Chapter 8

N-Body Models of Collisionless Systems

Joshua Edward Barnes

Informally, a self-gravitating system 1s collisionless if the granularity of its
mass distribution does not influence its evolution. Galaxies, in particular,
are expected to evolve collisionlessly even over timescales much longer than
a Hubble time. This chapter describes an N-body algorithm for simulating
the evolution of collisionless systems.

8.1 Collisionless Stellar Systems

Consider a system composed of N stars bound together by their mutual
gravitation. Two distinct time-scales arise in discussing the evolution of
such a system (e.g. Binney & Tremaine 1987, § 4.1):

1 N
ooy — d tp~ ——t,, 8.1
\ Gon o SN (8:1)

where G 1s the gravitational constant and py is the average density within
the contour containing half the mass. ¢, is comparable to the orbital period
of a typical star, while ¢ is the time over which that orbit is significantly
deflected by the cumulative effects of interactions with all other stars in the
system. Over intervals much smaller than ¢, one may be able to neglect the
effects of interactions between individual stars, and if t. << t, we expect
the system to evolve collisionlessly.

8.1.1 The Collisionless Boltzmann Equation

When A is large it makes sense to adopt a statistical description instead of
tracking individual stars. Let f(r,v,t)d®rd®v be the total mass of the stars
in the phase-space volume d®rd®v centered on (r,v) at time ¢; assuming
that correlations between stars can be neglected, this distribution function

2 Joshua Edward Barnes

completely describes the dynamical state of the system. The evolution of
f(x,v,t) is governed by the collisionless Boltzmann equation,

a_f+v.6__v¢.§_£:

ot or
where the gravitational potential ¢(x,¢) is given by Poisson’s equation,

0, (8.2)

V2 = 47rG/fd3v. (8.3)

8.1.2 Solution by Monte-Carlo Method

Finite-difference methods of solving eq. (8.2) are impractical in three di-
mensions. Instead, one adopts a Monte-Carlo approach (e.g. White 1983):
at some initial time ¢y, construct an N-body realization of the system by
chosing phase-space coordinates (r;,v;) for i = 1,..., N with probabil-
ity proportional to f(x;,v;,%0), and assigning each body a mass m; =
N1 f fd3rd®v. Thus the expectation value for the mass within any finite
region of the realization is equal to the mass within the same region of the
original system (though the actual value will be different due to VN flue-
tuations). This N-body realization is evolved according to the Newtonian
equations of motion,
dI‘Z' dVZ'

= Vi, = - r=r; - 4
a T (8.4)

One may think of this N-body representation as a “mechanical model” of
the actual system. In the limit N — oo the behavior of the model ap-
proaches the behavior described by eq. (8.2).

A discrete solution of eq. (8.3) is needed to apply this Monte-Carlo
approach to a self-consistent system. One solution which appears entirely
suitable from a mathematical point of view is

) — my
=) ==) O ey (59

Here ¢ is a “softening parameter” with dimensions of length, originally
introduced to simplify the treatment of close encounters between individual
bodies. Softening also has the welcome effect of smoothing the gravitational
field on small scales; this helps reduce the effects of discreteness.

A number of methods for calculating the gravitational acceleration
have been described in the literature (Sellwood 1987; Hockney & Eastwood
1981). Many of these methods, especially those tailored to systems with
simple geometries, are computationally much faster than direct summation;
however, this speed is often gained by sacrificing generality (in the case of
expansion techniques) or spatial resolution (in the case of three-dimensional

Chapter 8. N-Body Models of Collisionless Systems 3

Fourier methods). Tt is sometimes claimed that certain methods “suppress
two-body relaxation”, meaning that effects due to discreteness are less se-
vere than they would be in a simulation with the same number of bodies
and spatial resolution performed using eq. (8.5). Such claims are highly
suspect. Regardless of the method used to compute the gravitational field,
suppression of two-body relaxation for a given N always entails a cost in
spatial resolution (e.g. Hernquist & Barnes 1990).

It is important to recognize the limitations of the Monte-Carlo ap-
proach; effects due to discreteness may become quite apparent over times
of order 0.1¢; or less. For example, van Albada (1986) found that the bind-
ing energies of individual bodies in an equilibrium model of a triaxial galaxy
fluctuated by 10 or 20% over a few tens of dynamical times. This behavior
was observed in a system of N = 20,000 bodies, for which eq. (8.1) gives
t, ~ 250t.. Simulations with N ~ 102 to 10° bodies can describe some
aspects of violent relaxation, merging, and the development of gross dy-
namical instabilities, but they are probably too coarse to address questions
of long-term evolution.

