

ρ(R, z) =
1

2 z0
Σ0 exp

(
−R

rd

)
sech2

(
z

z0

)
, (6)

equivalent to (5) for zd = −z0/2, R0 = 0, and ε = 0, and corresponding to a disc mass Md = 2πR2
dΣ0.

The target radial velocity dispersion in the plane, σR(R, z = 0), is determined by the choice of the param-
eters Q0, and (optionally) Rσ. If Rσ = 0 (default), the target velocity dispersion is such that Q(R) = Q0 at all
radii, where (Toomre, 1964)

Q(R) =
σR(R) κ(R)
3.36 G Σ(R)

. (7)

If Rσ 6= 0, then σR ∝ exp(−R/Rσ), with the normalisation constant given by the condition that Q(Rσ) = Q0.
The disc’s thickness (z0), and its isothermal profile define the vertical velocity dispersion such that σ2

z =
πGΣ(R)z0, independent of z, where Σ(R) is the disc surface density.

The method for choosing the positions and velocities of bodies follows Dehnen (1999) and is also detailed
in McMillan & Dehnen (2007). It, in effect, samples orbits in energy and angular momentum. The average
number of bodies per orbit is given via the parameter nbpero. This produces a disc which has Σ(R) and
σR(R) similar to those targeted, but not identical, with the difference being greater for warmer disc models.
The code uses an iterative approach to tend towards the properties desired. The parameter ni gives the number
of iterations (at least 1).

The parameter eps can be used to provide the same individual softening length εi =eps to all disc bodies.
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3.2 Halo and bulge potential
As mentioned, mkWD99disc requires a description of the potential of halo and bulge. We use the routines
in PotExp to find the smoothed, azimuthally averaged potential of these components. The PotExp external
potential employs the potential expansion proposed by Zhao (1996), a generalisation of those due to Hernquist
& Ostriker (1992) and Clutton-Brock (1973), and is given by

Φ(x) =
nmax∑
n=0

lmax∑
l=0

l∑
m=−l

Cnlm Φnlm(x) with Φnlm(x) = Ψnl(r) Ylm(θ, φ). (8)

The lowest order radial basis function is (Zhao, 1996)

Ψ00 = −(r1/α + r
1/α
0 )−α, (9)

which for α = 1 gives the potential of a Hernquist (1990) sphere, while α = 1/2 gives a Plummer sphere (the
cases considered by Hernquist & Ostriker 1992 and Clutton-Brock 1973, respectively). The coefficients Cnlm

are determined by exploiting the bi-orthogonality relation (4πρnlm = ∇2Φnlm)∫
d3x Φnlm(x) ρn′l′m′(x) = −δnn′ δll′ δmm′

as

Cnlm = −
∑

i

mi Φnlm(xi).

with the masses mi and positions xi taken from a data file (which must be in NEMO snapshot format) provided
via the accfile keyword. The parameters provided via accpars are Ω (ignored), α ≥ 1/2, r0, nmax, lmax,
symm, and G. The last is Newton’s constant of gravity, while symm specifies assumptions made about the
underlying symmetry. For symm= 0, no assumptions are made; symm= 1 implies reflection symmetry w.r.t.
the origin; symm= 2 means triaxial symmetry, i.e. reflection symmetry w.r.t. the x, y and z axes; symm= 3
means rotational symmetry w.r.t. the z axis (N.B. which is used here); finally symm= 4 refers to spherical
symmetry. The symmetry constraint is implemented by imposing the corresponding constraint on the Cnlm.

Since the lowest order basis function corresponds to a model with inner logarithmic density slope of 2−1/α,
a reasonable choice for α is 1/(2− γ), where γ is the slope of the distribution modelled, i.e. in the shell script
mkgalaxy the values referred to by $innerb and $innerh for bulge and halo, respectively. While we could
in principle use just one potential expansion for bulge and halo, we prefer using separate PotExp potentials
for bulge and halo, adapted in α and r0 (set equal to rs of the respective component).

N.B. the program mkWD99disc will bail out if it finds that the total (disc plus external) gravitational force
is directed outwards at any radius. This problem may well occur for various reasons. First, if the spheroid
body distribution has wandered away from the origin (which we have prevented by enforcing point symmetry).
Second, if the potential expansion is noisy (with low particles numbers and too many coefficients). In this latter
case, it may be helpful to use smaller nmax and/or different α (via ‘try & error’).

4 Ready to use
The above steps should produce a galaxy as a NEMO snapshot, which can be manipulated and examined with
many of the tools provided with NEMO. If you wish to convert it to other formats, then NEMO provides various
tools, including the falcON programs s2g and s2a for conversion to, respectively, gadget and ASCII format,
which can presumably be converted into any format you wish. These models have already been used for studies
of mergers (McMillan, Athanassoula & Dehnen, 2007) and bars (Athanassoula, 2007).
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