Lec—Lwe 16/17
2

Basic Principles of the Hierarchical Tree Method

2.1 Tree Construction

We have seen in the preceding chapter that in grid-based codes the particles
interact via some averaged density distribution. This enables one to calculate
the influence of a number of particles represented by a cell on its neighbouring
cells. Problems occur if the density contrast in the simulation becomes very
large or the geometry of the problem is very complex.

So why does one bother with a grid at all and not just calculate the inter-
particle forces? The answer is simply that the computational effort involved
quite dramatically limits the number of particles that can be simulated. Partic-
ularly with 1/r-type potentials, calculating each particle—particle interaction
requires an unnecessary amount of work because the individual contributions
of distant particles is small. On the other hand, gridless codes cannot distinguish
between near-neighbours and more distant particles; each particle is given the
same weighting,

Ideally, the calculation would be performed without a grid in the usual sense,
but with some division of the physical space that maintains a relationship be-
tween each particle and its neighbours. The force could then be calculated
by direct integration while combining increasingly large groups of particles at
larger distances. Barnes and Hut (1986) observed that this works in the same
way that humans interact with neighbouring individuals, more distant villages,
and larger states and countries. A resident of Lower-Wobbleton, Kent, England,
is unlikely to undertake a trip to Oberfriedrichsheim, Bavaria, Germany, for a
beer and to catch up on the local gossip.

Independently, in the early 1980s, several workers attempted to implement
this kind of hierarchical grouping in N-body codes (Appel 1985, Jernighan
1985, Porter 1985). Although these early hierarchical codes had a nominal
N log N dependence of the computation time, additional errors were introduced

9

Julius Kuti
16/17

10 Basic Principles of the Hierarchical Tree Method

that'were hard to analyse because of the arbitrary structure of the tree. Com-
plicated bookkeeping was required to ‘reconnect’ groups of near neighbours,
with the result that the N log N scaling could only be conjectured.

Barnes and Hut (1986) introduced a scheme which avoided these complica-
tions. Its systematic division of the physical space has since become the basis of
most hierarchical tree codes and their refinements. These codes are sometimes
described as octagonal tree codes to distinguish them from so-called binary
tree codes. Press (1986) and Benz (1988) have developed binary trees, based on
nearest neighbour pairs, and Jernighan and Porter (1989) devised an integration
method in which the particles and the nodes of the tree are the basic dynami-
cal units. Although such binary trees might reflect the structure of the system
more closely, the Barnes and Hut method is by far the most commonly used
method due to its conceptual simplicity and straightforward tree construction.
Therefore, we will restrict our discussion to ‘oct-trees’ throughout this book.

In their original work, Barnes and Hut (1986) began with an empty cubical
cell that was big enough to contain the whole system of particles. Particles are
placed one by one into this ‘root’ cell. If any two particles fall into the same
cell (which happens as soon as the second particle has been loaded into the
root cell), the cell is divided into daughter cells having exactly half the length,
breadth, and width of their parent.

This means that in 3D, the system is split into eight pieces. If the two particles
are still in the same daughter cell, this cell is recursively subdivided in the same
way until the particles sit in different boxes. Then, the next particle is loaded
and the same procedure starts again, except that the starting point is the level
just above the root cell (because the latter has already been subdivided). When
all N particles have been loaded, the system space will have been partitioned
into a number of cubical cells of different sizes, with at most one particle per
cell.

For numerical reasons which will be discussed later, most algorithms do not
start with an empty box, but with the root cell containing all particles of the
simulation (Hernquist 1988). As before, this cell is then divided into its eight
daughter cells. For each cell one asks the question: How many particles are
there in the cell - 0, 1, or > 1?2

e If the cell is empty, this cell is ignored.

o If there is one particle in the cell, this is stored as a ‘leaf” node in the tree
structure.

o If there are more particles in a cell, this cell is stored as a ‘twig’ node and
subdivided.

2.1 Tree Construction 11

° o @ .. ° ° ..+_

Fig. 2.1. Step-by-step division of space for a simple 2-D particle distribution.

The subdivision process continues until there are no cells with more than one
particle left, which ultimately leads to an identical structure as the Bames—Hut
(BH) algorithm. Figure 2.1 shows the end-result of the space-division. For ease
of illustration, a 2-dimensional example has been chosen; this means that one
has always four daughter cells instead of eight.

