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The hierarchical tree method offers the possibility of computing the interaction between N self-gravitating particles if‘ a
time ~ O(N log N), without using a grid. The potential advantages of this technique for collisionless systems and for particle

hydrodynamic schemes are discussed.

1. Introduction

N-body simulations have been used to study a
wide variety of astrophysical systems during the
past 25 years, ranging from small clusters of stars
to galaxies and the formation of large-scale struc-
ture in the universe. (For a review see Hockney
and Eastwood [1], van Albada [2], Sellwood {3].)
Astrophysical applications place severe demands
on numerical methods since large numbers of
simulation particles are typically required. For
example, galaxies are collisionless on the evolu-
tionary time-scale of the universe; hence spurious
relaxation effects must be avoided. Cosmological
simulations must be able to handle density con-
trasts of order the ratio of the mass of a large
cluster to that of an individual galaxy. Finally, an
accurate modeling of the dynamical evolution of
globular clusters requires that the number of simu-
lation particles be equal to the number of stars
comprising the cluster. In all three cases N must
be N ~ 1035-108.

The straightforward particle—particle (PP) tech-
nique, in which the potential is computed as a
direct sum over all individual two-body interac-
tions, has a number of advantages over other
N-body methods. In particular, it is fully
Lagrangian and does not use a grid. Thus, it offers
a large dynamic range in spatial resolution and
does not impose geometrical restrictions on the
systems to be studied. However, it is not feasible

~ to use the PP method for N ~ 10°-10°. A fully

vectorized PP code uses of order 3 X 10~7 N2 cpu
s/step on a CRAY X-MP (e.g. Hernquist [4]).
Hence, approximately one cpu year would be re-
quired to evolve systems with N =103 for 1000
timesteps. It is possible to improve the efficiency
of this technique using high order integrators and
multiple time-scales (for a review see Aarseth [5]);
nevertheless the computational expense remains
prohibitive for large N (for a detailed analysis, see
Makino and Hut [6]).

More efficient techniques have generally been
obtained by compromising one or more of the
features of the PP method. Typically this has
involved imposing limitations on one or more of:
the dynamic range in spatial resolution, the global
geometry, the boundary conditions, and so forth
(for a discussion see ref. [4]). In many situations
the implied restrictions are not relevant. However,
there exist large classes of problems for which
these issues are crucial; e.g. systems with high
density contrasts and /or large asymmetries. Hence
there is strong motivation for an efficient, gridless
Lagrangian method.

2. The hierarchical tree method

Recently, a new class of N-body algorithms has
been proposed which retain many of the ad-
vantages of the PP technique (e.g. Appel [7,8],
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Jernigan [9], Porter [10], Barnes and Hut [11],
Barnes [12], Greengard and Rokhlin [13], Green-
gard [14]). Rather than compromising the spatial
resolution and/or imposing geometrical restric-
tions, these methods introduce approximations
into the calculation of the potential. The force on
an individual particle from nearly particles is, on
average, computed as a direct sum. The influence
of remote particles is included by performing mul-
tipole expansions of clusters or cells containing
many particles, truncated at a fixed, relatively low,
order. The force on a particle is then obtained
from the expansions. Typically, the number of
terms in an expansion is small compared with the
number of particles in the corresponding cluster
or cell, and a significant gain in efficiency is
realized.

The process of computing the potential from a
truncated multipole expansion is equivalent to
neglecting the details of the distribution of par-
ticles within a given cluster or cell, to a specified
level of accuracy. This procedure is physically
well-motivated. For example, the dynamics of the
Earth—-Moon system is insensitive to the detailed
mass distribution of each body. The approxima-
tion is also numerically well-motivated. Errors will
always be present in N-body simulations from
round-off, truncation, and discreteness effects.
Given these, it is not consistent to compute the
potential field to arbitrarily high precision.

The basic structure of the hierarchical al-
gorithm can be summarized as follows. At each
timestep the system is organized into a nested
hierarchy of clusters or cells. For each particle, the
force computation begins at the top of the
hierarchy (i.e. at low spatial resolution) and the
size of the current cluster or cell, s, is compared
with the distance to the particle, 4. If

s/d <0, (1)

where 4 is a fixed tolerance parameter [11], then
the internal structure of the cluster or cell is
ignored and the force on the particle is computed
using the corresponding truncated expansion.
Otherwise, the cluster or cell is subdivided into
components and the criterion is recursively ap-
plied to each subunit.