8.2 Hierarchical N-Body Methods

Relatively fast and completely general methods for evaluating the sum in
eq. (8.5) are now available (Greengard 1990). These hierarchical “tree”
codes are based on the idea of approximating the long-range force field of
a localized region, containing many bodies, with some sort of multipole
expansion. A tree-structure is used to partition the system into a hierarchy
of such regions. The gravitational field at any point is approximated by
making a partial scan of the tree to obtain a detailed description of the
nearby mass distribution and an increasingly coarse-grained description of
more distant parts of the system. If a better approximation is required, the
algorithm may either examine a finer level of the hierarchy or include more
moments of the mass distribution for each region.

The strategy adopted to refine the force approximation is closely re-
lated to the representation adopted for the gravitational field (IKatzenelson
1989). “Action-at-a-distance” codes represent the field at a given point r by
a list of masses which together generate an approximation to the potential
and force at r. This list is O(log N) elements long, so the time required to
evaluate the force on all N bodies scales like N log N (Barnes & Hut 1986).
“Field” codes represent the field at r by a multipole expansion carried
out to some prespecified order. The cost of evaluating the field at a single
point is then independent of N, so forces on all bodies can be computed in
time proportional to N (Greengard & Rokhlyn 1987). Action-at-a-distance
codes typically examine finer levels of the hierarchy to obtain more accurate
forces, while field codes expand the field to a higher orders to accomplish
the same end.

4 Joshua Edward Barnes

Despite the favorable asymptotic scaling of field methods, the relative
advantages of these two approaches are not clear at present. From a prac-
tical standpoint, however, action-at-a-distance codes seem to be simpler to
implement, and such codes are well-established in astrophysical research.
Consequently, the code presented here uses an action-at-a-distance algo-
rithm.

8.2.1 Tree Structure

The data structures needed to implement a tree code are widely used in
computer science. Following Knuth (1973, § 2.3), a tree may be abstractly
defined as a finite set 7' of nodes such that

1. There is a single node r which is the root of T', and
2. The other nodes, exclusive of r, are divided into m > 0 disjoint sets
Ty, ..., Ty, each of which is also a tree; T} is the i*™® subtree of T.

This definition is recursive — as are many of the algorithms used to manip-
ulate trees — but it is not circular, since complex trees are defined in terms
of simpler ones. The simplest trees consist of just one node; such a node 1s
sometimes called a terminal node. Conversely, if T contains more than one
node then its root is an interior node. Since every node is the root of some
tree, every node is either terminal or interior.

At a slightly less abstract level, a tree 1s often visualized as a graph,
with vertexes representing nodes and edges representing the relationships
between them. Specifically, an edge is drawn between nodes p and ¢ if p is
the root of some tree 1" and ¢ is the root of one of T’s subtrees. As a rule,
trees are sketched “upside-down”, with the root at the top and other nodes
arranged below; thus to descend a tree is to move towards the terminal
nodes. The set of all nodes which may be reached by descending from node
p are p’s descendents, while the nodes visited in tracing a path from p to
the root of the entire tree are p’s ancestors. Immediate descendents and
ancestors are sometimes called offspring and parents, respectively.

Two different kinds of tree structure have been used in tree codes. In
“lagrangian” codes (Appel 1981, 1985; Porter 1985; Jernigan 1985; Press
1986; Benz et al1990) the tree is constructed bottom-up, for example by re-
peatedly replacing pairs of mutually nearest neighbors with pseudo-bodies.
This generates a binary tree structure, identifying each body with a termi-
nal node, and each pseudo-body with an interior node. In “eulerian” codes
(Barnes 1986; Greengard & Rokhlyn 1987) the tree is constructed top-
down by repeatedly subdividing a cubical cell enclosing the entire system,
as shown in Fig. 8.1. In three dimensions, this generates an octonary tree
structure, associating each cell with an interior node. A cell may be subdi-
vided along the coordinate planes into eight smaller cells of equal volume;
thus each cell has an ordered set of up to eight descending links, referred to

Chapter 8. N-Body Models of Collisionless Systems 5

as subcells. Fig. 8.2 presents a two dimensional analog of this construction,
showing how such a tree is organized.

N

N
N

N

D,
L

AN

)
N

Fig.8.1. Hierarchical box structure
generated from a particle distribution
with two density centers.

Fig. 8.2. Tree generated from a two-
dimensional system. Filled circles are
bodies; shaded squares are cells. The

largest cell is the root.

One might suppose that the arbitrary divisions created with cubical
cells would lead to inaccuracies in the force calculation. In general this is not
the case (Makino 1990), although problems can arise in certain exceptional
situations. On the other hand, eulerian tree codes are simple to characterize
and easy to construct. The present code uses an eulerian tree, generated by
subdividing the root cube until each body is isolated within a single cell. In
practice, of course, it is redundant to allocate a cell to hold only one body,
and such trivial cells are replaced with the bodies themselves. The number
of non-trivial cells in the tree structure depends on the mass distribution,
but is typically of order 0.5N.

8.2.2 Force Calculation

Evaluating the force on a given body, p, is accomplished by a partial explo-
ration of the tree, starting at the root. At each node ¢ visited, a three-way
decision is made. If ¢ is a body, then the gravitational field due to ¢ 1s added
to the running total for p. If ¢ is a cell, there are two further possibilities. If
q 1s sufficiently well-separated from p, its gravitational field is again added
to the running total. On the other hand, if ¢ is too close to p to yield an
accurate force, the descendents of ¢ must be examined instead.

In the original version of the algorithm presented here, a cell ¢ was
deemed far enough away from p to be approximated as a single mass if
£,/6 < |Ar|, where £, is the linear size of ¢, Ar = r, — r}, is the vector

6 Joshua Edward Barnes

extending from p to the center-of-mass of ¢, and 6 is a user-specified pa-
rameter, used to control the accuracy (Barnes & Hut 1986). This criterion
can give rise to large errors in certain circumstances when the center-of-
mass of a given cell lies far from its geometric center (Salmon & Warren
1994). In the present code the criterion used is

0,/0+ 6, < |Ar], (8.6)

where §, is the distance between ¢’s center-of-mass and its geometric center.
Since the critical radius ¢,/0 + 6, depends only on the parameters of the
cell ¢, it is conveniently evaluated during tree construction, and the result
1s stored in the data structure associated with each cell for quick reference
during force calculation.

While similar to the original, eq. (8.6) has some advantages. For ex-
ample, the original criterion cannot guarantee that ¢ is not an ancestor of
p unless 6§ < 1/+/3 ~ 0.577; noting this, Hernquist (1987) proposed test-
ing to insure that p ¢ ¢. Eq. (8.6) positively guarantees p ¢ ¢ for any
0 < 2/+/3 ~ 1.155; since this is larger than the @ values used in most
simulations, Hernquist’s test need not be explicitly included. This new cri-
terion also effectively cures the “detonating galaxy” pathology described
by Salmon & Warren at a somewhat smaller computational cost than the
“Bmax” criterion they suggest.

The contribution of a given node ¢ to the gravitational field at body
p depends on the type of ¢. If ¢ is a body, 1ts contribution to the potential

at pis simply
mqy

(1 + 2177
where my, is the mass of ¢. On the other hand, if ¢ is a cell, its contribution
to the potential may also include a quadrupole correction, giving
my Ar - Qg - Ar
+G ;
(|Ar|? + £2)1/2 2(| Ar|2 + £2)5/2

_¢q =G (8.7)

—¢y =G (8.8)
where Q, is the traceless quadrupole moment of the cell ¢ (note that it is
not necessary to include a dipole correction since ¢, is calculated using the
center-of-mass of the cell). In either case, ¢’s contribution to the force on p
is obtained by symbolically differentiating ¢, with respect to r,. As Hern-
quist (1987) has shown, inclusion of quadrupole moments can significantly
increase the accuracy of force calculation.

8.2.3 Time Integration

In principle, integration of orbital trajectories is independent of the details
of force calculation. Practical issues, however, require some consideration
of the force calculation algorithm when chosing an integrator. Schemes in
which different bodies have different — and generally variable — time-steps

Chapter 8. N-Body Models of Collisionless Systems 7

are needed for simulations of star clusters (e.g., McMillan & Aarseth 1993;
also see Chapter 10); they are also useful in simulations of astrophysical
gas dynamics (e.g., Hernquist & Katz 1989; Benz et al 1990; also see Chap-
ter 5). But in collisionless N-body models the choice of time-step is tied to
issues of global stability, and it is not entirely clear how to go about se-
lecting individual time-steps. In the interests of simplicity, the present code
therefore uses a time-centered leap-frog, advancing all bodies with the same
time-step parameter At chosen by the user. This approach is simpler, more
robust, and more economical of memory than available high-order schemes.

As normally formulated, the leap-frog requires that velocities be offset
by half a time-step with respect to positions. However, the method can
easily be recast as a mapping from time ¢l to time ¢t[?+11 = ¢[*] 1 A¢ (e.g.,
Barnes & Hut 1989). Let r[?] and vI"l be position and velocity of a body
at time-step n; the body is advanced as follows:

St/ el %At a(xl))
plrt1] = 0] o Ay [t1/2] (8.9)
Pl = 12 %At a(el*t1y

where a(r), the acceleration obtained from the force calculation, depends
on the positions of all bodies. This reformulation does not compromise the
desirable properties of the leap-frog integrator.

8.3 The TREE Code

Apart from the routines associated with tree construction (§ 8.3.2) and force
calculation (§ 8.3.3-4), the TREE code follows a fairly conventional outline.
The main program calls a series of routines to initialize the system; of these,
GETPAR, which reads parameters from the parameter file, and GETBDS,
which reads the initial masses, positions, and velocities of the bodies, are
probably of greatest interest to the user. With the data read in, the code
performs an initial force calculation, and outputs system diagnostics. The
code then loops NSTEPS times, advancing velocities and positions according
to a simple time-centered leap-frog and recomputing forces from the new
positions. The main loop is structured so that velocities and positions are
synchronized at the beginning of each cycle. At regular intervals, and again
at the end of the run, PUTBDS is called to output body coordinates; the
final output includes masses so that it may be used as initial conditions for
a further run.

Initial conditions and parameter values may be specified in any set of
units with G = 1.

8 Joshua Edward Barnes
8.3.1 Representation of Tree Structure

Nodes are naturally implemented as C structures or Pascal records, blocks
of heterogeneous data which may be addressed by pointers. Fortran 77
does not support such objects; instead, the information for a given node is
distributed across a number of arrays (e.g. Hernquist 1987). Let MXBODY
and MXCELL be the maximum number of bodies and cells, respectively.
Quantities defined for both bodies and cells, such as mass and position, are
stored in arrays with indices running from 1 to MXNODE = MXBODY +
MXCELL. Quantities defined only for bodies are stored in arrays with indices
running from 1 to MXBODY, while those defined only for cells are stored
in arrays with indices running from INCELL = MXBODY + 1 to MXNODE.
The special value NULL = 0 is used to denote nonexistent nodes. Indices
may thus refer to either bodies or cells without conflict. The type is deduced
by comparing the index to the value of INCELL; if the index is less than
INCELL it refers to a body, otherwise, it refers to a cell.

With these conventions adopted, the declarations needed to represent
the tree structure itself, exclusive of other considerations, are

REAL MASS(MXNODE), POS(MXNODE,NDIM)
INTEGER SUBP(INCELL:MXNODE,NSUBC), ROOT

where NDIM = 3 is the number of dimensions, and NSUBC = 2**NDIM is
the number of subcells within a cell. The MASS and POS arrays store the
mass and position of each node. The SUBP array stores the indices of the
nodes in the subcells of each cell, and the ROOT is the index of the cell

enclosing the entire system. Cells have two additional arrays,
REAL RCRIT2(INCELL:MXNODE), QUAD(INCELL:MXNODE,NQUAD)

where RCRIT?2 is the square of the critical distance within which each cell
will fail to satisfy eq. (8.6), and QUAD is the traceless quadrupole moment,
which has NQUAD = 5 independent components in three dimensions. Fi-
nally, in connection with N-body integration, bodies have arrays,

REAL VEL(MXBODY,NDIM), ACC(MXBODY,NDIM), PHI(MXBODY)

which store the velocity, gravitational acceleration, and the local value of
the gravitational potential.

8.3.2 Tree Construction

The tree structure required for hierarchical force calculation is dynamic; it
changes to reflect the mass distribution as the latter evolves. Rather than
update the tree, this code simply regenerates it directly at each time-step.
This is reasonable since tree construction takes only a few percent of the
computational time in an equal-time-step code.

Chapter 8. N-Body Models of Collisionless Systems 9

Tree construction involves two phases. The first sets up the indices
which link the tree together; the second computes total masses, center-
of-mass coordinates, critical radii, and quadrupole moments for all cells.
Besides initializing the indices in the SUBP array, the first phase generates
some information of use to the second phase. In particular, it stores the
linear size and geometric midpoint of each cell in the CLSIZE and MID ar-
rays, respectively. To save memory, these arrays have been equivalenced to
the common arrays RCRIT2 and POS. The second phase of tree construc-
tion, after making use of the data in these arrays, reuses them to store the
squared critical radius and center-of-mass of each cell.

MKTREE. This routine governs tree construction; besides timing, it does

no more than invoke the routines EXPBOX, LDTREE, and HACKCM.

EXPBOX. The purpose of this routine is to define a cube enclosing the entire
particle configuration, with linear dimensions which are an integer power
of two. This guarantees that cell midpoints will be accurately represented
in binary floating-point arithmetic.

LDTREE. This routine creates an empty tree consisting of one cell, indexed
by the ROOT, which represents the entire volume of space defined by EXP-
BOX. With this cell initialized, the routine loops over all bodies, calling
LDBODY to add each body in turn to the tree structure.

LDBODY. This routine installs the body indexed by P into the tree structure
attached to the ROOT cell. In doing so it also adds new cells as needed to
insure that each body remain isolated in a single subcell. To find the correct
place to insert P, this routine follows a trail from the root cell toward smaller
cells, zeroing in on the single correct subcell. This is accomplished by the
following code:

Q = ROOT
QIND = SBINDX(P, Q)

10 IF (SUBP(Q,QIND) .NE. NULL) THEN
IF (SUBP(Q,QIND) és a body) THEN
extend the tree with a new cell

ENDIF
Q = SUBP(Q,QIND)
QIND = SBINDX(P, Q)
GOTO 10

ENDIF

SUBP(Q,QIND) =P

If another body is already occupying the targeted subcell, a new cell
must be added to the tree. The new cell is one-eighth the volume of the
cell holding the original occupant; that is, it 1s exactly the volume of the
contested subcell, and 1ts midpoint is offset from its parent cell in the ap-
propriate direction. Once the new cell is initialized, the old occupant is
installed within it, as shown in Fig. 8.3. This case is handled inside the

10 Joshua Edward Barnes

main loop of the routine, since it may come up several times in succession
before separate subcells are available for the two contesting bodies.

./PO\ < 7

) A\

Fig.8.3. Adding a cell to the tree structure. On the left is the situation before
the tree is extended, with a body PO already occupying the subcell. In the middle
the new cell C has been linked into the tree, and P0 has been inserted within it.
On the right is the situation one cycle later with the new body P in place.

SBINDX. An integer-valued function which accepts the indices of a body P
and a cell Q. It checks that P is somewhere within the volume represented
by Q and returns the index of the subcell of Q which encloses P.

MKCELL. An integer-valued procedure which initializes an empty cell and
returns its index.

HACKCM. This routine performs the second phase of tree construction,
computing total masses, center-of-mass positions, critical radii, and quad-
rupole moments for all cells. This phase typically involves the flow of in-
formation from the leaves toward the root of the tree. It is therefore im-
plemented with loops which scan the cells in order of increasing size; this
insures that the subcells of any cell are processed before the cell itself 1s.
Before the first such loop, cells are listed in order of decreasing size by the
BFLIST routine. The first loop computes total masses, center-of-mass po-
sitions, and critical radii; if required, a second loop computes quadrupole
moments.

BFLIST. This routine scans the tree in breadth-first order, visiting all cells
on each level before going on to the next. It stores indices of the cells visited
in the IND array; on return, this array lists cells in order of decreasing size.
The main loop terminates when 1t reaches a level of the tree without any
cells; further levels are empty since bodies have no descendents.

8.3.3 Force Calculation

To compute the force on a body, the code makes a partial traverse of the
tree structure. The goal 1s not to visit every node; if a sufficiently accurate
approximation to the force can be obtained from a given cell, there is no
need to visit its descendents.

Chapter 8. N-Body Models of Collisionless Systems 11

ACCEL. This routine repeatedly calls TRWALK to compute the gravitational
acceleration and potential of each body.

TRWALK. The heart of the algorithm is contained in this routine, which
calculates the gravitational force on a single body P. It uses a stack to
hold nodes yet to be examined; when this stack becomes empty, the tree
has been traversed. Initially, the ROOT is placed on the stack as the first
node to examine. Within the main loop, the node on the top of the stack is
removed and examined to decide what to do. Bodies and sufficiently distant
cells contribute directly to the gravitational force on P. Cells which do not
satisfy eq. (8.6) are too close to P to yield accurate forces; instead, their
subcells are pushed onto the stack, and control transfers back to the top of
the main loop. In outline, the code to compute the force runs as follows:

SPTR=1
STACK(SPTR) = ROOT
10 IF (SPTR .GT. 0) THEN
Q = STACK(SPTR)
SPTR =SPTR-1
IF (Q ¢s a body) THEN
process body-body interaction
ELSE IF (Q is far enough from P) THEN
process body-cell interaction
ELSE
DO 20 K =1, NSUBC
IF (SUBP(Q,K) .NE. NULL) THEN
SPTR = SPTR + 1
STACK(SPTR) = SUBP(Q.K)
ENDIF
20 CONTINUE
ENDIF
GOTO 10
ENDIF

8.3.4 Vectorized Force Calculation

A fully vectorized version of the TREE code would require substantial revi-
sion of a number of routines, but almost all of the run time is spent in the
TRWALK routine, and a large speed-up can be obtained by vectorizing this
routine alone. The code here is based on Hernquist’s (1990) level-by-level
vectorization of the tree search.

ACCEL. This routine now calls GRVSUM to sum the forces exerted by the
bodies and cells listed by TRWALK.

TRWALK. Level-by-level vectorization involves maintaining a list of NACT
nodes to be examined, stored in the ACTIVE array. On each cycle through
the main loop, bodies and cells which satisfy eq. (8.6) are moved to holding
arrays BODYTM and CELLTM for later processing. The offspring of the

remaining cells are stored in the ACTSUB array, and the non-null elements

12 Joshua Edward Barnes

of this array become the ACTIVE array for the next cycle. The code listed
here is schematic; for details, see the actual sources:

NACT =1
ACTIVE(NACT) = ROOT
10 IF (NACT .GT. 0) THEN
DO 201 =1, NACT
IF (ACTIVE(l) is a body) THEN
list body-body interaction
ELSE
retain cell in ACTIVE array
ENDIF
20 CONTINUE
DO 301 =1, NACT
IF (ACTIVE(l) ¢s far enough from P) THEN
list body-cell interaction
ELSE
retain cell in ACTIVE array
ENDIF
30 CONTINUE
DO 401 =1, NACT
store subcells of ACTIVE(l) in ACTSUB array
40 CONTINUE
DO 501 =1, NSUB
if ACTSUB(I) is not null, copy to ACTIVE array
50 CONTINUE
GO TO 10
ENDIF

The inner loops in this routine can all vectorized by the CFT77 compiler.

GRVSUM. This routine performs vectorized summations over the BODYTM
and CELLTM arrays to compute the total force on P.

8.4 A Tree Code Users Guide

This section describes how to compile the code, the input and output files
it needs and produces, and a suite of tests which may be run to verify that
it 1s working as intended.

8.4.1 Compiling the Code

As distributed with this volume, the TREE code consists of the following
files:

treedefs.f — parameters and common blocks.
treecode.f — main program and integration.
treeload.f — tree construction.

treegrav.f — recursive force calculation.
treevect.f — vectorized force calculation.
treeio.f — I/O routines.

Chapter 8. N-Body Models of Collisionless Systems 13

The only nonstandard F77 feature used in these source files is the INCLUDE
statement, which inserts the contents of treedefs.f at the beginning of each
subroutine. The functionality of INCLUDE is so useful that on systems where
this statement is not available, another mechanism for accomplishing the
same objective generally exists. At a last resort, treedefs.f could be manually
inserted wherever an INCLUDE statement appears.

In addition, there are several files useful when compiling the TREE
code on a UNIX operating system:

makefile — used with the UNIX make facility to organize compilation.
second.c — a C procedure to measure CPU time used.

On a UNIX system it is sufficient to issue the commands

% make treecode
% make treevect

to compile versions of the code for scalar and vector processors, respectively.

On other operating systems the make facility may not exist; it is sug-
gested that the user create a command file to organize compilation of the
various source files. The files treecode.f, treeload f, treegrav.f (or treevect.f),
and treeio.f may be compiled individually. It may prove impossible to com-
pile second.c. In this case, substitute the file

second.f — dummy F77 subroutine to measure CPU time used.

This dummy routine should be replaced by a functional version.

The parameter statements in treedefs.f set MXBODY = 8192 and
MXCELL = 6144. These are enough for modest tests of the code, such as
described below. For larger calculations these parameters may be increased
proportionately.

8.4.2 Running the Code

Once the code has been correctly compiled, two input files are needed to
start a calculation. These are

treebodi — masses, initial positions and velocities.
treepars — parameters and control options.

The first file specifies the initial conditions for all bodies; the format of this
file may be easily deduced by examining the GETBDS routine in treeio.f.
The second file contains the parameters which control the course of the
calculation. In the order given, these are

HDLINE — a message of up to 32 letters, used to label output.
NSTEPS — number of time-steps to take during the run.
NOUT — number of time-steps between body data outputs.
DTIME — time-step At in eq. (8.9).

THETA — accuracy parameter f in eq. (8.6).

14 Joshua Edward Barnes

EPS — softening length ¢ in egs. (8.7) and (8.8).
USQUAD — include quadrupole corrections for cells.

After the code has been run, several output files will be generated.
These are

treebodo — positions and velocities of all bodies, output every nout
time-steps.

treebodf — masses, final positions, and final velocities of all bodies. This
file may be used as input for another run.

treelogs — a log of the run, listing the total energy ETOT and other
information at each time-step.

8.4.3 Testing the Code

Included with the other files is a stand-alone program, testdata.f, which
may be used to generate initial conditions and parameter files for various
tests of the tree code. testdata.f is an interactive program which prompts
the user for three input parameters:

TEST — an integer selecting the test to perform.
NBODY — N, the number of bodies to use.

SEED — an integer used to start the random number generator.

When run, testdata.f produces files treepars and treebodi which may be used
as inputs to the tree code. The tests which may be selected are as follows:

Equilibrium Plummer model (Aarseth et al 1974).

Head-on parabolic collision of two Plummer models.

Off-axis parabolic collision of two Plummer models.

Generalized polytrope (Hénon 1973) with indices n = 1, m = —1.
Simplified “detonating galaxy” (Salmon & Warren 1994).

Binary hierarchy of |log, N| levels (Soneira & Peebles 1978).

All of these tests should be run with at least 1024 bodies. Note that test 6
will round N down to an integer power of 2.

Test 1 checks the stability of a spherical equilibrium configuration; no
significant evolution of this system should occur. Tests 2 and 3, on the
other hand, exercise the code in a non-equilibrium situation: the encounter

SO W N

of a pair of spherical “galaxy” models. Both of these encounters eventually
result in the merger of the original systems.

Test 4 illustrates a dynamical instability observed in spherical systems
with radial orbits (e.g., Merritt 1987). The initial conditions describe a
highly anisotropic equilibrium system in which all orbits pass through the
origin. Over ~ 10 time units this system evolves from a sphere into an
elongated bar.

Test b exhibits a potential pathology of the original algorithm, de-
scribed in detail by Salmon & Warren (1994). A single massive body and

Chapter 8. N-Body Models of Collisionless Systems 15

an extended “galaxy” six times less massive are placed in orbit about each
other. When run with the code supplied here this calculation is performed
correctly. To detonate the galaxy, change the line assigning RCRIT2(P) in
subroutine HACKCM to

RCRIT2(P) = (CLSIZE(P) / THETA)**2

and delete the test for “self-interaction” at the end of subroutine TRWALK.
With these modifications the code exhibits pathological behavior. For # = 1
the pathology is dramatic: energy and momentum conservation are violated,
and the victim galaxy sheds a good deal of mass as it enters the cell with
£ = 8 centered on the point (z,y,z) = (4,4,4). This cell’s center of mass is
dominated by the massive body, which lies at the opposite corner from the
galaxy; thus the part of the victim which falls within this cell is effectively
lost to the self-gravity of the galaxy. The revised criterion (eq. 8.6) used in
the present code cures this problem by insuring that the offending cell is
not used to calculate the galaxy’s self-gravitational attraction.

Test 6 exercises the code on a highly irregular mass distribution. Over
time the fractal structure initially present will be erased, eventually leaving
a relaxed, “monolithic” system (White & Negroponte 1982).

It is instructive to repeat these tests with different 6, ¢, and At val-
ues, and to vary N so as to contrast uncertainties due to finite particle
number with numerical errors. After running a test, examine the treelogs
file to see if total energy and momentum have been adequately conserved.
Energy should be conserved to 1/\/N or better in most cases; poor en-
ergy conservation is generally due to too long a time-step, although force
calculation errors also degrade energy conservation. The system center of
mass will drift as a result of force calculation errors; this probably has lit-
tle consequence if the distance drifted is smaller than the softening length
¢. The initial data generated for tests 3, 5, and 6 have significant angular
momentum, which should be conserved to 1/\/N In the other tests, the
total angular momentum is only of order 1/\/N; relatively large fluctua-
tions in this residual angular momentum are to be expected, but unlikely
to compromise the results.

Conservation of global quantities, while reassuring, does not prove the
correctness of a calculation. A stronger case may be made by showing that
the results converge on a unique answer as force calculation and time in-
tegration errors are jointly refined. This may be done by running a series
of models, all starting from the same initial conditions, while systemati-
cally varying # and At. As these parameters are reduced, trajectories of
individual particles converge towards definite limits (e.g., Barnes & Hut
1989; Barnes 1990). Any systematic program of numerical experimentation
should include convergence testing to assess the quality of the results.

I thank Lars Hernquist for helpful discussions and Pavel Curtis for a
careful reading of this manuscript. The vectorized code was tested at the
Pittsburgh Supercomputing Center.

16 References
References

Aarseth, S. et al 1974, Astron. Astrophys., 37, 183.

Appel, A. 1981, B.A. thesis, Princeton University.

Appel, A. 1985, SIAM J. Stat Sci. Comput., 6, 85.

Barnes, J. 1986, in The Use of Supercomputers in Stellar Dynamics, eds. P. Hut
& S. McMillan (Berlin: Springer-Verlag), p. 175.

Barnes, J. 1990, J. Comp. Phys., 87, 161.

Barnes, J. & Hut, P. 1986, Nature 324, 446.

Barnes, J. & Hut, P. 1989, Ap. J. Supp. 70, 389.

Benz, W. et al 1990, Ap. J. 348, 647.

Binney, J. & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton Uni-
versity Press).

Greengard, L. 1990, Computers in Physics, 4, 142.

Greengard, L. & Rokhlyn, V. 1987, J. Comput. Phys., 73, 325.

Hénon, M. 1973, Astron. Astrophys., 24, 229.

Hernquist, L. 1987, Ap. J. Sup., 64, 715.

Hernquist, L. 1990, J. Comp. Phys., 87, 137.

Hernquist, L. & Barnes, J. 1990, Ap. J., 349, 562.

Hernquist, L. & Katz, N. 1989, Ap. J. Sup., 70, 419.

Hockney, R. & Eastwood, J. 1981, Computer Simulation Using Particles (New
York: McGraw-Hill).

Jernigan, J. 1985, in Dynamics of Star Clusters, eds. J. Goodman & P. Hut
(Dordrecht: D. Reidel), p. 275.

Katzenelson, J. 1989, SIAM J. Stat Sci. Comput., 10, T87.

Knuth, D. 1973, Fundamental Algorithms (Reading: Addison-Wesley).

Makino, J. 1990, J. Comp. Phys., 88, 393.

McMillan, S. & Aarseth, S. 1993, Ap. J., 414, 200.

Merritt, D. 1987, in Structure and Dynamics of Elliptical Galaxies, ed. T. de
Zeeuw (Dordrecht: D. Reidel), p. 315.

Porter, D. 1985, Ph.D. thesis, University of California, Berkeley.

Press, W. 1986, in The Use of Supercomputers in Stellar Dynamics, eds. P. Hut
& S. McMillan (Berlin: Springer-Verlag), p. 184.

Salmon, J. & Warren, M. 1994, J. Comp. Phys., 111, 136.

Sellwood, J. 1987, Ann. Rev. Astron. Astrophys., 25, 151.

Soneira, R. & Peebles, J. 1978, Astr. J., 83, 845.

van Albada, T. 1986, in The Use of Supercomputers in Stellar Dynamics, eds. P.
Hut & S. McMillan (Berlin: Springer-Verlag), p. 23.

White, S. 1983, in The Origin and Fvolution of Galaxies, eds. B. Jones & J. Jones
(Dordrecht: D. Reidel), p. 227.

White, S. & Negroponte, J. 1982, Mon. Not. R. astr. Soc., 201, 401.

This article was processed by the author using the TEX macro package from
Springer-Verlag.