Figure 2.2 shows the end-product of the division of space in three dimensions
for the example of a star cluster (galaxy). Galaxies usually have a steep gradient
in the particle distribution; they may be very dense at the centre relative to their
outer reaches. While this is a source of difficulty for simulations with grid-based
codes like PIC, it can be seen that the subdivision of space by the tree method
automatically adjusts to the particle distribution.

12 Basic Princip“fes of the Hierarchical Tree Method

A A

A
7. LY. A
wAWAw,

LI

E'A!_‘Z"A\V

W\
.,

O

\ A
\ A
\ |

AN Z

Fig. 2.2. Example of the division of space in three dimensions for a star cluster.

However, the division of space just described is not used like a grid, but as
a bookkeeping structure for the tree. Figure 2.3 illustrates this relationship ex-
plicitly. The ‘root’ is the basic cell to start from, which contains all the particles
of the simulation. At each division step the tree data structure is augmented
with the next level in the hierarchy. Each node in the tree is associated with a
cubic volume of space containing a given number of particles; empty cells are
not stored.

The root cell is the biggest ‘twig’. In our example in Fig. 2.3, the first division
would lead to four nonempty cells:

2.1 Tree Construction 13

a) 3 b 56
W o o
3 4
935
. 1 2 789
o | °8 Ll |
10
o o0 l
c d root

Fig. 2.3. Relationship between spatial division and the resulting tree structure,

o Cell a contains particles 1 and 2.
o Cell b contains particles 3, 4, 5,6.
o Cell ¢ contains particles 7, 8,9.

o Cell d contains particle 10.

For the root, an identifier as twig as well as the number of nonempty daughter
cells (here four daughters) have to be stored. Cell d contains only one particle,
which means it is a leaf and needs no further processing. By contrast, cells a,
b, and ¢ are twigs, and are subdivided further,

For the leaf, an identifier as a leaf, a pointer to the parent cell (here the
root), and the particle label have to be stored. This label will be the link to the
physical quantities of the particle, like its position, mass, and charge. For a twi g,
the same information as for the root has to be stored plus a pointer to its parent
cell. Having accumulated this information, the first level of division is finished.
At the next level, the division of cell a leads to the creation of leaves 1 and 2
and the division of cell ¢ leads to leaves 7, 8, and 9, whereas the division of cell
b leads to two new twigs. Continuing this process, we finally end up with only
leaves at the ends of the twigs. The whole data structure of the tree is thus in
place,

Figure 2.4 shows a flowchart of the division process and the tree building.
To actually convert this algorithm into a computer code, a number of arrays are
Necessary to define the tree structure with its cross references. In order to avoid
being too language-specific, we will not show any explicit coding at this point,

4 Basic Principles of the Hierarchical Tree Method

B (Root)
—

Move pointer
to sister cell
Is cell NO (It’s a leaf)
a twig

?

Is
next cell

rom same
parent
?

YES

Set new parent
for subdividing

Make particle Move pointer
list to parent cell

Subdivide twig

Go back to scan
newly cut twig

Fig. 2.4. Flowchart of tree building.

but it is perhaps instructive to consider the most important arrays for the exam-
ple in Fig. 2.3. As the tree is built, each node is given a label itwig = (-1, -2,
-3, ...) for the twigs and ileaf = (1,2,3,4,...) for the leaves. The root
has a label 0. A pointer provides a link between the node number and the po-
sition in the array. Each node’s parent and level of refinement is also stored.
For each twig node, it is also useful to store the position of the 1st daughter
node and the number of daughter nodes. For example, the command ‘subdi-

vide twig’ in Fig. 2.4 actually refers to a subroutine containing the following
operations:

2.1 Tree Construction

SUBDIVIDE (cut-node,pointer)

iparent = cut-node

ipoi =pointer
ilev=1level (iparent) +1
lst_dau (iparent) = ipoi

count particles in subcells
n_dau(iparent) =# new daughter nodes

for each twig-node do:
itwig=1itwig-1
node (ipoi) =itwig
parent (ipoi) = iparent
level (itwig) =ilev
ipoi =ipoi +1

end do

for each leaf-node do:
ileaf =ileaf +1
node (ipoi) =ileaf
parent (ipoi) = iparent
plabel (ileaf) =particle #
level(ileaf) =ilev
store position and moments of particle
ipoi=ipoi+1

end do

15

Before entering the SUBDIVIDE routine, the variable pointer is set at the
end of the tree. On exit, it will point to the first node (twig or leaf) created in that
subdivision. If this node is a twig, SUBDIVIDE is called again, otherwise we
check for ‘sister’ nodes or descend back to the root. The arrays for the completed
tree corresponding to Fig. 2.3 are shown in Table 2.1. Each of the intermediate
horizontal lines in the table marks the beginning of a subdivision, that is: the
point where SUBDIVIDE is called. The arrays 1st_dau and n_dau are filled

in on the next level up, after the node has been subdivided.

A rough estimate of how many divisions are needed to reach a typical cell,
starting from the root, can be obtained from the average size of a cell containing
One or more particles. The average volume of such a cell is the volume of the

16 Basic Principles of the Hierarchical Tree Method
.)
Table 2.1. Tree arrays corresponding to Fig. 2.3

~ pointer level node parent lst.dau n._dau plabel

1 0 0 0 2 4 -
2 1 -1 0 6 2 -
3 1 -2 0 8 2 -
4 1 -3 0 15 3 -
5 1 1 0 - - 10
6 2 2 -1 - - 1
7 2 3 -1 T~ - 2
8 2 -4 -2 10 2 -
9 2 -5 -2 12 1 -
10 3 4 -4 - 3
11 3 5 -4 - 4
12 3 -6 -5 13 1 -
13 4 6 -6 - 6
14 4 7 -6 - - 5
15 2 8 -3 - - 7
16 2 9 -3 - - 8
17 2 10 -3 - - 9

root cell ¥ divided by the number of simulation particles N. Moreover, the
average length of a cell is a power of ¥'1/3/2. Therefore,

-0

which means that the height x of the tree is of the order log, N'/3. This is
equivalent to

log, N'/3 = ﬁ)l—g-z- log N = log N. 2.1)

Starting from the root, an average of O(log N) divisions are necessary to reach

a given leaf. The tree contains N leaves, therefore the time required to construct
the tree is O(N log N).

As shown in the second loop of the SUBDIVIDE routine, an identifier (i.e.,

a numerical label) of the particle is stored for every leaf, which provides the

link to the physical properties of the particle such as position, mass, and charge.

Once the tree structure is completed, equivalents of these quantities, like the

2.1 Tree Construction 17

centre of mass, the sum of the masses, and the sum of the charges, still have
to be calculated and stored for the twigs as well, because this information
will be needed for the force calculation. This ‘loading’ of twig-nodes can be
performed by propagating information down the tree from individual particles
(leaves) towards the root. The tree structure can be used to find out which leaves
and twigs belong to a given parent. The total mass is simply calculated by a
sum over the masses of the dau ghter cells

Mparens = Zm;(a’aughters) 22)
i
and the centre of mass by the sum

Yparen = S0 (2.3)
parent o

2 mit;

Once these quantities have been defined for a twig-node, we can use them
instead of the particle distribution inside it, that is, it can be regarded as a
‘pseudoparticle’. Proceeding down the tree, the total mass and the centre of
mass of the pseudoparticle can be used to define the pseudoparticles on the next

lower level of division, as shown in the following MOMENTS routine.

MOMENTS

ilevel =levmax -1
itwig=-ntwig

for each level do:
repeat for each node on same level:

pointer = ipoint (itwig)
nbuds =ndau (pointer)
pointl =1st_dau(pointer)
zero moment sums:
M(itwig) =0
Feom (1twig) =0

doi=1,nbuds
point_dau=pointl +i-1
inode =node (point_dau)
sum mass and centre of mass:
Mitwig) = M (itwig) + M (inode)

Teom (1tWig) =reom (itwig) + r. (inode)
end do T

18 Basic Principles of the Hierarchical Tree Method

Yeom (LtWig) =Teom (Ltwig) /M (itwig)

itwig=itwig+1
until level done
ilevel=1level +1
end do

The variable definitions are the same as in Table 2.1. The simple loop over the
daughter nodes is made possible because during the tree construction they are
stored sequentially (see routine SUBDIVIDE). Eventually one reaches the root
cell, the total mass of which is the same as the mass of the whole system. This is
an excellent check to see that the tree structure is correct! Figure 2.5 illustrates
graphically how the MOMENTS routine is used to calculate the total mass
(denoted by the size of the symbol) and the centre of mass from the particles
(black) through all levels for the pseudoparticles (grey).