For non-zero #, a sum over N particles is

Fig. 1. Schematic representation of the force computation on a

particle at the center of a homogeneous sphere of particles,

using the hierarchical method. The influence of subregions of

linear dimension @7r,, each containing many particles, is in-
cluded through the use of multipole expansions.

replaced by a sum over log N interactions. To
demonstrate this in an artificial situation, consider
a single particle at the center of a homogeneous
sphere. The remaining particles are organized into
a hierarchy of clusters of cells. The total number
of interactions can be estimated from the number
of substructures contained within concentric shells
surrounding the origin, as shown in fig. 1. The
mass distribution within each shell will be unre-
solved since s/d = r,8/r, = 8. Each shell will con-
tain a number of subunits given roughly by

4ur’g 24

R~ e 20 2
sub gﬂri303 /8 02 ( )
The total number of interactions will be n,, ~

24n, /6% + n,, where ng, is the total number of
shells and n, is the number of direct interactions
resulting from particles inside the sphere with
radius 7. Now, r,=(1+6)""'r,, implying r, /r,
=(1+ @)"+~!, In addition, the system radius, R,
is R=r, (1+80). The radius », is the radius at
which clustering begins, i.e. r, ~n~13/8, where
the number density n, is n=N/$nR> Taking
ny=N(r;/R)* and eliminating », /r, gives

24 log[00N/4m)' "] | am )
it g2 log(1+6) 393"

(Note that in this case 8 > (4m/3N)'/3.) Thus, the
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dominant behavior for >0 is n,, ~log N/§2
The number of operations to compute the force on
all N bodies will then scale as ~ O(N log N).

Empirical tests for various density profiles
(Hernquist [4], Hernquist and Quinn [15], Bouchet
and Hernquist [16], Hernquist and Bouchet [17])
demonstrate that the N log N scaling is typically
well obeyed for 8 > 0.3. The principal dependence
on 8, n,, ~ 872, appears to apply accurately in
three dimensions to both periodic systems [16,17]
and isolated systems (provided that N is suffi-
ciently large that edge effects are negligible [4]).
For highly flattened systems such as disk galaxies,
the cpu costs increase somewhat more slowly than
672 for decreasing 6 [15].

In principle, therefore, the hierarchical method
offers a significant reduction in computing cost
compared with the PP technique, at the expense of
a small, controllable error in the force calculation.
This, of course, presupposes that the organization
of the particles and subsequent determination of
interactions can be performed efficiently. A naive
implementation might insist on sorting all par-
ticles with respect to distance from each particle
during the force computation, which would re-
quire > O(N?) operations. The potential difficul-
ties can be overcome with the introduction of a
tree data structure (e.g. refs. [7-9,11-14]). As a
result the codes derived from these principles have
become known as tree codes. The various schemes
differ primarily in their detailed organization of
the particle information, but share the same un-
derlying physical principle — the use of multipole
expansions to approximate the potential of a dis-
tant mass distribution.

3. Empirical tests

In order to investigate the properties of the
hierarchical tree method in some detail a version
of the Barnes and Hut [11] algorithm was opti-
mized for supercomputers by Hernquist [4]). The
Barnes-Hut method relies on a hierarchical sub-
division of space into regular cubic cells. At each
step, prior to the force evaluation, a tree data
structure is built to store the hierarchy. Each node
in the tree is associated with a cubic volume of

space containing a given number of particles. Each
volume is subdivided into eight subunits (in 3-D)
of equal volume, which become the descendents of
the original node in the tree structure. This pro-
cess is continued recursively until each fundamen-
tal subcell contains either one or zero particles.
Empty cells are not stored explicitly in the tree,
thus the leaves represent volumes of space con-
taining precisely one particle. As part of the
tree-building procedure, the total mass, center of
mass coordinates, and quadrupole moments are
computed recursively for each cell. The force on a
given particle is determined by walking through
the tree, beginning at the top of the hierarchy (i.e.
largest volume). The tolerance criterion (1) is ap-
plied to each node. If s/d <8, then the influence
of all particles within the cell is computed as a
single particle—cell interaction. Otherwise, the cell
is subdivided by continuing the descent through
the tree until either the tolerance criterion is satis-
fied or an elementary cell is reached. In this
manner, all operations, including tree construction
and force evaluation can be performed in O(N
log N) time.

