
 

Maneuvering 
In Space

 

In This Section You’ll Learn to...

 

☛

 

Explain the basic method for moving a satellite from one orbit to 
another

 

☛

 

Determine the velocity change (

 

∆

 

V) needed to complete a Hohmann 
Transfer between two orbits

 

☛

 

Explain plane changes and how to determine the required 

 

∆

 

V to do 
them (enrichment topic)

 

☛

 

Explain orbital rendezvous and how to determine the required 

 

∆

 

V and 
wait time needed to start one (enrichment topic)
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Space Mission Architecture. This chapter
deals with the Trajectories and Orbits segment
of the Space Mission Architecture.

 

spacecraft seldom stays very long in its assigned orbit. On nearly
every space mission, there’s a need to change one or more of the
classic orbital elements at least once. Communication satellites,

for instance, never go directly into their geostationary positions. They first
go into a low-perigee (300 km or so) “parking orbit” before transferring to
geosynchronous altitude (about 35,780 km). While this large change in
semimajor axis occurs, another maneuver reduces their inclinations from
that of the parking orbit to 0°. Even after they arrive at their mission orbit,
they regularly have to adjust it to stay in place. On other missions,
spacecraft maneuver to rendezvous with another spacecraft, as when the
Space Shuttle rendezvoused with the Hubble Space Telescope to repair it
(Figure 4.1.5-1). 

As we’ll see in this chapter, these orbital maneuvers aren’t as simple as
“motor boating” from one point to another. Because a spacecraft is always
in the gravitational field of some central body (such as Earth or the Sun),
it has to follow orbital-motion laws in getting from one place to another.
In this chapter we’ll use our understanding of the two-body problem to
learn about maneuvering in space. We’ll explain the most economical
way to move from one orbit to another, find how and when to change a
spacecraft’s orbital plane, and finally, describe the intricate ballet needed
to bring two spacecraft together safely in an orbit.

Figure 4.1.5-1. Shuttle Rendezvous with Hubble Space Telescope. In 1995 and again
in 1999, the Space Shuttle launched into the same orbital plane as the Hubble Space
Telescope. After some maneuvering, the Shuttle rendezvoused with and captured the
telescope to make repairs. (Courtesy of NASA/Johnson Space Center)
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4.1.5.1 Simple Orbit Changes

In This Section You’ll Learn to...

One of the first problems space-mission designers faced was figuring
how to go from one orbit to another. Refining this process for eventual
missions to the Moon was one of the objectives of the Gemini program in
the 1960s, shown in Figure 4.1.5-2. Let’s say we’re in one orbit and we
want to go to another. To keep things simple, we’ll assume that the initial
and final orbits are in the same plane. We often use such maneuvers to
move spacecraft from their initial parking orbits to their final mission
orbits. Because fuel is critical for all orbital maneuvers, let’s look at the
most fuel-efficient method: the Hohmann Transfer.

In 1925 a German engineer, Walter Hohmann, thought of a fuel-
efficient way to transfer between orbits. (It’s amazing someone was
thinking about this, considering artificial satellites didn’t exist at the
time.) This method, called the Hohmann Transfer, uses an elliptical transfer
orbit tangent to the initial and final orbits.

To better understand this idea, let’s imagine you’re driving a fast car
around a racetrack, as shown in Figure 4.1.5-3. The effort needed to exit

☛ Describe the steps needed to move a satellite from one orbit to 
another in the same plane

Figure 4.1.5-2. The Gemini Program. During the Gemini program in the 1960s, NASA
engineers and astronauts developed the procedures for all orbital maneuvers needed for the
complex Lunar missions. Here the Gemini 6A command module is rendezvousing with the
Gemini 7 command module. (Courtesy of NASA/Johnson Space Center)
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the track depends on the off-ramp’s location and orientation. For
instance, if the off-ramp is tangent to the track, your exit is easy—you just
straighten the wheel. But if the off-ramp is perpendicular to the track, you
have to slow down a lot, and maybe even stop, to negotiate the turn. Why
the difference? With the tangential exit you have to change only the
magnitude of your velocity, so you just hit the brakes. With the
perpendicular exit, you quickly must change the magnitude and direction
of your velocity. This is hard to do at high speed without rolling your car!

The Hohmann Transfer applies this simple racetrack example to orbits.
By using “on/off-ramps” tangent to our initial and final orbits, we
change orbits using as little energy as possible. For rocket scientists,
saving energy means saving fuel, which is precious for space missions.
How can a spacecraft change its energy? It increases or decreases its
velocity by firing rocket engines. For a Hohmann Transfer, these velocity
changes (delta-Vs or ∆V) are aimed to make sure they are tangent to the
initial and final orbits. Remember that velocity, , is a vector. This means
it has both magnitude (or speed) and direction. To change velocity
tangentially, you must fire the spacecraft's rocket

• parallel to the direction of travel (point the rocket behind you) in 
order to increase velocity

• against the direction of travel (point the rocket in front of you) to slow 
down 

These tangential ∆Vs are the real secret to the Hohmann Transfer’s energy
savings.

Now let’s look at what these velocity changes are doing to the orbit.
Whenever we add or subtract velocity, we change the orbit’s specific
mechanical energy, ε, and hence its size, or semimajor axis, a.

Figure 4.1.5-3. Maneuvering. One way to think about maneuvering in space is to imagine
driving around a racetrack. Exiting at a sharp turn takes more effort than exiting tangentially.
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Figure 4.1.5-4. Getting From One Orbit to
Another. The problem in orbital maneuvering is
getting from orbit 1 to orbit 2. Here we see a
spacecraft moving from a lower orbit to a higher
one in a transfer orbit. If it doesn’t perform the
second ∆V when it reaches orbit 2, it will remain
in the transfer orbit.
Equation (4.1.5-1) shows this relationship in shorthand form. By
convention, the bigger the orbit the less negative (bigger) the energy. This
is like temperature: –10 deg is “hotter” (less negative) than –20 deg.