2.2 Force Calculation

As we have seen, the tree structure needs a computational time of O(N log N)
to build it. This structure is now used to perform the force calculation, which, as
we will see, also requires a time O(N log N). The basic idea is to inciude con-
tributions from near particles by a direct sum whereas the influence of remote
particles is taken into account only by including larger cells, that is, pseudopar-
ticles, representing many individual particles. This means that the advantages
of the particle—particle technique are retained, but the computation time can be
reduced significantly, especially for large numbers of particles (see Chapter 4).
In contrast to grid-based codes, this time saving is achieved not by compro-
mising the spatial resolution and/or imposing geometrical restrictions, but by
introducing approximations into the calculation of the potential. This procedure
is physically well motivated. For example, the dynamics of our solar system is
insensitive to the detailed mass distribution of each planet. Furthermore, in all
N-body simulations errors occur due to round-off, truncation, and discreteness
effects, which makes it unreasonable to compute the potential field to extremely
high precision. It is sufficient to require that the error in approximating the po-
tential by the tree algorithm should be of the same order as these numerical
errors. In dynamical applications one can often relax this requirement further
because the errors introduced by finite timesteps in the integration scheme tend
to dominate anyway.

2.2 Force Calculation 19

Fig. 2.5. Total mass and centre of mass from the particles (black) for the pseudopar-
ticles (grey) at the different levels of the tree construction. The size of the symbol is
proportional to the mass of the pseudoparticle.

The tree structure provides the means to distinguish between close particles
and distant particles without actually calculating the distance between every
particle. The force between near particles is calculated directly whereas more
distant particles are grouped together to pseudoparticles. How do we actually
decide when to group?

There is actually some flexibility in the way this is done, but we will start
with the simplest method, introduced by Barnes and Hut (1986). Alternatives
to the basic ‘s/d’ criterion have recently been proposed by Salmon and Warren
(1994), who demonstrate some potential problems with this choice by calcu-
lating ‘worst-case’ errors for various scenarios. A more detailed discussion of
alternative criteria is deferred to Section 4.4.

20 Basic Principles of the Hierarchical Tree Method

For each particle the force calculation begins at the rdet of the tree. The ‘size’
of the current node (or twig), 5, is compared with the distance from the particle,
_d. Figure 2.6 illustrates this comparison. If the relation

s/d <0

2.4)

is fulfilled, where 8 is a fixed tolerance parameter, then the internal structure of
the pseudoparticle is ignored and its force contribution is added to the cumu-
lative total for that particle. Otherwise, this node is resolved into its daughter
nodes, each of which is recursively examined according to (2.4) and, if neces-
sary, subdivided. Figure 2.7 shows a flowchart which demonstrates how the tree
structure is used to calculate the forces. The node is subdivided by continuing
the ascent through the tree until either the tolerance criterion is satisfied or a

leaf-node is reached.

For nonzero @ the time required by the CPU (central processing unit) to
compute the force on a single particle scales as O(N log N). Hernquist (1988)
demonstrated this by using a simplified geometry. Consider a single particle at
the centre of a homogeneous spherical particle distribution, with the number

density n being

n=N/ (‘-"-3’1123),

where R is the radius of the whole system. Organising these particles in a
hierarchical structure of cells, there will be an inner sphere where the force
of each particle on the centre particle is directly calculated. The surrounding
concentric shells will contain progressively larger pseudoparticles. Figure 2.8

by

Mine = No + Z nlsub,
shells

illustrates this situation. The total number of interactions 7, can be estimated

where 7, is the number of direct interactions and n5yp is the number of subunits

in each shell, which is roughly given by

; 4nrie 24
ny~ T = 33
b Amp3g3/g 62
therefore
24
Rige ~ No + '9—2 Rshs

where ngp is the total number of shells. The inner

sphere, where only direct

interactions are considered, has a radius of r1 = n=1/3/6, which leads to the

21

2.2 Force Calculation

s/d = 0.94

0.48

s/d

s/d =0.23

Fig. 2.6. The relation s/d for different levels of the tree.

22

Basic Principles of the Hierarchical Tree Method

(Root)

Find distance

to pseudoparticle

Is
pseudoparticle

YES

Move pointer
to sister node

close
?