3.1. Timing analysis

The timing tests performed by Hernquist [4] on
a CRAY X-MP can be summarized as follows.
The N log N scaling appears to be well obeyed
for a variety of density profiles, if 8 > 0.2-0.3. For
smaller 8 the force calculation asymptotically ap-
proaches the N2 behavior characteristic of a di-
rect sum. The fraction of time involved in initializ-
ing the tree structure is small, typically of order a
few percent for § <1. On a non-vectorizing ma-
chine such as a VAX the tree initialization is even
less significant. This is an important advantage of
the Barnes—Hut algorithm over other tree codes
which organize the particles into a hierarchy of
clusters. The tree algorithm is more efficient than
a fully vectorized direct sum for N > a few thou-
sand. (Of course the force calculation is less accu-
rate; a point which will be discussed below.) The
use of higher order terms in the multipole expan-
sions is generally useful. For example, at the same
level of accuracy in the force computation the
algorithm is more efficient if quadrupole terms are
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included and a correspondingly larger 8 is used,
relative to the monopole version with smaller 4.
(Note that the multipole expansions are essentially
power series in the ratio s/d.) Finally, the ef-
ficiency of the hierarchical tree method is not
compromised by highly inhomogeneous systems
(see below).

3.2. Conservation properties

The error introduced into the force calculation
as a result of the multipole approximation in-
creases monotonically with 8. Typically, the error,
relative to a direct sum, is < 1% for 8§ = 1, increas-
ing rapidly for larger §. This suggests that =1
may be a practical upper limit. (In practice, § <
0.7-0.8 appears to be desirable in order to avoid
spurious effects associated with nearby cells.)

The influence of the approximations on the
dynamical evolution of representative systems is
currently under investigation (e.g. refs. [15-18]).
Crudely speaking, the Hamiltonian will now con-
sist of three parts

H=H,;+ Hy + Hp,- (4)

The term H, , describes the mean-field behavior
and would comprise the entire Hamiltonian of a
collisionless system. The factor Hg,. accounts for
departures from the mean-field limit due to dis-
creteness effects, which may or may not be physi-
cal. Finally, the term Hy, accounts for the
fluctuations in the potential field as a result of the
multipole approximation. Since Hp,, depends ex-
plicitly on time, the energy of the system will no
longer be conserved even in the limit of a vanish-
ingly small timestep. However, initial test cases
[4,11,15-17] indicate that energy conservation is
only weakly violated, in the sense that the depar-
tures from exact conservation due to Hy, appear
to be comparable to those typically tolerated from
time integration errors.

The interaction of a particle with particles in a
cell is not symmetric and, hence, momentum and
angular momentum conservation are also violated.
However, empirical tests [4,15-17] show that the
departures from exact conservation are small for
0 < 1. Furthermore, it may be possible to restore
momentum conservation by symmetrizing the
force computation between cells (e.g. refs. [13,14]).

3.3. Statistical behavior of a system

Although the hierarchical method faithfully re-
produces the global evolution of representative
systems, the approximations in the force computa-
tion can lead to subtle changes which may affect
statistical properties in some cases. For example,
it is not clear that relaxation effects will always be
handled correctly. Simple tests [4] show that the
relaxation time is not strongly influenced by the
force errors for N < 10, as long as 8 < 1. In this
limit, it appears that Hp, < H, . However, as
N — o0, Hy, — 0 monotonically, while the depen-
dence of Hp, on N is uncertain. Tests using
Plummer mass models suggest that H;, decreases
slowly with N [4], but this may not be a general
conclusion valid for all density profiles. This is a
point of concern since Hy,, may become com-
parable to Hy, for sufficiently large N, unless
Hy,. decreases at least as quickly as Hy,, with
increasing N. If H;, . begins to dominate, then
relaxation will proceed as a result of numerical
errors rather than discreteness effects. It remains
an open question, therefore, whether or not the
hierarchical tree method will be suitable for sys-
tems such as globular clusters.

