We consider a convenient “model problem” defined as
follows. At time t=0 the space density o(r,t) of the
cluster conforms to Plummer’s model, i.e. a polytrope
of index 5:

o(r, 0)=(3/4m) MR™> [1 +(r/R)*] ™2, (1)

where M is the total mass of the cluster, and R is a
parameter which determines the dimensions of the
cluster. The gravitational potential is then

U(r,0)=—GMR™'[1+(/R)*] /2 (2)
and the potential energy of the cluster is
W=—-03n/32) GM*R™1. (3)

Initially the system is assumed to be in a steady state,
with a velocity distribution everywhere isotropic. This

implies that the initial distribution function is given
by

f(,V,0) @
_ ((24)/2/17%) G *M~*R*(—E)"* for E<O,
10 for E>O0.

Here f(r, V,t)dr dV is the total mass of the stars with
position r and velocity V, at time ¢, and E is the energy
per unit mass of a star:

E=U+V?72. (5)
The total energy of the system is then
E=W/2=—(3n/64) GM?R~1. (6)
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Instructions to construct the phase space
distribution are given in the Appendix

Virial Theorem?



Appendix: Generation of Initial Coordinates

Plummer’s model was found to be convenient for a
comparison of methods, and might be adopted as a
standard model for such comparisons. Therefore we
think it useful to give here a detailed prescription for
the construction of initial positions and velocities.
There must be available a subroutine which generates
normalized random numbers X, with uniform pro-
bability distribution between 0 and 1. We consider the
system as defined by (1), (2) and (4), taking G=1,
M =1, R=1 for convenience. In the equal-mass case,
each star then has a mass m=1/N. From (1), the mass
inside a sphere of radius r is

M@)=r>(1+r?)~32, (A1)

In order to select a value of r for a star, we simply
generate a random number X, and equate M(r) to X,
so that r is given by

r=(X72RP—1)"12, (A2)

The actual position (x, y, z) of the star should now be
selected on the sphere of radius r, with uniform
probability. This is done by the usual trick: we generate
two normalized random numbers X, and X; and
compute

z=(1-2X,)r, x=(*-2z)"?cos2nXj;, (A3)
y=(r*—2z")"?sin27X;.

Next, we compute the velocity modulus for the same

star. The maximum value of V at distance r from the
centre is the escape velocity

V,=(—2U)Y2 =212 (1 4-12) 1% (A4)

We write V/V,=gq. Then (4) shows that the probability
distribution of g is proportional to

g(@)=q*(1 —g*)"". (AS)

A convenient way to sample g according to this
distribution is provided by von Neumann’s rejection
technique. Possible values of g range from 0 to 1,
and g(q) is always less than 0.1. Therefore we generate
two normalized random numbers X, and X,; if
0.1 X5 <g(X,), we adopt g= X,; if not, a new pair of
random numbers is tried, until one is found which
satisfies the inequality. The velocity modulus is then
obtained, using (A4). Since the velocity distribution is
isotropic, the three velocity coordinates u, v, w are
computed from V in the same way as the three

space coordinates from r, using two new random
numbers X, and X -:

w=(1-2XgV, u=(V>*-w)"?cos2nX,,

v=V?—w?)"?sin2nX,. (A)
The whole procedure is repeated for each of the
N stars. Finally, the values of m, x, y, z, u, v, w may be
scaled to suit the numerical scheme used. If a cluster
with mass M and energy & is desired, while keeping
G =1, then masses should be multiplied by M, lengths
by (37/64) M?|&|™%, and velocities by (64/37)|&|'/?
M~12,