Resolve into
daughter nodes

Move pointer to
first daughter

Go back and check
new pseudoparticle

Add force
contribution

Is

next node

from same

parent
?

NO

Move pointer
to parent node

DONE

Fig. 2.7. Flowchart of the force calculation.

2.2 Force Calculation 23

Fig. 2.8. Schematic of the hierarchical tree structure according to Hernquist.

number of interactions:
ri\3 dr ; 4w 1
Now the radii of the outer shells are r; = (1 + 6)*~17;, implying

2= a4y,
n

which gives the number of shells as

In
nsp =14 IOg(H_g) ;l"

R
= 1+log() T om

1 6
= 1+10g(]+9) (1+0 (3N/47T)—]/3),

24° Basic Principles of the Hierarchical Tree Method

where we have used R = r,(1 + 6) to get the last expression. Therefore, the
total number of interactions is given by

24 log (9(3N/4m)!/3) Lén]
62 log(1 +6) 3 6%

For large N, it follows that 8 > (47/3N)!/3; this means that the dominant
behaviour for 8 > 0 is

Ript ~

(2.5)

Rins ~ log N/6? (2.6)

and the time required to calculate the force on a given particle is O(log N),
which means the number of operations to compute the force on all N bodies
will scale as O(N log N).

In contrast to the idealised picture in Fig. 2.8, the actual interaction list resem-
bles one of the examples shown in Fig. 2.9. As this illustrates, the computation
time not only is a function of the simulation size but also depends strongly on the
choice of the tolerance parameter 6. The case = 0 is equivalent to computing
all particle—particle interactions, which is exact but rather time-consuming be-
cause the operation count is again O (N2). This is in fact slower than traditional
PP because one has to build the tree and walk all the way up to the leaves during
the force calculation. Choosing the other extreme, 6 — 00, would produce a
very low spatial resolution with the force being calculated only between the
individual particle and large pseudoparticles, which would be very quick but
extremely inaccurate. This conflict in the choice of 6 can be summarised as
follows.

tolerance parameter 6

0 > o0
particle— particle-
particle » pseudoparticle
interaction interaction

N2 ————> NlogN —™m—— N
high ~ low
precision ~ precision

One would really like a rapid force calculation and high precision. In fact,
a compromise of & ~ 0.1 — 1.0, depending on the problem, proves to be
a practical choice. Fortunately, there is an additional way of improving the
accuracy without the need of a higher resolution (smaller), which is to include

the walk pole wou tnfs -f He ptewdogoglicles aler
Ko, J“:t'"j Kem —4¢ 0"“‘1 fmrfo:/w(n CLJ‘S}'

2.2 Force Calculation 25

r. 2. ‘O...'

Tee 130
[]

vl ok
0=001® ©oee® '0.' %
sep l : iy
S
.. .. ° ° ®

_’..o‘ .o..:n‘.o

e®o . o
..Oo:. @
§=05|® oo @®° o

Fig. 2.9. Interaction list for a given particle (<) for different values of the tolerance
parameter 6.

AAAMMVNWWNM AT T

L EcTwE 14

2.3 Multipole Expansion

In the analysis that follows in this section, we consider an N-body system
which is characterised simply by the masses and positions of its N particles
and has a 1/r-potential. In the tree algorithm, distant particles are grouped to
form a pseudoparticle with a mass equal to the sum of its constituent masses,
and a position equal to the centre of mass of the group. This means a loss of
information about the spatial distribution of the masses within the cell and leads
to an error in the force calculation. One can recover the spatial information by
performing a multipole expansion of the particle distribution in the cell. The
force of the pseudoparticle on the individual particle is then given by

FR-1)~FR) Monopole
—r;VFR) Dipole
+%riri = VVF(R) Quadrupole
4.0,

where R is the vector from the particle to the centre of mass and r; is the vector
from the particle to an individual particle in the cell (see Fig. 2.10). If this
multipole expansion is carried out to a high enough order, it will contain the
total information of the particle distribution in the cell. There are more recently
developed codes based on a ‘Fast Multipole Method’ (FMM) which exploit
this fact. They use large pseudoparticles and perform the multipole expansion
to a high order (typically 10-20) and represent a most elegant refinement of
the tree code, which, depending on context and accuracy requirements, starts
to become economic for N Z 104-10°.