3.4. General remarks

The empirical tests [4,15-17] and detailed anal-
ysis [18] performed to date suggest that the
hierarchical tree method will be essentially equiv-
alent to a fast direct sum for a wide variety of
applications. The lack of a grid and the efficiency
of the technique indicate that tree codes will offer
large dynamic ranges in mass and spatial resolu-
tion. Furthermore, the freedom from geometrical
restrictions implies that this method will be well-
suited for highly inhomogeneous systems with large
density contrasts. The possibility of both small
and large-N simulations suggests that this method
will be useful for studying collisional as well as
collisionless processes. Finally, the errors intro-
duced through the multipole approximation are
simply related to 8. For a simple geometrical tree
structure as that underlying the Barnes-Hut al-
gorithm, a rigorous error analysis is feasible [18].

The primary disadvantage of the hierarchical
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tree method is that in its present form it is slow in
comparison with particle-mesh codes for situa-
tions in which a large dynamic range in spatial
resolution is not required [4]. However, recent
developments [19] demonstrate that a vectori-
zation of the tree search is possible leading to a
factor = 3-5 improvement in efficiency. In ad-
dition, the cpu efficiency can be improved by
symmetrizing the force calculation between cells.
In the Fast Multiple Method [13,14,20] the force
on each particle is computed by first computing
cell—cell interactions. For log N cells this requires
a time ~ O(log? N). Once these have been de-
termined the force on a single particle can be
calculated in a time independent of N, resulting in
an overall scaling ~ O(N).

4. Examples
4.1. Cosmology

Previous cosmological studies (e.g. refs. [21,22],
Marc Davis, this volume) have been successful in
placing constraints on dark matter candidates and
in relating conditions early in the universe to
observed properties of galaxies and clusters of
galaxies. Simulations of this nature place severe
demands on numerical methods due to the large
range in mass and spatial scales involved. The
P*M (particle-particle-particle-mesh) technique
has been successful in overcoming many of these
problems (e.g. ref. {23]). However, the perfor-
mance of P3M codes tends to degrade for highly
clustered states, placing limitations on N and the
degree of non-linearity which can be attained. The
properties of the hierarchical tree method suggest
that tree codes may be ideal tools for simulations
of this nature.

A sample result is shown in figs. 2a, b for a
sphere of particles, with N = 32,768, expanding
into a vacuum. The particles were initially distrib-
uted randomly within the sphere (white noise) and
the expansion velocity was that appropriate for a
marginally bound universe ({2 = 1). The expansion
factor, a, which is the instantaneous radius of the
system relative to that initially, is shown in all
frames. The code parameters were 8 = 1, including
up to quadrupole terms in the multipole expan-

sions, with a two-body smoothing length of €=
0.005, corresponding to 0.1 times the initial mean
interparticle separation. The units of length were
such that the sphere had radius R=1 at a=1.
The mean number of interactions per particle
varied between = 130-150 during the simulation.
Energy and momentum were both well conserved.
For cosmological simulations energy conservation
is measured by comparing the change in the total
energy, E, to the change in, for example, the
potential energy, U. In this case, AE/AU was
= 0.04% after 30 expansion factors, and the maxi-
mum departure during the course of the simula-
tion was AE/AU=0.1%. Non-conservation of
momentum resulted in a drift in the center of
mass coordinates of A 7, /a=32X10"% at a=
30.0. Simulations in periodic, comoving coordi-
nates give similar estimates of the conservation
properties of the hierarchical tree method [16,17].
A useful statistical diagnostic of cosmological
simulations is given by the two point correlation
function £(r), which is shown in fig. 3 for four
different expansion factors. In this case, £(r) was
computed using only particles within a radius
equal to 80% of the system radius to minimize
edge effect. The amplitude and slope of £(r) are
both in good agreement with previous work (e.g.
ref. [23]) if the results are scaled to the same
system of units. In particular, £(r) shows the
self-similar evolution expected for white noise ini-
tial conditions with 2 =1. Finally, a more com-
plete study [16,17] demonstrates that the fluctua-
tions in §(r) due to errors in the force computa-
tion are small compared with variations due to
differential initial realizations. The errors in this
case are, therefore, not statistically meaningful.
The cpu usage for this simulation in CRAY
X-MP seconds per step, as a function of the
expansion factor, is shown in fig. 4. Initial tran-
sient fluctuations are due to a resizing of the
simulation volume represented by the tree struc-
ture as the system expands. Aside from these
features the cpu time is essentially independent of
a. That is, it is insensitive to the degree of cluster-
ing in the system. This striking conclusion is a
result of the adaptive nature of the tree structure
and the scale-free nature of the tolerance criterion