(4.1.5-1)

where
ε = specific mechanical energy (km2/s2)
µ = gravitational parameter = 3.986 × 105 (km3/s2) for Earth
a = semimajor axis (km)

If we want to move a spacecraft to a higher orbit, we have to increase
the semimajor axis (adding energy to the orbit) by increasing velocity. On
the other hand, to move the spacecraft to a lower orbit, we decrease the
semimajor axis (and the energy) by decreasing the velocity.

Let's look at an example of where these velocity changes might be
necessary. Imagine a communications satellite in a low-Earth orbit (orbit
1) that needs to go into a higher orbit (orbit 2) so it can serve more
customers. To get from orbit 1 to orbit 2, the satellite must travel along an
intermediate orbit called a transfer orbit, as shown in Figure 4.1.5-4.

This process takes two steps, as shown in Figure 4.1.5-5. To get from
orbit 1 to the transfer orbit, we change the orbit’s energy by changing the
spacecraft’s velocity by an amount ∆V1. Then, when the spacecraft gets to
orbit 2, we must change its energy again (by changing its velocity by an
amount ∆V2). If we don’t, the spacecraft will remain in the transfer orbit,
indefinitely, returning to where it started in orbit 1, then back to orbit 2,
etc. Thus, the complete maneuver requires two separate energy changes,
accomplished by changing the orbital velocities (using ∆V1 and ∆V2). For
mission planning, we simply add the ∆V from each burn to find the total
∆V needed for the trip from orbit 1 to orbit 2.

Now that we’ve gone through the Hohmann Transfer, let’s step back to
see what went on here. In the example, the spacecraft went from a low
orbit to a higher orbit. To do this, it had to increase velocity twice: ∆V1
and ∆V2. But notice the velocity in the higher circular orbit is less than in
the lower circular orbit. Thus, the spacecraft increased velocity twice, yet
ended up in a slower orbit! How does this make sense?

∆V1 increases the spacecraft’s velocity, taking the spacecraft out of
orbit 1 and putting it into the transfer orbit. In the transfer orbit, its
velocity gradually decreases as its radius increases, trading kinetic energy
for potential energy, just as a baseball thrown into the air loses vertical
velocity as it gets higher. When the spacecraft reaches the radius of orbit
2, it accelerates again, with ∆V2 putting it into the final orbit. Even though

Important Concept

The specific mechanical energy of a spacecraft in orbit depends only on 
the body's gravitational parameter and the orbit's semimajor axis 
(size).

ε µ
2a
------–=
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the velocity in orbit 2 is lower than in orbit 1, the total energy is higher
because it’s at a larger radius. Remember, energy is the sum of kinetic
plus potential energy. Thus, we use the spacecraft’s rockets to add kinetic
energy, which makes it gain potential energy as it moves out toward orbit
2. Once it reaches orbit 2, it has higher total energy.

Hohmann transfers provide the basis for all types of operational orbital
maneuvers. A Hohmann transfer is generally assumed to take place
between two orbits in the same plane, but its possible to use a variation of
these maneuvers to move between orbit planes as well. Another
application of Hohmann transfers is the problem of bringing two
spacecraft together at the same point at the same time called a rendezvous. 

Figure 4.1.5-5. Hohmann Transfer. Step 1: The first burn or ∆V of a Hohmann Transfer
takes the spacecraft out of its initial, circular orbit and puts it in an elliptical, transfer orbit. Step
2: The second burn takes it from the transfer orbit and puts it in the final, circular orbit.
4.1.5-195



 

Section Review

Key Concepts

➤ The Hohmann Transfer moves a sp
kind of orbital maneuver because 

➤ The Hohmann Transfer consists of

• The first, ∆V1, accelerates the sp

• The second, ∆V2, accelerates the
acecraft from one orbit to another in the same plane. It’s the simplest 
it focuses only on changing the spacecraft’s specific mechanical energy, ε.

 two separate ∆Vs

acecraft from its initial orbit into an elliptical transfer orbit

 spacecraft from the elliptical transfer orbit into the final orbit
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4.1.5.2 Orbital Changes in Action

In This Section You’ll Learn to...

In Section 6.1 we learned the basic process for moving from one orbit to
another using a Hohmann Transfer. In this section we'll pull out our
calculators to figure out how much ∆V we need to move from one specific
orbit to another. We'll start with the basic Hohmann Transfer and then
look briefly at the problem of changing the orbital plane. 

Hohmann Transfers in Action
In the last section we learned that to move from one orbit to another

using a Hohmann Transfer takes two steps, as shown again in Figure 4.1.5-
6. In the first step, the satellite in orbit 1 fires its rocket engines once to
increase velocity (∆V1) and enter an elliptical transfer orbit that will take it
out toward orbit 2. When the satellite reaches apogee in the transfer orbit,
it fires its engines a second time to increase velocity again (∆V2).

☛ Determine the velocity change (∆V) needed to complete a 
Hohmann Transfer

☛ Explain when to use a simple plane change and how a simple plane 
change can modify an orbital plane

☛ Determine the ∆V needed for simple plane changes

Figure 4.1.5-6. Hohmann Transfer. Step 1: The first burn or ∆V of a Hohmann Transfer
takes the spacecraft out of its initial, circular orbit and puts it in an elliptical, transfer orbit. Step
2: The second burn takes it from the transfer orbit and puts it in the final, circular orbit.
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Any ∆V represents a change from the present velocity to a selected
velocity. For a tangential burn, we can write this as

Notice we normally take the absolute value of this difference because we
want to know the amount of velocity change, so we can calculate the energy
and thus, the fuel needed. We’re not concerned with the sign of the ∆V
because we must burn fuel whether the spacecraft accelerates to reach a
higher orbit or decelerates to drop into a lower orbit. If ∆V1 is the change in
velocity that takes the spacecraft from orbit 1 into the transfer orbit, then,

where
∆V1 = velocity change to go from orbit 1 into the 

transfer orbit (km/s)
Vtransfer at orbit 1 = velocity in the transfer orbit at orbit 1 radius 

(km/s)
Vorbit 1 = velocity in orbit 1 (km/s)

∆V2 is the change to get the spacecraft from the transfer orbit into orbit 2.
Both of these ∆Vs are shown in Figure 4.1.5-6.

where
∆V2 = velocity change to move from the transfer orbit into orbit 

2 (km/s)

We add the ∆V from each burn to find the total ∆V needed for the trip from
orbit 1 to orbit 2.

(4.1.5-2)

where
∆Vtotal = total velocity change needed for the transfer (km/s)

When we cover the rocket equation in Chapter 14, we’ll see how to convert
this number into the amount of fuel required.

To compute ∆Vtotal, we use the energy equations from orbital
mechanics. Everything we need to know to solve an orbital-maneuvering
problem comes from these two valuable relationships, as you’ll see later,
in Example 6-1. First, we need the specific mechanical energy, ε

(4.1.5-3)

where
ε = spacecraft’s specific mechanical energy (km2/s2)
V = magnitude of the spacecraft’s velocity vector (km/s)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 for 

Earth

∆V Vselected Vpresent–=

∆V1 Vtransfer  at  orbit  1 V orbit  1 –  =

∆V2 Vorbit  2 V transfer  at  orbit  2 –  =

∆Vtotal ∆V1 ∆V2+=

ε
V2

2
------ µ

R
----–=
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Figure 4.1.5-7. Size of the Transfer Orbit.
The major axis of the transfer orbit equals the
sum of the radii of the initial and final orbits.
R = magnitude of the spacecraft’s position vector (km)

Then, we need the alternate form of the specific mechanical energy
equation

(4.1.5-4)

where
ε = spacecraft’s specific mechanical energy (km2/s2)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 for 

Earth
a = semimajor axis (km)

Let’s review the steps in the transfer process to see how all this fits
together. Referring to Figure 4.1.5-6,

• Step 1: ∆V1 takes a spacecraft from orbit 1 and puts it into the transfer 
orbit

• Step 2: ∆V2 puts the spacecraft into orbit 2 from the transfer orbit

To solve for these ∆Vs, we need to find the energy in each orbit. If we know
the sizes of orbits 1 and 2, then we know their semimajor axes (aorbit 1 and
aorbit 2). The transfer orbit’s major axis equals the sum of the two orbital
radii, as shown in Figure 4.1.5-7.

(4.1.5-5)

Using the alternate equation for specific mechanical energy, we determine
the energy for each orbit

(4.1.5-6)

(4.1.5-7)

(4.1.5-8)

With the energies in hand, we use the main equation for specific
mechanical energy, rearranged to calculate the orbits’ velocities

ε µ
2a
------–=

2atransfer Rorbit 1 Rorbit 2+=

εorbit 1
µ

2aorbit 1
------------------–=

εorbit 2
µ

2aorbit 2
------------------–=

εtransfer
µ

2atransfer
---------------------–=

Vorbit 1 2 µ
Rorbit 1
---------------- εorbit 1+ 
 =

Vorbit 2 2 µ
Rorbit 2
---------------- εorbit 2+ 
 =

Vtransfer at orbit 1 2 µ
Rorbit 1
---------------- εtransfer+ 
 =
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Finally, we take the velocity differences to find ∆V1 and ∆V2, then add
these values to get ∆Vtotal

The Hohmann Transfer is energy efficient, but it can take a long time. To
find the time of flight, look at the diagram of the maneuver. The transfer
covers exactly one half of an ellipse. Recall that we find the total period for
any closed orbit by

(4.1.5-9)

So, the transfer orbit’s time of flight (TOF) is half of the period

(4.1.5-10)

where
TOF = spacecraft’s time of flight (s)
P = orbital period (s)
a = semimajor axis of the transfer orbit (km)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 for 

Earth

Example 4.1.5-1 shows how to find time of flight for a Hohmann Transfer.

Plane Changes
So far we’ve seen how to change an orbit’s size using a Hohmann

Transfer. However, we restricted this transfer to coplanar orbits. As you’d
expect, to change its orbital plane, a spacecraft must point its velocity
change (∆V) out of its current plane. By changing the orbital plane, it also
alters the orbit’s tilt (inclination, i) or its swivel (right ascension of the
ascending node, Ω), depending on where in the orbit it does the ∆V burn.
For plane changes, we must consider the direction and magnitude of the
spacecraft’s initial and final velocities.

To understand plane changes, imagine you’re on a racetrack with off-
ramps such as those on a freeway. If you want to exit from the track, you
not only must change your velocity within its plane but also must go above
or below the level of the track. This “out-of-plane” maneuver causes you to
use even more energy than a level exit because you now have to accelerate
to make it up the ramp or brake as you go down. Thus, out-of-plane
maneuvers typically require much more energy than in-plane maneuvers.

Vtransfer at orbit 2 2 µ
Rorbit 2
---------------- εtransfer+ 
 =

∆V1 Vtransfer at orbit 1 Vorbit 1–=

∆V2 Vorbit 2 Vtransfer at orbit 2–=

∆Vtotal ∆V1 ∆V2+=

P 2π
a3

µ
-----=

TOF P
2
--- π

atransfer
3

µ
-----------------= =
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Figure 4.1.5-8. Simple Plane Change. A
simple plane change affects only the direction
and not the magnitude of the original velocity
With a simple plane change, only the direction of the orbital velocity
changes. The velocity's magnitude (orbital speed) stays the same. Because
the simple plane change is the most important one to understand, we'll
concentrate on it.

Let’s imagine we have a spacecraft in an orbit with an inclination, i, of
28.5° (the inclination we’d get if we launched it due east from the
Kennedy Space Center, as the Shuttle often does.) Assume we want to
change it into an equatorial orbit (i = 0°). We must change the spacecraft’s
velocity, but we want to change only the orbit’s orientation, not its size.
This means the velocity vector’s magnitude stays the same

, but its direction changes. (As noted in Appendix A, the
vertical lines on each side of a vector quantity show we’re looking only at
its magnitude.)

How do we change just the direction of the velocity vector? Look at the
situation in Figure 4.1.5-8. You can see we initially have an inclined orbit
with a velocity , and we want to rotate the orbit by an angle θ to
reach a final velocity, . The vector triangle shown in Figure 4.1.5-8
summarizes this problem. It’s an isosceles triangle (meaning it has two
sides of equal length). Using plane geometry, we get a relationship for
∆Vsimple—the change in velocity needed to rotate the plane

(4.1.5-11)

where
∆Vsimple = velocity change for a simple plane change 

(km/s)
Vinitial = Vfinal = velocities in the initial and final orbits (km/s)
θ = plane-change angle (deg or rad)

If we want to change only the orbit’s inclination, we must change the
velocity at either the ascending node or the descending node. When the
∆V occurs at one of these nodes, the orbit pivots about a line connecting
the two nodes, thus changing only the inclination.

We also can use a plane change to change the right ascension of the
ascending node, Ω . This might be useful if we want a remote-sensing
satellite to pass over a certain point on Earth at a certain time of day.
When we consider a polar orbit (i = 90°), we see that a ∆Vsimple at the
North or South Pole changes just the right ascension of the ascending
node, as illustrated in Figure 4.1.5-9. We can also change Ω alone for
inclinations other than 90°. The trick is to perform the ∆Vsimple where the
initial and final orbits intersect. (Think of this maneuver as pivoting
around a line connecting the burn point to Earth’s center.) We won’t go
into the details of these cases because the spherical trigonometry gets a bit
complicated for our discussion here.

The amount of velocity change a spacecraft needs to re-orient its orbital
plane depends on two things—the angle it is turning through and its
initial velocity. As the angle it’s turning through increases, so does
∆Vsimple. For example, when this angle is 60°, the vector triangle becomes

Vinitial Vfinal=

Vinitial
Vfinal

∆Vsimple 2  V initial 
θ

 
2
---  
  sin=
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Figure 4.1.5-9. Changing ΩΩΩΩ. A simple plane
change as a spacecraft crosses the pole in a
polar orbit (i = 90°) will change only the right
ascension of the ascending node, Ω. Imagine
the orbital plane pivoting about Earth’s poles.
  

equilateral (all sides equal). In this case, 

 

∆

 

V

 

simple

 

 equals the initial
velocity, which is the amount of velocity it needed to get into the orbit in
the first place! That’s why we’d like the initial parking orbit to have an
inclination as close as possible to the final mission orbit.

Also notice that 

 

∆

 

V

 

simple

 

 increases as the initial velocity increases.
Therefore, we can lower 

 

∆

 

V

 

simple

 

 by reducing the initial velocity. The
velocity is constant throughout a circular orbit, but we know a spacecraft
in an elliptical orbit slows down as it approaches apogee. Thus, if we can
choose where to do a simple plane change in an elliptical orbit, we should
do it at apogee, where the spacecraft’s velocity is slowest. Remember our
earlier analogy about changing speeds and directions on a racetrack. It’s
easier to change direction when we’re going slower (even for a stunt
driver). Example 4.1.5-2 (at the end of this section) demonstrates a simple
plane change.

You’ve now seen two types of orbit maneuvers in action: the Hohmann
transfer and the simple plane change. In the next enrichment section,
we’ll look at another special application of orbital maneuvering—
rendezvous. 
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plane to another

e velocity vector for the original 

nges only the orbit’s inclination. 

le changes only the right ascension 

ht ascension of the ascending node.

elocity is slowest, which is at apogee 
  

Section Review

 

Key Concepts

 

➤

 

We use plane-change maneuvers to move a spacecraft from one orbital 

• Simple plane changes alter only the direction, not the magnitude, of th
orbit

• A simple plane change at either the ascending or descending node cha

• On a polar orbit a simple plane change made over the North or South Po
of the ascending node. 

• A simple plane change made anywhere else changes inclination and rig

 

➤

 

It’s always cheaper (in terms of 

 

∆

 

V) to change planes when the orbital v

  

for elliptical transfer orbits

Vinitial Vfinal=
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Example 4.1.5-1

 

Problem Statement

 

Imagine NASA wants to place a communications satellite into a
geosynchronous orbit from a low-Earth, parking orbit.

R

 

orbit 1

 

 = 6570 km

R

 

orbit 2

 

 = 42,160 km

What is the 

 

∆

 

V

 

total

 

 for this transfer and how long will it take?

 

Problem Summary

 

Given: R

 

orbit 1

 

 = 6570 km
R

 

orbit 2

 

 = 42,160 km

Find:

 

∆

 

V

 

total

 

 and TOF

 
Problem Diagram
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Conceptual Solution

 

1) Compute the semimajor axis of the transfer orbit

2) Solve for the specific mechanical energy of the transfer orbit

3) Solve for the energy and velocity in orbit 1

a

 

orbit 1

 

 = R

 

orbit 1 (circular orbit)

4) Solve for Vtransfer at orbit 1

5) Find ∆V1

6) Solve for Vtransfer at orbit 2

atransfer
Rorbit  1 R orbit  2 +

2
---------------------------------------=

εtransfer
µ

2atransfer
---------------------–=

εorbit  1 
µ

 2a 
orbit  1 

------------------
 

–=

ε
V2

2
------ µ

R
----–=

V∴ orbit  1 2 
µ

 R 
orbit  1 

----------------
 

ε
 

orbit  1 +   
 

 =

Vtransfer  at  orbit  1 2 
µ

 R 
orbit  1 

----------------
 

ε
 

transfer
 
+

  
 

 
=

∆V1 Vtransfer  at  orbit  1 V orbit  1 –  =

Vtransfer  at  orbit  2 2 
µ

 R 
orbit  2 

----------------
 

ε
 

transfer
 
+

  
 

 
=
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7) Solve for the energy and velocity in orbit 2

a

 

orbit 2

 

 = R

 

orbit 2

 

 (circular orbit)

8) Find 

 

∆

 

V

 

2

 

9) Solve for 

 

∆

 

V

 

total

 

10) Compute TOF

 

Analytical Solution

 

1) Compute the semimajor axis of the transfer orbit

a

 

transfer

 

 = 24,365 km

2) Solve for the specific mechanical energy of the transfer orbit

(Note the energy is negative, which implies the transfer orbit is an 
ellipse; as we’d expect.) 

3) Solve for energy and velocity of orbit 1

=  = – 30.33

εorbit  2 
µ

 2a 
orbit  2 

------------------
 

–=

ε
V2

2
------ µ

R
----–=

V∴ orbit  2 2 
µ

 R 
orbit  2 

----------------
 

ε
 

orbit  2 +   
 

 =

∆V2 Vorbit  2 V – transfer  at  orbit  2 =

∆Vtotal ∆V1 ∆V2+=

TOF π
atransfer

3

µ
-----------------=

atransfer
Rorbit  1 R orbit  2 +

2
--------------------------------------- 6570   km 42,160 km+

2
---------------------------------------------------------= =

εtransfer
µ

2atransfer
-----------------------–

3.986 105km3

s2-----------×

2 24,365  km ( ) 
----------------------------------------

 
–

 
= =

εtransfer 8.1798–
km2

s2-----------=

εorbit  1 
µ

 2a 
orbit  1 

------------------
 

–=

3.986 105km3

s2-----------×

2 6570  km ( ) 
----------------------------------------

 
–

km2

s2-----------
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4) Solve for V

 

transfer at orbit 1

 

V

 

transfer at orbit 1

 

 = 10.246 

5) Find 

 

∆

 

V

 

1

 

6) Solve for V

 

transfer at orbit 2

 

7) Solve for energy and velocity in orbit 2

Vorbit  1 2 
µ

 R 
orbit  1 

----------------
 

ε
 

orbit  1 +   
  =

2

3.986 105km3

s2-----------×

6570  km
---------------------------------------- 30.33km

 

2

 s 2 
-----------

 
–

 

 
 
 
 
 
 

 
7.789km

s
---------=

Vtransfer  at  orbit  1 2 
µ

 R 
orbit  1 

----------------
 

ε
 

transfer
 
+

  
 

 
=

2

3.986 105km3

s2-----------×

6570km
---------------------------------------- 8.1798km2

s2-----------–

 
 
 
 
 
 

km
s

---------

∆V1 Vtransfer  at  orbit  1 V orbit  1 –  =

10.246km
s

--------- 7.789km
s

---------–

∆V1 2.457km
s

---------=

Vtransfer  at  orbit  2 2 
µ

 R 
orbit  2 

----------------
 

ε
 

transfer
 
+

  
 

 
=

2

3.986 105km3

s2-----------×

42,160  km
---------------------------------------- 8.1798km

 

2

 s 2 
-----------

 
–

 

 
 
 
 
 
 

Vtransfer  at  orbit  2 1.597km
s

---------=

εorbit  2 
µ

 2a 
orbit  2 

------------------
 

–=
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=  = – 4.727

8) Find ∆V2

9) Solve for ∆Vtotal

= 

10) Compute TOF

= 

TOF = 18,925 s ≅ 315 min = 5 hrs 15 min

Interpreting the Results

To move the communication satellite from its low-altitude (192 km)
parking orbit to geosynchronous altitude, the engines must provide a total
velocity change of about 3.9 km/s (about 8720 m.p.h.). The transfer will
take five and a quarter hours to complete.

3.986 105km3

s2-----------×

2 42,160  km ( ) ----------------------------------------
 

–
km2

s2-----------

Vorbit  2 2 
µ

 R 
orbit  2 

----------------
 

ε
 

orbit  2 +   
 

 =

2

3.986 105km3

s2-----------×

42,160  km
---------------------------------------- 4.727km

 

2

 s 2 
-----------

 
–

 

 
 
 
 
 
 

 
3.075km

s
---------=

∆V2 Vorbit  2 V transfer  at  orbit  2 –  =

3.075km
s

--------- 1.597km
s

---------–

∆V2 1.478km
s

---------=

∆Vtotal ∆V1 ∆V2+ 2.457km
s

--------- 1.478km
s

---------+= =

3.935km
s
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TOF π
atransfer

3

µ
-------------------=

π
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Example 4.1.5-2

 

Problem Statement

 

Suppose a satellite is in a circular orbit at an altitude of 250 km. It needs to
move from its current inclination of 28° to an inclination of 57°. What 

 

∆

 

V
does this transfer require?

 

Problem Summary

 

Given: Altitude = 250 km
i

 

initial

 

 = 28.0°
i

 

final 

 

= 57.0°

Find:

 

∆

 

V

 

simple

Conceptual Solution

1) Solve for the orbit’s energy and velocity

=  (circular orbit)

2) Solve for the inclination change

3) Find the change in velocity for a simple plane change

Analytical Solution

1) Solve for the energy and velocity of the orbit

= – 30.069

ε µ
2a
------–=

µ
2R
-------–

ε
V2

2
------ µ

R
----–=

V 2 µ
R
---- ε+ 
 =

θ ifinal iinitial–=

∆Vsimple 2   V initial 
θ 
2
---sin=

ε µ
2R
-------–

3.986 105km3

s2-----------×

2 6378 250  km+  ( ) ----------------------------------------------
 

–
 

= =

km2

s2-----------
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= 7.755

2) Solve for the inclination change

 

θ

 

 = 29°

Find 

 

∆

 

V for the simple plane change

 

∆

 

V

 

simple

 

 = 3.88 km/s

 

Interpreting the Results

 

To change the inclination of the satellite by 29°, we must apply a 

 

∆

 

V of 3.88
km/s. This is 50% of the velocity we needed to get the satellite into space
in the first place. Plane changes are 

 

very expensive

 

 (in terms of 

 

∆

 

V.)

Vinitial 2 µ
R
---- ε+ 
 =

Vinitial 2

3.986 105km3

s2-----------×

6628  km
---------------------------------------- 30.069km

 

2

 s 2 
-----------

 
–

 

 
 
 
 
 
 

 
=

km
s

---------

θ ifinal iinitial– 57° 28°–= =

∆Vsimple 2  V initial 
θ

 
2
---sin 2 7.755km

s
---------  

  
29

 
°

 
2

--------sin= =
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4.1.5.3 Rendezvous

 

In This Section You’ll Learn to...

 

For the Hohmann Transfer and plane-change maneuvers we described
earlier in this chapter, we focused on how to move a spacecraft without
considering where it is in relation to other spacecraft. However, several
types of missions require a spacecraft to meet or 

 

rendezvous

 

 with another
one, meaning one spacecraft must arrive in the same place at the same
time as a second one. The Gemini program perfected this maneuver in the
1960s, as a prelude to the Apollo missions to the Moon, which depended
on a Lunar-orbit rendezvous. Two astronauts returning from the Moon’s
surface had to rendezvous with their companion in the command module
in Lunar orbit for the trip back to Earth. As another example, the Space
Shuttle needs to rendezvous routinely with the International Space Station
to transfer people and equipment. In this section, we’ll examine two
simple rendezvous scenarios between co-planar and co-orbital spacecraft.

 

Coplanar Rendezvous

 

The simplest type of rendezvous uses a Hohmann Transfer between
coplanar orbits. 

 

Coplanar orbits

 

 are two orbits in the same plane. The key to
this maneuver is timing. Deciding when to fire the engines, we must
calculate how much to lead the target spacecraft, just as a quarterback leads
a receiver in a football game. At the snap of the ball, the receiver starts
running straight down the field toward the goal line, as Figure 4.1.5-10
shows. The quarterback mentally calculates how fast the receiver is
running and how long it will take the ball to get to a certain spot on the
field. When the quarterback releases the ball, it will take some time to reach
that spot. Over this same period, the receiver goes from where he was
when the ball was released to the “rendezvous” point with the ball.

Let’s look closer at this football analogy to see how the quarterback
decides when to throw the ball so it will “rendezvous” with the receiver.
Assume we have a quarterback who throws a 20-yard pass traveling at 10
yd/s and a wide receiver who runs at 4 yd/s. (Ironically, we use English
units to describe American football.) Assuming the receiver starts
running immediately, how long must the quarterback wait from the snap
before throwing the ball? To analyze this problem, let’s define the
following symbols

V

 

receiver

 

= velocity of the receiver running down the field
= 4 yd/s

V

 

ball

 

= velocity of the ball
= 10 yd/s

 

☛

 

Describe orbital rendezvous

 

☛

 

Determine the 

 

∆

 

V and wait time to do a rendezvous
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We know the quarterback must “lead” the receiver; that is, the receiver
will travel some distance while the ball is in the air. But how long will the
ball take to travel the 20 yards from the quarterback to the receiver? Let’s
define

TOF  ball  = time of flight of the ball
= distance the ball travels/V

 

ball

 

= 20 yd/(10 yd/s)
= 2 s

The lead distance is then the receiver’s velocity times the ball’s time of
flight.

 

α

 

= lead distance
= V

 

receiver × TOFball
= (4 yd/s) × 2 s
= 8 yd

This means the receiver runs an additional 8 yards down the field while
the ball is in the air. From this we can figure out how much of a head start
the receiver needs before the quarterback throws the ball. If the receiver
runs 8 yards while the ball is in the air, and the ball is being thrown 20
yards, the receiver then needs a head start of

φhead start = head start distance needed by the receiver
= 20 yd – α
= 20 yd – 8 yd
= 12 yd

So before the quarterback throws the ball, the receiver should be 12 yards
down the field. We can now determine how long it will take the receiver
to go 12 yards down field. 

W.T. = wait time
= φhead start /Vreceiver 
= 12 yd/(4 yd/s)
= 3 s

Figure 4.1.5-10. Orbital Rendezvous and Football. The spacecraft-rendezvous problem
is similar to the problem a quarterback faces when passing to a running receiver. The
quarterback must time the pass just right so the ball and the receiver arrive at the same place
at the same time.
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Figure 4.1.5-11. The Rendezvous Problem.
The Space Shuttle commander must do a
Hohmann Transfer at precisely the right
moment to link up with another spacecraft.

Figure 4.1.5-11. The Rendezvous Problem.
The Space Shuttle commander must do a
Hohmann Transfer at precisely the right
moment to rendezvous with another
spacecraft.
This is the time the quarterback must wait before throwing the ball to
ensure the receiver will be at the rendezvous point when the ball arrives.

That’s all well and good for footballs, but what about spacecraft trying
to rendezvous in space? It turns out that the approach is the same as in
the football problem. Let’s look at the geometry of the rendezvous
problem shown in Figure 4.1.5-11. We have a target spacecraft (say a
disabled communication satellite that the crew of the Shuttle plans to fix)
and an interceptor (the Space Shuttle). In this example, the target
spacecraft is in a higher orbit than the Shuttle, but we’d take a similar
approach if it were in a lower orbit. To rendezvous, the Shuttle crew must
start a ∆V to transfer to the rendezvous point. But they must do this ∆V at
just the right moment to ensure the target spacecraft arrives at the same
point at the same time.

To see how to solve this problem, remember that the quarterback first
had to know the velocities of the interceptor (the ball) and the target (the
receiver). Because footballs move in nearly straight lines, their velocities are
easy to see. Velocities aren’t so straightforward for spacecraft in orbits.
Instead of using a straight-line velocity (in meters per second or miles per
hour), we use rotational velocity measured in radians per second or
degrees per hour. We call this rotational velocity “angular velocity” and use
the Greek letter small omega, ω, to represent it (not to be confused with the
classic orbital element, argument of perigee, ω). Because spacecraft move
through 360° (or 2π radians) in one orbital period, we find their angular
velocity from

(4.1.5-12)

where
ω = spacecraft’s angular velocity (rad/s)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 for 

Earth
a = semimajor axis (km)

For circular orbits, a = R (radius), so this angular velocity is constant. 
To solve the football problem, we had to find the ball’s time of flight.

For rendezvous in orbit, the time of flight is the same as the Hohmann
Transfer’s time of flight, which we found earlier to be

(4.1.5-13)

where
TOF = interceptor spacecraft’s time of flight (s)
π = 3.14159 . . . (unitless)

ω
2π radians( )

2π
a3

µ
-----

-------------------------------=

ω
µ

a3-----=

TOF π
atransfer

3

µ
-------------------=
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Figure 4.1.5-12. ∆∆∆∆V at the Right Time. The
first ∆V of the rendezvous Hohmann Transfer
starts when the interceptor is at an angle, φfinal,
from the target.

Figure 4.1.5-13. Rendezvous Initial
Condition. At the start of the rendezvous
problem, the target is some angle, φinitial, away
from the interceptor.
atransfer = semimajor axis of the transfer orbit (km)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 

for Earth
Finally, we need to get the timing right. In football, the quarterback

must lead a receiver by a certain amount to get a pass to the right point
for a completion. In rendezvous, the interceptor must lead the target by
an amount called the lead angle, αlead, when the interceptor starts its
Hohmann Transfer. This lead angle, shown in Figure 4.1.5-12, represents
the angular distance covered by the target during the interceptor’s time
of flight. We find it by multiplying the target’s angular velocity by the
interceptor’s time of flight.

(4.1.5-14)

where
αlead = amount by which the interceptor must lead the target 

(rad)
ωtarget = target’s angular velocity (rad/s)
TOF = time of flight (s)

We can now determine how big of a head start to give the target, just as
a quarterback must give a receiver a head start before releasing the ball to
complete a pass. For spacecraft, we call this the phase angle, φ, (Greek
letter, small phi) measured from the interceptor’s radius vector to the
target’s radius vector in the direction of the interceptor’s motion. The
interceptor travels 180° (π radians) during a Hohmann Transfer, so we can
easily compute the needed phase angle, φfinal, if we know the lead angle.

(4.1.5-15)

where
φfinal = phase angle between the interceptor and target as the 

transfer begins (rad)
αlead = angle by which the interceptor must lead the target (rad)

Chances are, when the interceptor is ready to start the rendezvous, the
target won’t be in the correct position, as seen in Figure 4.1.5-13. So what
do we do? Just as a quarterback must wait a few seconds before releasing
a pass to a receiver, the interceptor must wait until its position relative to
the target is correct, as in Figure 4.1.5-12. But how long does it wait? To
answer this we have to relate where the target is initially (relative to the
interceptor), φinitial, to where the interceptor needs to be, φfinal, in time to
begin the ∆V burn. Because the interceptor and target are moving in
circular orbits at constant velocities,  φinitial and φfinal are related by

(4.1.5-16)

Solving for wait time gives us

(4.1.5-17)

αlead ωtarget= TOF

φfinal π αlead–=

φfinal φinitial= ωtarget ωinterceptor–( ) wait  time ×  +

wait  time 
φ

 
final 

φ
 

initial 
–

 
ω

 
target

 
ω

 
interceptor

 
–

 ----------------------------------------------=
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Figure 4.1.5-14. Slow Down to Speed Up.
To catch another spacecraft ahead of it in the
same orbit, an interceptor slows down,
entering a smaller phasing orbit with a shorter
period. This allows it to catch the target.
  

where

wait time = time until the interceptor initiates the 
rendezvous (s)

 

φ

 

final

 

, 

 

φ

 

initial

 

= initial and final phase angles (rad)

 

ω

 

target

 

, 

 

ω

 

interceptor

 

= target and interceptor angular velocities 
(rad/s)

So far, so good. But if we look at the wait-time equation, we see that
wait time can be less than zero. Does this mean we have to go back in
time? Luckily, no. Because the interceptor and the target are going around
in circles, the correct angular relationship repeats itself periodically.
When the difference between 

 

φ

 

final

 

 and 

 

φ

 

initial

 

 changes by 2

 

π

 

 radians
(360°), the correct initial conditions are repeated. To calculate the next
available opportunity to start a rendezvous, we either add 2

 

π 

 

to,

 

 

 

or
subtract it from, the numerator in Equation (4.1.5-17), whichever it takes
to make the resulting wait time positive. In fact, we can determine future
rendezvous opportunities by adding or subtracting multiples of 2

 

π.

 

Example 4.1.5-3 works through a real-world application of coplanar
rendezvous.

 

Co-orbital Rendezvous

 

Another twist to the rendezvous problem occurs when the spacecraft
are co-orbital, meaning the target and interceptor are in the same orbit,
with one ahead of the other. Whenever the target is ahead, as shown in
Figure 4.1.5-14, the interceptor must somehow catch the target. To do so,
the interceptor needs to move into a waiting or 

 

phasing orbit 

 

that will
return it to the same spot one orbit later, in the time it takes the target to
move around to that same spot. Notice the target travels less than 360°,
while the interceptor travels exactly 360°. 

How can one spacecraft catch another one that’s ahead of it in the same
orbit? By 

 

slowing down

 

! What?! Does this make sense? Yes, from specific
mechanical energy, we know that if an interceptor slows down (decreases
energy), it enters a smaller orbit. A smaller orbit has a shorter period, so it
completes one full orbit (360°) in less time. If it slows down the correct
amount, it will get back to where it started just as the target gets there. 

To determine the right amount for an interceptor to slow down, first
we find how far the target must travel to get to the interceptor’s current
position. If the target is ahead of the interceptor by an amount 

 

φ

 

initial

 

, it
must travel through an angle, 

 

φ

 

travel

 

, to reach the rendezvous spot, found
from

(4.1.5-18)

where 

 

φ

 

travel

 

= angle through which the target travels to reach the 
rendezvous location (rad)  

φ
 

initial

 
= initial angle between the interceptor and target (rad)

φtravel 2π φinitial–=
4.1.5-215



Figure 4.1.5-15. Speed Up to Slow Down. If
the target is behind the interceptor in the same
orbit, the interceptor must speed up to enter a
higher, slower orbit, thereby allowing the target
to catch up.
  

Now, if we know the target’s angular velocity, we can find the time it will
take to cover this angle, 

 

φ

 

travel

 

, 

 

by using

(4.1.5-19)

Remember, we found the target’s angular velocity from Equation (4.1.5-12)

Because the time of flight equals the period of the phasing orbit, we equate
this to our trusty equation for the period of an orbit, producing

We can now solve for the required size of the phasing orbit

where

a

 

phasing

 

= semimajor axis of the phasing orbit (km)

 

µ

 

= gravitational parameter (km

 

3

 

/s

 

2

 

) = 3.986 

 

×

 

 10

 

5

 

 km

 

3

 

/s

 

2

 

 
for Earth

 

φ

 

travel

 

= angular distance the target must travel to get to the 
rendezvous location (rad)

 

ω

 

target

 

= target’s angular velocity (rad/s)

Knowing the size of the phasing orbit, we can compute the necessary

 

∆

 

Vs for the rendezvous. The first 

 

∆

 

V slows the interceptor and puts it into
the phasing orbit. The second 

 

∆

 

V returns it to the original orbit, right next
to the target. These 

 

∆

 

Vs have the same magnitude, so we don’t need to
calculate the second one.

We must also know how to rendezvous whenever the target is behind
the interceptor in the same orbit. In this case, the angular distance the
target must cover to get to the rendezvous spot is greater than 360°. Thus,
the interceptor’s phasing orbit for the interceptor will have a period
greater than that of its current circular orbit. To get into this phasing orbit,
the interceptor 

 

speeds up

 

. It then enters a higher, slower orbit, allowing the
target to catch up, as Figure 4.1.5-15 illustrates. 

TOF
φtravel

ωtarget
----------------=

ωtarget

µ

atarget
3---------------=

TOF
φtravel

ωtarget
---------------- 2π

aphasing
3

µ
------------------= =

aphasing µ
φtravel

2πωtarget
---------------------- 
 

2

3=
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arrive at the same point in an 

ce when they must “lead” a 
ravel in circular orbits, the 

ls during the interceptor’s time 
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e when the geometry is right to 

in the wait time equation by 
Section Review
Key Concepts

➤ Rendezvous is the problem of arranging for two or more spacecraft to 
orbit at the same time

➤ The rendezvous problem is very similar to the problem quarterbacks fa
receiver with a pass. But because the interceptor and target spacecraft t
proper relative positions for rendezvous repeat periodically.

➤ We assume spacecraft rendezvous uses a Hohmann Transfer

➤ The lead angle, αlead, is the angular distance the target spacecraft trave
of flight, TOF

➤ The final phase angle, φfinal, is the “headstart” the target spacecraft nee

➤ The wait time is the time between some initial starting time and the tim
begin the Hohmann Transfer for a rendezvous

• Remember, for negative wait times, we must modify the numerator 
adding or subtracting multiples of 2π radians
4.1.5-217



                     
Example 4.1.5-3

Problem Statement

Imagine that an automated repair spacecraft in low-Earth orbit needs to
rendezvous with a disabled target spacecraft in a geosynchronous orbit. If
the initial angle between the two spacecraft is 180°, how long must the
interceptor wait before starting the rendezvous?

Rinterceptor = 6570 km
Rtarget = 42,160 km

Problem Summary

Given: Rinterceptor = 6570 km

Rtarget = 42,160 km

φinitial = 180° = π radians

Find: wait time

Problem Diagram

Conceptual Solution

1) Compute the semimajor axis of the transfer orbit

2) Find the time of flight (TOF) of the transfer orbit

atransfer
Rinterceptor Rtarget+

2
---------------------------------------------------=

TOF π
atransfer

3

µ
-------------------=
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3) Find the angular velocities of the interceptor and target

4) Compute the lead angle

5) Solve for the final phase angle

6) Find the wait time

Analytical Solution

1) Compute the semimajor axis of the transfer orbit

= 

atransfer = 24,365 km

2) Find the TOF of the transfer orbit

TOF = 18,925 s = 315 min 25 s

3) Find the angular velocities of the interceptor and target

ωinterceptor = 0.0012 rad/s

ωtarget = 0.000073 rad/s

ωinterceptor

µ

Rinterceptor
3------------------------=

ωtarget

µ

Rtarget
3---------------=

αlead ωtarget( ) TOF( )=

φfinal π αlead–=

Wait  Time 
φ

 
final 

φ
 

initial 
–

 
ω

 
target

 
ω

 
interceptor

 
–

 ----------------------------------------------=

atransfer
Rinterceptor Rtarget+

2
----------------------------------------------=

6570  km 42,160  km+
2

--------------------------------------------------------

TOF π
atransfer

3

µ
------------------- π

24,365  km ( ) 
3 

3.986 10

 

5

 
km

 
3

 

s

 

2

 

-----------

 

×

 ----------------------------------------= =

ωinterceptor

µ

Rinterceptor
3------------------------

3.986 105km3

s2-----------×

6570  km ( ) 
3 

----------------------------------------= =

ωtarget

µ

Rtarget
3---------------

3.986 105km3

s2-----------×

42,160  km ( ) 
3 

----------------------------------------==
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4) Compute the lead angle

 =  (18,925 s)

 

α

 

lead

 

 = 1.38 rad

5) Solve for the final phase angle

 

φ

 

final 

 

= 1.76 rad

6) Find the wait time

wait time = 1225.9 s = 20.4 min

 

Interpreting the Results

 

From the initial separation of 180°, the interceptor must wait 20.4 minutes
before starting the Hohmann Transfer to rendezvous with the target. 

αlead ωtarget( ) TOF( )=

0.000073rad
s

--------- 
 

φfinal π αlead– π 1.38  rad –  = =

wait  time 
φ

 
final 

φ
 

initial 
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target
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interceptor
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