The maximum size of a pseudoparticle in a 3-dimensional code is 1/8 of
the total system volume. In practice, the size of the cell occupied by a pseu-
doparticle is determined by the choice of 6. For potentials falling off as 1/r or
faster, higher moments contribute increasingly less to the force. In the range of
9 ~ 0.1 — 1.0 it turns out that including the dipole and quadrupole moments
of the pseudoparticles gives acceptable accuracy in the force calculation for
typical dynamical applications. Doing the tree construction by subdividing cu-
bic cells fixes us to a Cartesian coordinate system and the multipole expansion
is done in Cartesian coordinates too. Unfortunately, this is rather clumsy in
comparison to the usual expansion in Legendre polynominals found in Jackson

2.3 Multipole Expansion 27

P e K . I

Fig. 2.10. R is the vector from the individual particle (P) to the centre of mass of the
pseudoparticle (large circle), r is the vector to a single particle of this pseudo-
particle, and r; is the vector from a member of the pseudoparticle to the centre of
mass.

(1975). Different formulations for computing higher order moments in 2- and
3-dimensional FMM codes are given in Chapter 7.

The potential at the origin ®, due to the pseudoparticle is the sum of the
potentials ®; due to the particles in the cell,

OR) =) ®;R-T),

where r; is the vector from the particle to the centre of mass and the origin is,
for simplicity, the individual particle on which the force of the pseudoparticle
is calculated. Here we consider a 1/r-potential, therefore

m;

P R—-1;) = “R-nl

_ m;X;
VE—x)2+ (-l + @z —-z)?)

28 - Basic Principles of the Hierarchical Tree Method

The multipole expansion of the potential up to the quadrupole moment is given
by

OR)=-) m [1 —ri= +%r,- ’aa aa +]715
="Zmz‘ [1 Xi 9 _}"1—8“" ti
ax dy az
41280 1,00 1,80
27 9x03x 270 dydy 271 8zdz
(L 24 22)
2 dxdy dyax
(L2 22)
dydz 0zdy
(224 L2
dx 0z 0z3x/]|R

There are in principle three kinds of derivatives

a1 x
xR~ R
381 3x* 1
xR R B
9 31 3xy
ax3yR R

and the other coordinates can be obtained in the same way. The multipole
expansion of the pseudoparticle potential is then

1 x y z
P[R) = “Zmi[7 TN +yi'ﬁ+2i7€'§
!

2.3 Multipole Expansion 29

The force on the individual particle by the pseudoparticle is given as the
derivative of the potential

a
FR) = —mpz— 3 _ ;. 2.8)
i
Using Eq. 2.7 we can obtain the field by performing derivatives of the form:
a1
Monopole (M): xR = --1%.
. a x 1 3x2
Dipole (D): 5;-1-2—3- = .1_23 - —R—S,
_8__21_ - —3xy
ax R3 R’
3 (1 3x? 9x 15x°
Quadrupole (Q): P (F - 72-5—) = -2t
9 =3xy _ ——3y+ 15x%y
ox RS = R’ R
_Ei—?ayz _ 15xyz
ax RS R’
a (1 3y2 =3 + 15x22
ax\R RB) B RT
The x-component of the force vector is then given by:

~F, =

M: —I%Zmz
2
o (5-35) S+ B s 2 S
i i

1523 ox\ 1 2 15xy* 3x\ 1 2
Tow) o +(T'ﬁ>'52m"”‘
H

(i
15x22 3x\ 1 2, (1583

+(7 —F).Ez’:mizi +< R) Zm,x,y,
15x%z 3z 15xyz

(R7 - ‘R—5'> . Zmixizi < 2%) thy:zt

i

30 Basic Principles of the Hierarchical Tree Method

X

Equivalent expressions for the y- and z-components of the force can be easily
obtained by cyclic rotation. Appendix 1 shows the multipole expansion for the
somewhat simpler 2-dimensional case.

To keep the computational effort to a minimum it would be useful to utilize the
information stored for the daughter nodes to obtain information about the parent
nodes. The force expression contains sums such as: M = Y, m;, the dipole
momentD = Y, m;r;, and the quadrupole moments O, = Y ; m,~x,.2, Oxy =
2_imix;y;, and so forth. In general, the multipole moments depend on the
choice of the origin of the coordinate system, but the valae of the first non-

- vanishing moment is independent of this choice (Jackson 1975). This means
that the monopole moment is independent of this choice, and therefore the total
mass of the parent cell can simply be obtained by summing over the masses of
the daughter cells.