).
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Figs. 2a, b. Evolution of substructure in an expanding sphere of particles as a result of the gravitational instability, using the
hierarchical tree method. The expansion factor, a, is indicated in each frame. The particle distributions are shown in a set of
coordinates comoving with the expansion.

Thus, the hierarchical tree method offers a large
dynamic range in spatial resolution without com-
promising efficiency, i.e. allowing a large dynamic
range in mass scales. In addition, the flexibility of
this method allows the influence of imposed
boundary conditions on the formation of non-lin-
ear structures to be studied, including vacuum,
quasi-periodic [16,17], and fully periodic boundary
conditions [14].

4.2. Unified SPH / hierarchical N-body paradigm

The adaptive nature of the tree data structure
suggests that it may be useful for performing
functions other than computing global forces, such
as those required by particle hydrodynamic meth-
ods. As summarized by Joe Monaghan (this
volume) smoothed particle hydrodynamics models
a fluid by a collection of particles. The particles,
which represent a sampling of the fluid elements
comprising the system, evolve according to the
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Fig. 2. Continued.

Lagrangian hydrodynamic conservation laws. The
structure of SPH is, therefore, similar to that of an
N-body simulation, except that additional terms
are present in the equations of motion due to local
hydrodynamic forces such as those resulting from
pressure gradients and viscosity. The estimates of
these quantities are obtained from the local prop-
erties of the fluid; i.e. from all particles within
some specified distance of a given point. Thus, a
fundamental requirement of SPH is that nearest
neighbors must be found efficiently. This has usu-
ally been performed using grids and linked lists
(e.g. ref. [24]). Grid searching is adequate for

relatively homogeneous density distributions, but
tends to degrade for clumpy systems (analogous to
the difficulties encountered by the P*M method).
In addition, such a process introduces a length-
scale into the problem (the cell width) which is
usually dictated by memory constraints and not
physical considerations. Thus this procedure will
not be optimum if the search interval is small
compared with the grid spacing.

Nearest neighbor searches in more than one
dimension are an example of a more general prob-
lem known as range searching, which is an active
area of research in computer science (for a general
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Fig. 3. Two point correlation function, £, as a function of the
separation, r, for the simulation shown in figs. 2a, b.

discussion see Sedgewick [25]). In one dimension,
range searching can be performed by first sorting
the objects under consideration. Tree data struc-
tures effectively provide a means for performing
multi-dimensional sorts, and it is not surprising
that trees can be used to perform range searching.
The optimal structures appear to be those with
simple geometric interpretations, such as that used

in the Barnes—Hut algorithm. Within this frame-
work typical searches can be performed in
O(log N) time (see, e.g. refs. [26-28]).

There appears to be a deep correspondence
between SPH and the hierarchical tree method.
Both techniques are fully Lagrangian and do not
require a grid. Tree codes are adaptive in nature
since the tree structure is updated according to the
phase space evolution of the system. This property
is shared by SPH and is most clearly dem-
onstrated by the possibility of a spatially variable
smoothing length (note, however, that the imple-
mentation of this procedure is not without diffi-
culties; e.g. Monaghan [24]). These considerations
suggest that there may be a considerable ad-
vantage to combining the two methods. The tree
data structure would be used to determine both
global (gravitational) and local (hydrodynamic)
forces, thereby eliminating the need for a grid and
the introduction of an unphysical length scale into
the problem. All operations could be performed in
a time scaling as @(N log N), with only a weak
dependence on the degree of non-linearity in the
system. Finally, much of the machinery developed
for SPH, such as prescriptions for performing
error analysis, could be carried over to the N-body
problem. A unification of the two schemes should,
therefore, allow for a more efficient exchange of
ideas between the two fields.
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Fig. 4. Cpu time per step as a function of the expansion factor, a, for the simulation shown in figs. 2a, b.
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