The calculation of the dipole and quadrupole moments of the parent cell from
the moments of the daughter cell is a bit more difficult because the moments
depend on the choice of the origin. Initially, the moments are calculated relative
to the centre of mass, defined by

2 Mt

Fem = W .
As Fig. 2.11 illustrates, the centres of mass are different for the daughter cells
and the parent cell. The difference in the x-component is given by

Xsd = Xcm(daughter) — xem(parent),

where d indicates the different daughters. For example, for daughter 1 in
Fig. 2.11, we have:

xs1 = Xj — Xp.

This means that the moments of the daughter cell have to be calculated relative to
anew origin, which is equivalent to a shift by x;4. Each individual x; in the sum
of one daughter is shifted by the same vector x5y, meaning: x;(new) = x; — x;4.
The dipole moment relative to the new origin can be obtained from the dipole
moment relative to the original origin by making this substitution:

daughter
D™ (new) = " m;(x; — %sa)

i

= Zmixi - E m;Xsd
i i

= Zmixi ——xstm,-.
i i

2.3 Multipole Expansion 31

daughter 1 daughter 2

daughter 3

Fig. 2.11. Origin shift for the multipole calculation: the circles symbolize the pseu-
doparticles; r; is the vector from a member of one of the pseudoparticles to the centre
of mass of this pseudoparticle and r; is the shifting vector to the new origin (3), which
is the centre of mass of the daughters (pseudoparticles).

The same procedure applies for the quadrupole moments, in which case we
have:

daughter 2
xS (new) =) mixi = Xsa)
i
= Zm;xi2 — 2xsd Zmix,- + xszd Zm;,
i i i

and

dt
0558 (new) = 3 my(xi = Xsa)(¥i — yea)
i
=) miXiyi =X y_m;y;
i i

—Ysd Zmixi + Xsd Ysd mew
i i

32 Basic Principles of the Hierarchical Tree Methdd

This means that all moments of the parent can be obtained from the knowledge
of the daughters’ moments and the shifting vectors ryy. The dipole moment of
the parent cell is therefore:

Dt =y (Z Mixi = Xsd) mi)
d i i
= 3 (Df - xam?). .9
d

Similarly, the quadrupole moments of the parent cell can be found from:

parem — Z (Zm X — 2X5d Zm,x, +x5d2m >

= Z(0f, - 2xaDf +x2,M), (2.10)

parent — Z(Zm iXi Vi — Xsd Zm:y:
+Ysd Zmix,' + Xsd Vsd Z”M)
i i

= Z (Q)‘ciy - xsdDg -)’sdDg + xsdySde) . .11
d

How is this implemented in the code? Starting at the highest level of the tree,
the sums 3, m;, 3, mix;, Y ; m,-xiz, and)", m;x; y; and the equivalent ones
for the other space directions are calculated and stored for every pseudoparticle
(twig node). The multipole moments for the next level down (i.e., for the parent
nodes) are then evaluated at their respective centres of mass using the shifting
formulae (2.9)—(2.11). In practice, this means adding another loop over the
daughter nodes to the MOMENTS routine described earlier.

doi=1, nbuds
point_dau=pointl +i-1
inode =node (point_dau)

shift vector
Is = Feom(itwig) —reom (inode)

2.3 Multipole Expansion 33

sum moments
D(itwig) =D (itwig)
+D(inode) - r; x 0 (inode)
... €tC.
end do

This procedure is continued until the root node is reached, which will then
contain a (second-order) expansion for the whole system. The moments are later
used to evaluate the dipole and quadrupole corrections in the force calculation.

For problems in which the forces are gravitational, the dipole moments vanish
relative to the centre of mass, so that we have only monopole and quadrupole
contributions to the force calculation. We will see later that this does not happen
for electrostatic forces. Table 2.2 shows how including the moment terms in
the force calculation improves the accuracy. Or, seen from a different point of
view, the same level of accuracy in the force computation is achieved more
efficiently if quadrupole moments are included rather than using a smaller 8 in
the monopole version. This is due to the fact that, as (2.5) shows, the number
of interactions varies as § 3, and so increases rapidly with decreasing 6.

The error introduced into the force calculation as a result of the truncated
multipole expansion increases monotonically with 8. For open systems the error
relative to a direct particle—particle calculation is typically <0.1% for 6 = 1.
It increases rapidly for larger 8, which suggests that § = 1 may be a practical
upper limit for open systems.

A factor of ~ 1/6 improvement of the relative force error A F/ F is expected
foreach new added term in the expansion (McMillan & Aarseth 1993). However,
it would be wrong to conclude that adding higher order multipole moments is
always more effective than choosing a smaller 9. The evaluation time of the
higher moments (2!) of the multipole expansion has an 0(/2) dependence. So,
at some point, improving the accuracy by reducing 8 costs less than including
higher moments (Makino 1990a).

Table 2.2. Force on a randomly chosen particle from an
ion beam simulation

Monopole tree Dipole tree
N PPcode ©=10 ©=03 ©=10 ©=03

100 0.5284 05141 05273 05271 0.5287
500 0.6%11 0.7152 0.6932 0.6939 0.6912
1,500 0.8951 09139 0.8958 0.8965 0.8951

34 Busic Principles of the Hierarchical Tree Method

- (Initial conditions ’

Construct tree

Divide into cells
I
Evaluate centres of mass
]
L Zmi, T mzy, ..., etc.
]
Include shifting

n=1

IEvaluate force on particle 17]
]
Add moment contributions
]
Update vand r

All particles ?

n=n+1l

Do diagnostics

NO

All timesteps ?

(DoNE)

Fig. 2.12. Flowchart of a hierarchical tree code for a dynamic N-body problem.

2.4 Dynamics 35

2500

2000 | ot e mem e B

1500 //

1000 P
>
80 500
D]
Lﬁ 0 —-— Xkinetic energy

-500 ™ ——— potential energy

\ — total energy

-1000 \\ N .

-1500 \._// S’ \\~_,r—~~ ______ ——

-2000

0 3 6 9 12 15
Wy, t

Fig. 2.13. Energy conservation for a plasma system approaching equilibrium over
10,000 timesteps.

2.4 Dynamics

Up to now we have considered only a single timestep of the dynamical system.
In contrast to first hierarchical codes by Appel (1985), Jernighan (1985), and
Porter (1985), recent codes mainly reconstruct the tree ab initio every timestep.
This sounds like a lot of computational effort, but in fact only a small fraction of
time is needed in generating the tree structure, which is usually of the order of
a few percent for § < 1 of the force calculation. The whole code is summarised
by the flowchart of Fig. 2.12.

The approximation of the potential and the force by the tree structure influ-
ences the dynamical evolution of representative systems only slightly. Tests for
open systems show that the energy conservation is only weakly violated, and
the departure from exact conservation seems to be comparable to those errors
typically tolerated from time integration errors. These errors are only weakly
correlated from one timestep to the next, which leads to a fluctuation around a
mean value rather than a steady growth or decay. Figure 2.13 shows an example
of the energy conservation for a dense plasma system over 10,000 timesteps.
The fluctuation in total energy is less than 0.5%.

Because most of the integrations are treated as particle—pseudoparticle in-
teractions, the force calculation is not symmetric. This means that momentum

36 Basic Principles of the Hierarchical Tree Method

and angular momentum are not exactly conserved. Empirical tests by Hernquist
(1987) indicate that the departures are small for 8 < 1. In particular, the non-

reciprocity in the force-law causes the centre of mass to drift, an effect which
can be minimised by taking 6 < 0.5 and by increasing the number of particles.

Even in its most basic form, the hierarchical tree code is a very promising
simulation tool and is already commonly used for the treatment of N-body
problems. It can be implemented in a variety of programming languages like
C, PASCAL, LISP, and FORTRAN. The advantage of C, PASCAL, and LISP
is that they allow recursive function calls and permit a close correspondence
between the tree structure and the program coding.

In a later chapter we will show how the computational performance of tree
codes can be improved. On the software side, this means higher order integra-
tion schemes, vectorisation and introduction of individual timesteps. On the
hardware side, there have been suggestions to design computers which are es-
pecially adapted to the tree structure. The tree algorithm can also be used on a

parallel machine: Each particle has its own interaction list which can be summed
independently.

	15:

