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Abstract. Under certain circumstances the equations
of motion of a fluid yield theorems that provide pow-
erful aids for comprehension of the character and
physics of a wide variety of motions. Perhaps the most
powerful of such theorems, especially in geophysical
fluid dynamics, are the vorticity theorems that specify
how the angular velocity of fluid particles changes with
time and position. For large-scale water motions the
relevant form of vorticity is what is called potential
vorticity, which incorporates inhomogeneities of the
constituent elements of seawater. Ertel’s theorem
specifies the dynamical evolution of potential vortic-
ity. Most other vorticity theorems can be derived from
it. For ideal one-component fluids, potential vorticity
is materially conserved, that is, it is conserved when a
particle of fluid is followed as its location changes,
which is a powerful constraint for analyzing fluid mo-
tion. Seawater is a two-component fluid with its com-
ponents being water and salt. Potential vorticity be-
comes materially conserved for ideal oceanic motions
when the thermobaric coefficient (dependent upon the
variations with pressure of the thermal expansion and

haline contraction coefficients) is assumed to be zero
as, for example, for incompressible seawater (incom-
pressibility being a quite valid assumption for many
oceanic motions). Approximate forms of potential vor-
ticity are illustrated for standard oceanographic ap-
proximations, including a flat Earth with zero, con-
stant, or varying rotation; a spherical Earth; shallow
water; stratification; quasi-geostrophy; and others.
The concept of potential vorticity naturally defines
forms of motion (‘“‘vortical’’ modes) which exhibit
nonzero amounts of potential vorticity. The best
known forms of ‘‘vortical’’ modes are planetary geo-
strophic motion (where Coriolis and pressure forces
are in approximate balance over the globe), quasi-
geostrophic motion (where the forces deviate some-
what from the geostrophic balance), and two-dimen-
sional stratified turbulence. The absence of potential
vorticity defines the inertia-gravity mode of motion,
that is, gravity waves dependent upon the ocean’s
stratification. An arbitrary flow can be separated into a
part that carries linear motionally induced potential
vorticity and a part that does not.

1. INTRODUCTION

The vorticity theorems of Lagrange-Beltrami,
Helmholtz, and Ertel and the circulation theorems of
Bjerknes and Kelvin feature prominently in any grad-
uate text on geophysical fluid dynamics. Ertel’s
[1942a] “‘new hydrodynamic vorticity theorem” plays
the most fundamental role for three very different
reasons. The first reason is its generality. Other vor-
ticity and circulation theorems, where the latter spec-
ify the integration of the velocity along a closed path,
can be derived from Ertel’s theorem. This fact has
been important in the historical evolution of the sub-
ject, since it allowed researchers to interrelate theo-
rems based on different assumptions and derive new
ones.

The second reason for the importance of Ertel’s
theorem is the fact that potential vorticity becomes
conserved in a variety of circumstances. Ertel’s theo-
rem then becomes a conservation law. Conservation
laws constrain fluid motions and often simplify their

analysis. Two kinds of conservation have to be distin-
guished: material conservation and global conserva-
tion. A fluid property is materially conserved if its
value for each fluid particle does not change under
fluid motion. A substance is globally conserved if its
amount does not change in an appropriately defined
fluid volume.

Finally, Ertel’s theorem is important because Er-
tel’s potential vorticity equation, or its generalization
to nonideal fluids, is the governing equation for an
important class of motion. For this class of motion the
potential vorticity equation becomes the sole prognos-
tic equation that determines the time evolution of the
flow. All other variables can be expressed in terms of
the potential vorticity by diagnostic equations. This
class of motion includes planetary geostrophic and
quasi-geostrophic motions. There is also an important
class of motion, inertia-gravity motions, that is char-
acterized by having zero potential vorticity.

Because of its fundamental role, Ertel’s theorem
yields important insights when applied to oceanic phe-
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nomena. Indeed, most aspects of large-scale oceanog-
raphy can be understood in terms of potential vorticity
and its evolution, as is stressed in textbooks [e.g.,
Pedlosky, 1987] and review articles [e.g., Rhines,
1986]. Thus there is considerable current research ac-
tivity on applications and implications of Ertel’s the-
orem. More surprisingly, there are also new research
results about fundamental aspects of Ertel’s theorem
itself. Ripa [1981], Salmon [1982], Henyey [1982,
1983], and others showed for specific circumstances
that the material conservation of potential vorticity is
related to a symmetry of the fluid, namely, the invari-
ance of the dynamics under certain particle relabeling
transformations. The general result has been given by
Salmon [1988a]. Haynes and Mclntyre [1987, 1990]
showed that global conservation of potential vorticity
holds for nonideal fluids. This review covers these and
other fundamental aspects of Ertel’s theorem.

The review is divided into four parts (sections 2-5).
In section 2 we review basic fluid dynamical aspects.
We give a concise derivation of Ertel’s theorem (which
closely follows Ertel’s original derivation), discuss im-
mediate consequences and generalizations, and derive
the precise conditions for the conservation of potential
vorticity. Section 3 relates the material conservation
of potential vorticity to the particle relabeling symme-
try. This relation is most easily established in a canon-
ical description of fluid motions, that is, in a descrip-
tion where the equations of motion can be derived
from a Lagrangian density using Hamilton’s varia-
tional principle. Section 4 considers oceanic approxi-
mations. It derives and discusses Ertel’s theorem for a
Boussinesq fluid and lists appropriate forms for the
standard oceanographic approximations, for example,
the spherical, shallow water, planetary geostrophic,
stratified beta plane, quasi-geostrophic, f plane, non-
rotating, and two-dimensional turbulence approxima-
tions. Section 5 reviews the classes of motion charac-
terized or defined by potential vorticity.

The review aims at answering these questions: (1)
What does conservation of potential vorticity reflect?
(2) What is the role of materially conserved tracers in
the definition of potential vorticity? (3) Which of the
approximations made in physical oceanography are
essential to the conservation of potential vorticity and
which merely simplify the resulting expression?

The review requires the thermodynamic specifica-
tion of a fluid particle and the equations of motion that
govern the dynamical evolution of the flow. It also
takes advantage of different flow representations. We
switch between Eulerian and Lagrangian descriptions
and within the Eulerian description between standard
and canonical dependent variables. We also distin-
guish between prognostic equations that determine the
time rate of change of a variable and diagnostic equa-
tions that determine the value of a variable. In order
not to distract from the main line of reasoning we have
added appendices on the thermodynamic specifica-
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tions of an N-component fluid, the ideal fluid equa-
tions in standard Eulerian variables, the Lagrangian
description of ideal fluid motions, and the Eulerian
forms of Hamilton’s principle. These appendices give
brief self-contained summaries of these subjects. Sim-
ilarly, when we discuss oceanic approximation we
need basic facts about the thermodynamics of seawa-
ter, the equations of motion in a variety of oceano-
graphic approximations, and the Lagrangian density
for an incompressible stratified Boussinesq fluid on an
f plane. These subjects are also relegated to appendi-
ces.

2. BASIC FLUID DYNAMICAL ASPECTS

2.1. Ertel’s Theorem
Ertel’s theorem is derived from the conservation of
mass or continuity equation

D
Dr v=vV-u (D
and the momentum or Euler equation
D
—u+20xu=—vVp - VP )

Dt

which govern the motion of an ideal compressible fluid
in a rotating frame of reference. Here D/Dt = 3/t +
u - V is the material derivative, v the specific volume,
) the constant angular velocity of the rotating frame,
u the velocity relative to the rotating frame, p the
pressure, and @ an external potential. Owing to the
description in a rotating frame, the momentum balance
includes the Coriolis acceleration on the left-hand
side. The centripetal acceleration is absorbed in the
potential @ (see Appendix C). For oceanographic ap-
plications, €2 will be Earth’s rotation rate and ® the
geopotential. The mass and momentum equations do
not completely describe the dynamical evolution of a
compressible ideal fluid. Additional equations are
needed that determine the pressure p. Complete sets
of equations are given in Appendix C.

An important property of fluid motion is its vortic-
ity, the curl of the velocity field. In a rotating frame
one distinguishes between the relative vorticity

w=VXxu (3a)

the ‘‘planetary’’ vorticity
2=V xU (3b)

and the absolute vorticity
0=20+» (3¢)

where U = Q X x is the velocity of the rotating frame
at position x. The equation of motion for the vorticity
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is obtained by taking the curl of the momentum bal-
ance and has the form

D
E(w+2ﬂ)=(u)+2.Q)-Vu—(w+20)V-u

—VuxVp 4)

The first term on the right-hand side describes vortic-
ity changes due to vortex stretching and twisting, the
second term changes due to volume changes, and the
third term changes due to the baroclinicity of the flow.
With the help of the continuity equation the vorticity
equation can also be written

D
Dr [v(w +20)] = v(w + 2Q) - Vu

— v(Vv X Vp) (5)

Changes of the vorticity multiplied by the specific
volume are only due to vortex stretching and twisting
and to the baroclinicity of the flow.

A fluid property or tracer {s(x, ) that satisfies

D j—
o, ¥=0 (©)

is said to be materially conserved. The property s is
conserved for each fluid particle individually. With the
help of this definition, Ertel’s theorem can be stated as
follows: If ¢ is materially conserved then

D
D A= 9P, v ¥) (N
where
q = v(e +2Q)- Vi (8)
J(p, v, ¥) = (Vp X Vv) - Vi 9)

The theorem follows directly from the vorticity equa-
tion (5) and the material conservation (6) of . The
quantity g is called the potential vorticity or Ertel’s
potential vorticity. It is the projection of the absolute
vorticity vector onto the gradient of {s, multiplied by
the specific volume. Ertel’s theorem states that mate-
rial changes of the potential vorticity are given by J(p,
v, ¥), the Jacobian of p, v, and . Since  can be any
materially conserved tracer, potential vorticity repre-
sents a class of quantities. Later we will consider
specific members of this class by specifying the tracer
.

Ertel’s potential vorticity theorem (7) and the vor-
ticity theorems (4) and (5) are written in a form that
contains the material derivative. Using the continuity
equation, one can write these equations also in their
flux form. For Ertel’s theorem one obtains
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d
—(pq) +V-F=0 (10)
at
where p = v~ ! is the fluid density and
F = pgqu — (Vp x Vo){s (11)

the potential vorticity flux vector. There are no source
or sink terms in (10). The local time rate of change of
pq is solely given by the divergence of F. Therefore
there exists a ‘‘substance’” @, of which ¢ is the
amount per unit mass or pg the amount per unit vol-
ume, that is conserved. Since this substance moves
with velocity F/pq rather than the fluid velocity u, the
integral form of this conservation law is

d > =0
T xpq =
|

for any volume V that moves with velocity F/pg. We
refer to the conservation of the potential vorticity
substance Q as expressed in (10) or (12) as the “‘glob-
al’’ conservation of potential vorticity.

The global conservation of potential vorticity needs
to be distinguished from its material conservation,
which follows from a trivial corollary to Ertel’s theo-
rem. If ¢ is materially conserved and if J(p, v, V)
vanishes identically, then

(12)

D
—qg=0

Dt (13)

and potential vorticity is materially conserved. Mate-
rial conservation of g implies the global conservation
of Q but not vice versa. The strength of the corollary
is that the existence of one materially conserved tracer
Y implies the existence of another materially con-
served tracer, namely g. The corollary also provides
the rationale for the adjective ‘‘potential.”” When q is
materially conserved, the component of the vector
v’ parallel to Vi increases when |Vi| decreases. For
circumstances where v changes little, absolute vortic-
ity is “‘released”” when adjacent {s surfaces are spread
apart.

Various integral forms of Ertel’s theorem and its
corollary can be derived. One form has already been
given in (12) for a volume moving with velocity F/pgq.
If instead we consider a material volume V, ie., a
volume moving with fluid velocity u, Reynolds’s trans-
port theorem implies

d
ijfd%pq:j”d3x(vp><vv)-V¢ (14)
v \ %4

Using the vector identities (o + 2Q) - V§ = V[(» +
20)] and (Vp X Vo) - Vi = V- [(Vp X Vo], ap-
plication of Gauss’s theorem yields
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([ »
dtfjdxn-(w+29)¢
s

=JJd2xn-(Vprv)11;

N

(15)

where n is the normal vector of the surface S bounding
the volume V. Following Ertel [1942b] a form involv-
ing a line integral can be obtained by considering a
material surface B that divides the fluid into a lower
and upper half and a segment A of this surface that is
bounded by a simple closed curve 8A. Consider a
property s that is discontinuous across B. Application
of (14) to an infinitesimal cylinder with base A leads to
(15) with S being replaced by A and s being replaced
by Als, the jump of ¢ across B. If we choose U to be
one constant in the lower half and another constant in
the upper half, then A{s drops out and application of
Stokes’s theorem gives the circulation theorem

d

— dx-(u+U)=JJd2xn-(VpXVv) (16)
dt J..
A

valid for any material circuit 8A. This is Bjerknes’s
circulation theorem [Bjerknes et al., 1933], which is
usually written in the form

a d +29dA
- X u — A,
dt I, dt
fo d’x n-(Vp x Vo) a7
A

where A | is the projection of A onto the plane per-
pendicular to €. For nonrotating barotropic flows,
Bjerknes’s circulation theorem reduces to

d d =0
7 X-u=

which is Kelvin’s [1869] circulation theorem.

Kinematically, the potential vorticity is related to
the rotational part of the velocity field in a generalized
Helmholtz decomposition, as shown by Staquet and
Riley [1989] for a nonrotating system. Let

(18)

Vi

=— 19
i (19)

€3
be the unit vector perpendicular to a ¢ surface and e,
and e, two orthogonal unit vectors lying within the ¢
surface. The three vectors define an orthonormal co-
ordinate system (¢, &,, &) with metric coefficients (4,
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h,, h3). If § is used as the third coordinate, & = & ()
with 8&,/0¢ = |[V{|~!, then h; = 1, and operators
within & surfaces can be defined. Application of the
Helmholtz theorem to the velocity component along
the ¢ surface results in

u=e; X Vx+ Vo+ u,es; (20)
Here x is the stream function that describes the rota-
tional, nondivergent part of the velocity component
along the  surface, ¢ is the potential that describes
the divergent, irrotational part, u, = wu, -e; is the
velocity component perpendicular to the  surface,
and V,; is the gradient within the ¢ surface. In this
decomposition the potential vorticity is determined by
the stream function part

g = v Vi = vAx| Vil 21
where A; is the Laplacian along the ¢ surface. The
above arguments can be trivially generalized to rotat-
ing systems, by replacing the velocity u by the abso-
Iute velocity u® = u + U.

2.2. Global Conservation

Ertel’s potential vorticity is globally conserved for
an ideal fluid. Here we look at two types of generali-
zations. The first generalization introduces tracers s
that are not materially conserved. The theorem then
takes the form

L 2Q)-V 2Q VD
Dy [0 +29) - V4] ~ v +20) -V -4

=vJ(p, v, ¥)(22)

and allows the derivation of most other vorticity and
circulation theorems. For example, by specifying s to
be the components of the position vector x, one re-
trieves the vorticity equation (5).

The second generalization considers viscous fluids.
Let a be the viscous force per unit mass or any other
additional force per unit mass added to the right-hand
side of the momentum equation (2). We then find

D
Eq=v1(p,v, ) +u(V Xxa) Vi

(23)
For both generalizations, potential vorticity is not ma-
terially conserved, even if J(p, v, {) vanishes. How-
ever, the new source terms can be written as diver-
gences such that again

3
a—t(pq)+V-F=0 (24)

with the potential vorticity flux vector
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F = pgu — (Vp X Vo) — a X V¢

D
(o +2Q) Y i\ 25)
The potential vorticity substance Q is conserved, even
for viscous fluids and nonmaterially conserved tracers
§. Furthermore, this substance cannot cross s sur-
faces since the normal component of the velocity F/pg
equals the normal velocity of the ¢ surface:

F-Vy oy
pg ot

(26)

These fundamental results have apparently only
been realized recently by Haynes and McIntyre [1987,
1990]. Equations (24) and (26) imply that the potential
vorticity substance can only move along s surfaces
and is created or destroyed only where these surfaces
intersect boundaries. If a fluid volume is solely
bounded by { surfaces, then the potential vorticity
substance in that volume does not change. It can only
be diluted or concentrated by changes in the mass or
the volume. In the atmosphere, isentropic surfaces are
usually chosen as { surfaces. In the middle and upper
atmosphere, layers can be found that are bounded
solely by two isentropic surfaces, and the global con-
servation of potential vorticity becomes a constraint
for real fluid motion that is presently exploited by
atmospheric scientists [e.g., McIntyre, 1990]. In the
ocean, where isopycnal surfaces are usually chosen as
s surfaces, global conservation is less of a constraint
since isopycnal surfaces usually intersect the ocean
surface or the bottom.

The global conservation of potential vorticity and
its confinement to { surfaces are solely a consequence
of the definition of the potential vorticity as

pg = (VX u’) - Vi 27)

where u? = u + U. By applying vector identitiecs we
find that pg can be written as a divergence:

pg =V [(VXu)]=V-[u X Vi] (28)
Therefore
i v wxay 2™y (29)
J— = . X RN
Y (pq) (V x u or T o ¥
which is (24) with flux vector

Fe—vxuy X ™oy (30)
= - X ————
(Vxuh) o= XV

This flux vector also satisfies (26). Equation (28) shows
that the amount of the potential vorticity substance in
a volume V can either be determined by integrating pg
over the volume or by integrating (V X u®){ or u® X
Vi over the surface bounding the volume.
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2.3. Material Conservation

Material conservation of potential vorticity is inev-
itably destroyed if viscous, conductive, and diffusive
processes are introduced. Thus potential vorticity is
never materially conserved for a real fluid. Even for an
ideal fluid the corollary to Ertel’s theorem shows that
J(p, v, ¥) must vanish for potential vorticity to be
materially conserved. This condition is analyzed here.

The Jacobian J(p, v, i) vanishes if v is a function
of p and Y. This is a constraint on the equation of state
of the fluid. Consider a two-component fluid. Its equa-
tion of state is of the general form

v=u(p, m, c) 3D

where 7 is the specific entropy and c the concentration
of the second component (see Appendix A). For ideal
fluid motions the specific entropy m and the concen-
tration ¢ are materially conserved. The Jacobian J(p,
v, ) therefore vanishes if a tracer

¢ = ¥(n, ©) (32)
can be found such that the equation of state reduces to
v=1v(p, ) (33)

Note that & is a thermodynamic tracer, whereas the
potential vorticity g is a dynamic tracer. A thermody-
namic tracer depends only on thermodynamic vari-
ables and is a property of the fluid. A dynamic tracer
depends also on the fluid velocity and is a property of
the flow. The corollary to Ertel’s theorem states that
for every materially conserved thermodynamic tracer
Y that satisfies (33) there exists a materially conserved
dynamic tracer, namely g. The inference of a property
of the flow from a property of the fluid constitutes the
significance of the corollary.

For which equations of state can a { be found that
satisfies (33)? Consider compressible fluids (x # 0)
first. For a one-component fluid, v = v(p, m) and one
can trivially choose ¢ = m and

g =v(w + 28) - Vnq (34)

becomes materially conserved. If the fluid is further-
more homentropic (Vn = 0) then Vp X Vu = 0 and
hence J(p, v, ¢) = 0 for any . Potential vorticity is
materially conserved for any tracer . However, there
is no obvious candidate for such a tracer.

For a two-component or multicomponent fluid, (33)
requires that the fluid essentially behave as a one-
component fluid, i.e., it can be brought into the one-
component form by a transformation of variables. The
condition J(p, v, {y) = 0 implies

(ﬂf)ﬁ_ﬂa—v)(Vp X Vn) -Ve=0 (35)

after substitution of ¢ = Y(m, ¢) and v = v(p, m, ¢).
Either the term in parentheses or the triple product
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TABLE 1. Summary of the Materially Conserved Potential Vorticities for Various Equations of State

Equation of State

Form of Materially Conserved
Potential Vorticity

Two-component fluid (v = v(p, 7, ¢))

Two-component fluid with nonturning isopycnals (v = v(p, v,))

One-component fluid (v = v(p, 7))
Homentropic fluid (v = v(p; m), Vq = 0)
Incompressible fluid

Homogeneous fluid (Vv = 0)

none
q = v(w + 2Q) - Vu,
q = v(w + 2Q) - Vy
9

g = v(w + 2Q) - Vo
?

must vanish. If the triple product vanishes, p = p(n,
¢) and hence v = v(m, ¢). The fluid is incompressible,
the case not considered here. Therefore the term in
parentheses must vanish. Since v is a function of p
whereas { is not, this can only happen if the slope

dc
y = J A
an e

of the isopycnal in the (v, ¢) plane does not change
with pressure. Such a fluid behaves as a one-compo-
nent fluid since the specific volume is determined by
the pressure p and the specific volume v, = v(py, 1,
c¢) at an arbitrary reference pressure py, i.e., v = v(p,
vy). The choice ¢ = v, leads to a materially con-
served potential vorticity. This case is more fully dis-
cussed in the oceanographic sections since it is of
particular importance there.

Finally, consider the incompressible fluid limit k =
0. In this case

(36)

D
—v=0

D (37)

The specific volume is materially conserved and § = v
leads to a materially conserved potential vorticity.
Again, there is no obvious candidate for  if the fluid is
homogeneous, Vv = 0.

The material conservation of potential vorticity im-
plies the circulation theorem

d
— dx-(u+U)=0
dt J. .

(383)
where 3A is a material circuit on an isentropic (iso-
pycnal) surface for a one-component (incompressible)
fluid or any material circuit for a homentropic or ho-
mogeneous fluid.

Table 1 summarizes the essence of this section. It is
the equation of state that determines whether or not
there exists a materially conserved potential vorticity
and what form it takes. The results in Table 1 can be
related to the number of modes of motion a fluid can
support. A two-component system is described by six

prognostic equations, e.g., for the velocity vector u,
the pressure p, the specific entropy m, and the concen-
tration ¢ (Appendix C). Such a fluid can therefore
support six modes of motion. In the linear limit, two of
the modes correspond to acoustic waves, two to grav-
ity waves, one to a vorticity wave, and one to a
chemical wave. For a one-component fluid the number
of prognostic variables is reduced to five. The chemi-
cal mode is eliminated. An incompressible fluid is
governed by three prognostic equations. The two
acoustic modes and the chemical mode are eliminated.
Once the chemical mode is eliminated, there exists a
materially conserved potential vorticity. The presence
or the absence of the acoustic modes does not affect
the existence of a materially conserved potential vor-
ticity but only affects its form.

3. PARTICLE-RELABELING SYMMETRY

3.1. Lagrangian Formulation

The analysis of the previous section is unsatisfac-
tory since it neither reveals the underlying cause for
the material conservation of potential vorticity nor
offers any explicit expressions for homentropic and
homogeneous fluids. These issues become resolved in
a Lagrangian description of the fluid motion.

In the Lagrangian frame the fluid motion is de-
scribed by the position x of a fluid particle as a function
of its label s and time T, i.e., by x = x(s, 7). Often the
initial or equilibrium position r is used as a fluid label.
To avoid ambiguities, time is denoted by 7 in the
Lagrangian description and by ¢ in the Eulerian de-
scription. Similarly, the gradient in label space is de-
noted by V and the gradient in physical space by V.
The Lagrangian description is equivalent to the Eule-
rian one. A more extensive discussion of the Lagran-
gian description can be found in Appendix D.

An important property of the Lagrangian descrip-
tion is that the momentum equation for ideal fluids can
be derived from a Lagrangian density using Hamil-
ton’s variational principle. The principle was first
given by Herivel [1955] for an incompressible fluid and
later by Serrin [1959] and Eckart [1960] for a com-
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pressible flow. For a compressible fluid in a rotating
frame of reference the Lagrangian density is

L=lx-x+x-U-e-d (39)
where x = (3/87)x(s, 7) is the fluid velocity and e the
specific internal energy. The Lagrangian density is the
kinetic energy density minus the internal and potential
energy density. The expression (39) is a density in
label space. For convenience the label s is chosen such
that the initial density py(r) is uniform in label space,
i.e., dsids,ds; = po(r)dr dr,dry. We will adopt this
choice of label unless stated otherwise.

For a two-component system, e = e(v, m, ¢). In
the Lagrangian description the continuity equation
takes the form

o) _
a(s)

The specific entropy m and the concentration ¢ are
materially conserved for ideal fluid motion, and their
values are given by their initial values

u(s, T) = (40)

n(s, ) = mo(s) c(s, 7) = co(s) (41)

Thus e = e(K, mg, Cg)-

An important theorem that governs Lagrangian sys-
tems is due to Noether [1918] and reviewed by Hill
[1951]. It states: If the Lagrangian density is invariant
under infinitesimal transformations 87, s, or 8x, then
there exists a ‘‘global’’ conservation law of the form

]
at

d 3%
Axi + — §£8sj+—Ax,~ =0
as; Sx,-,j
(42)

J

d 3L

—fff d’s | £37 + Ax;| =0 (43)
dv d3x; .

for suitable volumes or boundary conditions. Here

3L
£Ldr +
Sx,-,T

or

Axi = 8x,~ - xi’TST - Xi’jBSj (44)

is the variation of x at fixed s and 7. Index notation is
used, and the functional derivative is denoted by 8.
Noether’s theorem relates the conservation of momen-
tum to the invariance of the Lagrangian density under
a uniform translation in physical space and the con-
servation of energy to the invariance under a uniform
translation in time.

Consider the Lagrangian density (39) for an ideal
compressible fluid. A particle-relabeling transforma-
tion

s—s’ =s+ ds 45)

only affects K, m,, and ¢, in the internal energy term.
Hence, if a transformation 3s can be found that does
not change the internal energy, then the Lagrangian
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density is invariant under this transformation and
Noether’s theorem applies. Such a transformation can
indeed be found for a one-component fluid for which
e = e(K, my). The condition 8K = 0 implies V - 3s =
0, which is satisfied by 8s = V X 8A(s) where SA(s) is
an arbitrary infinitesimal vector field. The condition
dno = 0 requires s - Vm, = 0, which is satisfied if
SA = Sa(s)V'qO where 3a(s) is an arbitrary infinitesimal
scalar field. The internal energy and the Lagrangian
density are hence invariant under the infinitesimal
transformation

ds =V x (8aVmy) (46)

This invariance represents the fact that the thermody-
namic state of a one-component fluid is completely
specified by two scalar variables, say, v and m,
whereas the label represents a three-dimensional man-
ifold, s,, s,, and s;. The one-dimensional relabeling
transformation (46) can be applied without changing
the thermodynamic state of the fluid. The thermody-
namic state of a genuine two-component fluid is char-
acterized by three scalar variables, say, v, m, and c,
and no such relabeling transformation exists.

The conservation law associated with the relabeling
symmetry can be found by substituting (46) into the
integral form (43) of Noether’s theorem. One obtains

% f f f s B[V x (3a¥ng)]=0  (47)

where the vector B has the components

Bi=2L o — Uy Y 48
i_8xj,T X = (%; 1) a5, (48)

and is discussed in the next section. Integration by
parts yields

d _ .
—fjfd% (VXB):-Vneda=0
dr

This is a global conservation law. However, since
Sa(s) is an arbitrary function of s we can choose it to
be a delta function and obtain the material conserva-
tion law

(49)

i =20 50
Pl (50)

where
g=(VxB)-Vnq (51)
Transforming from label to physical space, we find
g=9V x (u+U)]-Vnq (52)

i.e., g is the potential vorticity g. The material con-
servation of potential vorticity for an ideal one-com-
ponent fluid reflects the fact that a one-dimensional
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particle-relabeling transformation can be carried out
without changing the thermodynamic state of the fluid.
This connection between potential vorticity conserva-
tion and particle-relabeling symmetry has been recog-
nized by Bretherton [1970], Ripa [1981], Salmon
[1982], Henyey [1982, 1983], and others for specific
circumstances. The above general derivation was first
given by Salmon [1988a].

For a homentropic fluid, e = e(K) and the Lagran-

gian density is invariant under the transformation
3=V x 3A (53)

where 3A(s) is an arbitrary infinitesimal function of s.
Noether’s theorem then implies

d )
~—jffd3s(VxB)-8A=0 (54)
dr
or
d Im=0 55
dr h (5
where
MI=VxB (56)

Now the vector Il is materially conserved. Transform-
ing to physical space, we find

H=(VxB)-Vs=9[VX(u+U)]-Vs (57)

which cannot be expressed in standard Eulerian vari-
ables because it involves the label s. As pointed out by
Salmon [1988a], the conservation law (55) implies not
only Kelvin’s circulation theorem but also Moffatt’s
[1969] helicity theorem.

For an incompressible fluid the pressure is no
longer determined ‘‘thermodynamically’’ by the spe-
cific internal energy but ‘‘dynamically’’ by the incom-
pressibility constraint,

K = vy(s) (58)
This constraint can be added to the Lagrangian density

=%1k-i(+5(-U—CD+)\[K—v0(s)] (59)

where the Lagrange multiplier A must be identified
with the fluid pressure p. The Lagrangian density (59)
is invariant under relabeling transformations that do
not change K and vuy(s). Arguments similar to the
one-component case lead to

g [(VxB)-Vuyy]=0 (60)
ot

and to

(61)
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for the homogeneous case.

Noether’s theorem provides the underlying reason
for the material conservation of potential vorticity. It
is conserved when fluid particles can be relabeled
without changing the thermodynamic state of the fluid.
Since Noether’s theorem requires infinitesimal trans-
formations, potential vorticity conservation does not
exist in discrete particle physics. For a one-component
fluid whose thermodynamic state is determined by v
and v, there exist one-dimensional relabeling transfor-
mations leading to the conservation of a scalar. For a
homentropic fluid whose thermodynamic state is com-
pletely determined by v, there exist two-dimensional
relabeling transformations leading to the conservation
of two scalars or, equivalently, to the conservation of
the curl of a vector. The relabeling transformations are
local transformations, that is, they depend on s, and
lead to local conservation laws, that is, to quantities
that are materially conserved. In noncanonical Ham-
iltonian formulations the conservation of potential vor-
ticity is related to the existence of Casimir functionals.
This aspect is also discussed by Salmon [1988a].

3.2. Pseudomomentum

The vector B that appears in the Lagrangian forms
of potential vorticity conservation is a pseudomomen-
tum vector as can be seen by inverting (48), which
yields

X + U=BIVs1 +BzVS2+B3VS3 (62)

The components of B are the components of the ab-
solute velocity vector in a basis given by the three
curvilinear vectors Vs, (i = 1, 2, 3). In contrast, the
momentum vector P has components

3L
P,‘ = =u; + U,' (63)
Sx,-’T
that satisfy
X+U=P1VXI+P2VX2+P3VX3 (64)

and are the components of the absolute velocity vector
in a basis given by the three unit vectors Vx; (i = 1, 2,
3). Because of our specific choice of label there ap-
pears no density in the definitions for momentum and
pseudomomentum.

Pseudomomentum is globally conserved under cir-
cumstances that are determined by particle-relabeling
symmetries. Consider a homentropic fluid, ¢ = e(K).
The Lagrangian density does not depend on the label
coordinates and is invariant under a global or uniform
infinitesimal translation

ds = const (65)

in label space. The differential form (42) of Noether’s
theorem then implies
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? Bit — Fy=0
at ' as; Y

i=1,2,3 (66)

with a certain flux tensor F;. All components of the
pseudomomentum vector are globally conserved. By
taking the curl of (66) in label space, we recover the
material conservation of potential vorticity (55).

For a one-component fluid, e = e(K, 7). If one
chooses m, as one of the labeling coordinates, say,
§3 = 7y, then the Lagrangian density is independent of
s, and s,, leading to the global conservation of the
pseudomomentum components B; and B, and the ma-
terial conservation of the potential vorticity g = (V X
B), = (V x B) - Vn,. For a two-component system,
e = e(K, ng, ¢, and the choice s; = ng and s, = ¢,
leads to the global conservation of B; but to no mate-
rial conservation law.

The global conservation of the pseudomomentum
vector or its components follows from the invariance
of the Lagrangian density under a global particle-rela-
beling transformation, such as (65). The material con-
servation of potential vorticity follows from the invari-
ance under local particle-relabeling transformations,
such as (46) or (53). The distinction is important. A
genuine two-component fluid does not allow any local
relabeling but does allow a global relabeling. Further-
more, conservation of pseudomomentum must be dis-
tinguished from the conservation of momentum which
follows when the Lagrangian density is invariant under
a uniform translation in physical space.

The pseudomomentum vector is not uniquely de-
fined. Different choices of fluid labels lead to different
pseudomomenta, and so do different but equivalent
(see Appendix D) choices of the Lagrangian density.
Because of this nonuniqueness the question becomes
what is an optimal choice, with optimal choice usually
being understood as one that makes the pseudo-
momentum quadratic to lowest order in the deviation
from a reference state. This reference state can be the
resting ocean [e.g., Ripa, 1982], a parallel flow [e.g.,
Ripa, 1992], or a time-evolving mean flow [e.g., An-
drews and Mclntyre, 1978a, b]. Our definition (48) is
referenced to an inertial frame.

3.3. Canonical Eulerian Formulations

The equations of motion in their standard Eulerian
form, as, for example, given in Appendix C, cannot be
derived from a Lagrangian density using Hamilton’s
variational principle. The transformation from the La-
grangian variable x(s, 7) to the Eulerian variable u(x, ¢)
is not a canonical transformation. However, there ex-
ist other sets of dependent variables that are Eulerian,
that is, have x and ¢ as independent variables and
whose equations of motion can be derived from a
Lagrangian density using Hamilton’s variational prin-
ciple. Most of the Eulerian forms of Hamilton’s prin-
ciple were originally derived in an ad hoc fashion [e.g.,
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Lin, 1963; Seliger and Whitham, 1968]. It has only
recently been shown by Salmon [1988a] that all these
Eulerian forms of the variational principle can be de-
rived from the Lagrangian form by considering, in-
stead of the mapping x = x(s, 1), the inverse mapping
s”u(x, t) and interchanging dependent and indepen-
dent variables in the variational principle. Different
forms and different representations are obtained de-
pending on which constraints are added to the varia-
tional principle. For details, see Appendix E. Here we
consider the variational principle that was originally
suggested by Seliger and Whitham [1968]. It states
that

1 as
SJdtijcpo(zu'u-i-e+(I>+B-5)=0

for independent variations 3B and 8s. Here M = a(s)/
d(x) is the Jacobian of the inverse mapping and

(67)

U+U:BIVS1 +B2VS2+B3VS3 (68)

The vector B, which enters the variational principle as
the Lagrange multiplier associated with the constraint
(D/Dt)s = 0 [Lin, 1963], is the pseudomomentum
vector discussed in the previous section.
For a two-component system, e =
Using the continuity equation in the form

e(v, m, ¢).

v(x, £) =M™ (69)

and the specific entropy and concentration equations
in the form
(70)

n(x, 1) =mo(s)  c(x, 1) = cols)

the specific internal energy becomes e = e(M ', m,,
¢o) Where my and ¢, are given functions of s. Variations
3B and 3s yield the canonical Eulerian equations

D =0 71
YA (71a)
D . . _
EB= TV + ApVey — VI (71b)
where
| as
F=§u-u+e+¢>+pv+B-— (72)

ot

is a modified Bernoulli function and where the pres-
sure p, temperature T, and chemical potential differ-
ence Ap are defined by the thermodynamics relations
given in Appendix A. Note that the derivatives on the
right-hand side of (71b) are with respect to the depen-
dent variable s. The fluid evolution is described by
prognostic equations for B and s and by diagnostic
equations for w, v, m, ¢, p, T, and Ap. It is an
Eulerian description. The independent variables are x
and ¢. It is a canonical description. The prognostic
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equations are derived from a Lagrangian density using
Hamilton’s variational principle. It is straightforward
to show that the canonical Eulerian equations (71) are
equivalent to the standard Eulerian equations as, for
example, given by (C1). Note that the canonical Eul-
erian description requires diagnostic equations for T
and Ap. which are not needed in the standard Eulerian
description.

The canonical Eulerian description has the particle
label s and the pseudomomentum B as dependent vari-
ables. These are the variables that appeared in the
derivation of Ertel’s theorem in the Lagrangian de-
scription via Noether’s theorem. Conservation of po-
tential vorticity should therefore be an obvious conse-
quence of the equations of motion. Indeed, for a one-
component system Vc, = 0. if we choose s; = 1, the
equations for B reduce to

D or’ D oI’
D% Tas DT T,
(73)
D or
b 175,

and state the global conservation of the pseudo-
momentum components B; and B,. As shown in sec-
tion 3.2, global conservation of B, and B, immediately
implies material conservation of g = v(w + 2Q) - Vn.
For a homentropic fluid, V¢, = 0 and Vr, = 0, and all
components of the pseudomomentum vector are glo-
bally conserved. This immediately implies the material
conservation of the vector II = v(w + 2Q) - Vs.

The canonical Eulerian description has two note-
worthy properties. Material conservation of potential
vorticity is an immediate consequence of the equations
of motion. The potential vorticity for homentropic
(and homogeneous) fluids can explicitly be expressed
in terms of system variables.

4. OCEANIC APPROXIMATIONS

We now turn to oceanic motions and present vari-
ous approximate forms of Ertel’s theorem that are
used in oceanography. Now € is Earth’s rotation rate
and ® the geopotential. Seawater is treated as a two-
component system with water and salt being the two
components. The concentration of salt is the salinity
S. Instead of the specific entropy, oceanographers
prefer the use of the potential temperature 8(y, §) =
TP+, m, S), which is the temperature that a fluid
particle would attain if moved at constant specific
entropy and salinity to a reference pressure p . Like 1
the potential temperature is materially conserved for
ideal fluid motion. Technically, oceanographers work
in the (p, 0, S) representation, i.c., they use p, 8, and
S§ as independent thermodynamic variables. Oceanog-
raphers also prefer the use of the density p = v~ ! over
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the specific volume. More details on the thermody-
namic specifications of seawater can be found in Ap-
pendix B.

The reasons for choosing the potential temperature
0 over the specific entropy m are twofold. First, 0 is
more easily related to the quantities that are actually
measured, namely, p, T, and S (see (B2)). Second, the
specific entropy is only defined up to a linear function
of S [Kamenkovich, 1977]. As shown in Appendix B,
this is of no consequence for changes of the specific
entropy, and only these changes have physical signif-
icance, but, of course, it induces ambiguities when 7 is
used as a variable.

4.1. Boussinesq Approximation

In studying oceanic motions, one usually employs a
set of approximations which is attributed to Bous-
sinesq [1903]. This Boussinesq approximation is ap-
plied to almost all oceanic motions except sound
waves. Here we discuss its various steps following
Miiller and Willebrand [1989]. The Boussinesq ap-
proximation starts from the equations of motion in the
(p, 0, S) representation as given in Appendix C and
consists of four steps. First, a motionless hydrostati-
cally balanced reference state

u, =0 0, = const S, = const (74)

is subtracted out of the equations of motion, whereas
the constants are usually taken to be 0°C and 35 prac-
tical salinity units (psu), respectively. The reference
state contains the large pressure gradients that are
caused by the weight of the overlying water column
but do not cause any motion. Deviations from the
reference state are denoted by a prime, except for u.

The second step is the anelastic approximation that
eliminates sound waves by assuming that the flow has
velocities and phase speeds much smaller than the
speed of sound. The adjustment of the pressure field
and velocity divergence therefore happens on time-
scales much faster than those at the flow. Pressure
changes can be neglected, and the pressure equation
(C5) reduces to

p,u-V(I):%V-u (75)
There is no prognostic equation for the pressure any
more. The pressure must be determined diagnostically
from the constraint (75) on the velocity divergence.
The third step is a geometric approximation which
is possible since the scale depth D = (p,k,g) ' of the
oceanic density field is of the order of 200 km and
therefore much larger than the ocean depth H,, or the
vertical scale H of the fluid motion. The terms on the
left-hand side of (75) are therefore at least H/D times
smaller than the individual terms on the right-hand
side, leading to the approximation V-u = 0. The
condition H/D << 1 also implies that p, can be re-



33, 1/ REVIEWS OF GEOPHYSICS

placed by a constant reference density p, in the mo-
mentum equation.

The final step of the Boussinesq approximation in-
corporates the facts that p’ << p, and p’ << p, for
observed oceanic motions. Explicitly, the Boussinesq
equations are given by

D

p*(B; u+2Q0 x u) = ~Vp' —p'VD (76a)
Veu=0 (76b)

D el —
YA (76¢)
D S = d
YR (764d)
p, = F(pr, 9r + 6, Sr + S,) - F(prs 0, Sr) (766)

where the equation of state as a function of p, 6, and
S is denoted by F. The density depends only on the
reference pressure p, or, equivalently, on the vertical
coordinate.

Note that the equation of state still contains com-
pressibility effects. The density p’ is not materially
conserved as can be seen by taking the material deriv-
ative of (76e), which yields

D

[ -2 ' '
- = 9er+ s r+S
DrP [c™*(p, 6, S )

- C_Z(pra er Sr)]pru : Vé) (77)

where ¢ is the speed of sound.

The name ‘‘Boussinesq approximation’’ is not al-
ways used in the same way as it is here. Often, it
includes incompressibility. Occasionally, it includes a
linearization of the equation of state (76e) with respect
to 6’ and S’ [e.g., Veronis, 1973].

4.2. Ertel’s Theorem in the Boussinesq
Approximation

The derivation of Ertel’s theorem in the Boussinesq
approximation starts from the momentum equation
(76a) and the nondivergence equation (76b). Taking
the curl of the momentum equation gives

D 1
— (0 +2Q) = (0 + 20) - Vu + = (Vp' X Vp,)
Dt Px

(78)

and hence

b1 _1
Dt Px (0.)+2Q)‘Vlll _p_iJ(p > Prs lll) 79)

for any materially conserved tracer ¢. This is Ertel’s
theorem in the Boussinesq approximation. The poten-
tial vorticity is
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Figure 1. The thermobaric coefficient b of seawater as a

function of pressure for various temperatures and a salinity
of 35 practical salinity units (psu) [after Miiller and Wille-
brand, 1986].

q=—1—(w+20)'V¢ (80)
Px

and contains the constant reference density p, (which
can be dropped) rather than the actual density p. The
evolution of the potential vorticity is again given by a
Jacobian, in this case J(p’, p,, ¥). Again potential
vorticity is materially conserved if the Jacobian van-
ishes, which is the case if p’ = p'(p,, ¥). In section 2.3
we showed that this is the case if the isopycnals in the
{0, S) plane do not turn with pressure.

For actual seawater the isopycnals do turn with
pressure. The slope of the isopycnals is given by

v = Bl

where « is the thermal expansion coefficient, and B the
haline contraction coefficients. The slope changes with
pressure according to

(81)

(82)
where

b 1 /108 1 0a

2\Bdp adp (83)
is called the thermobaric coefficient [McDougall,
1987]. For seawater the thermobaric coefficient is non-
zero (Figure 1). The coefficient is called thermobaric
since the second term in (83), the change of the ther-
mal expansion coefficient with pressure, dominates for
seawater. The coefficient b is negative: The thermal
expansion coefficient increases with pressure. The co-
efficient depends mostly on potential temperature and
pressure and only weakly on salinity. It is largest for
small temperatures and pressures. The thermobaric
coefficient can also be expressed in terms of the adia-
batic compressibility k as

b_l 16K+13K 84)
T 2\B oS a6
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Again, the second term dominates. The adiabatic com-
pressibility decreases with temperature.

The turning of the isopycnals causes two fluid par-
ticles that have different potential temperatures and
salinities but the same density on one pressure surface
to have different densities on another pressure surface
(under ideal fluid motion). There is evidence for this
effect in the ocean. The Greenland Sea Water is
heavier than the Weddell Sea Water, but when it
becomes the North Atlantic Deep Water it overlies the
Antarctic Bottom Water originating from the Weddell
Sea [Veronis, 1973]. Weddell Sea Water is colder than
Greenland Sea Water and has a larger compressibility.

Potential vorticity is not materially conserved for
seawater, not even for ideal fluid motions. Seawater is
a genuine two-component fluid. Oceanographers use,
however, a variety of approximations to the equation
of state that make seawater a one-component fluid.
The first such approximation assumes that the ther-
mobaric coefficient is zero, » = 0. In this case the
potential density

ppot(e, S) :F(p*a ea S)

is introduced. The potential density is the density a
fluid particle would attain if moved at constant 6 and S
to a reference pressure p,, usually the surface pres-
sure. The potential density is materially conserved for
ideal fluid motion, and it is the materially conserved
tracer ¢ that makes the potential vorticity g materially
conserved for nonthermobaric seawater. The condi-
tion b = 0 is implemented into the equation of state by
changing from the (p, 6, S) representation to the (p,
Ppot> ) representation (see Appendix B). In the latter
representation the condition b = 0 is equivalent to

(85)

ap(pa ppot, S) _

Py 0 (86)

The density becomes a function of pressure and po-
tential density only. In the nonthermobaric limit the
two prognostic equations for 6’ and S’ can be replaced
by one prognostic equation for Ppot- The number of
prognostic equations is reduced by one. The chemical
mode, which is called the temperature-salinity mode in
oceanography [e.g., Miiller and Willebrand, 1986] and
which owes its existence to the fact that the dynamical
evolution depends on the individual temperature and
salinity fields, is eliminated.

The density is still not materially conserved for a
nonthermobaric fluid but obeys

B—t- p' = _[c_z(prs p;ot + p;aot)

— ¢ pr> Ppo)lpyu - VO (87)

This equation motivates the second approximation
that is often made to the equation of state, namely,
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TABLE 2. Summary of the Materially Conserved Potential
Vorticities for Three Approximations to the Equation of
State of Seawater

Form of Materially
Conserved Potential
Vorticity

Equation of
State

Nonthermobaric (b = 3 [(1/8)(3k/8S)
+ (1/a)(3x/06)] = 0)

(w +280) - Vp,

Nearly incompressible (k = k(p)) (o +2Q) - Vp’
Incompressible (x = 0) (w +2Q)-Vp

dc™3(p, Ppor)

) (88)

appot

which is equivalent to

ap'(P5 Ppot)

pLp ppot =0 (89)
ap

and implies p’ = pp,. The perturbation density is
incompressible and hence equal to the perturbation
potential density. Now p’ is materially conserved and
can be used as the tracer s that makes the potential
vorticity materially conserved. This limit is called
nearly incompressible, because the reference density
is still compressible and the evolution of density is
governed by

D -2
D P T TR Vo (90)
In the nearly incompressible limit, the perturbation
density p’ can be used as one of the prognostic vari-
ables, and no equation of state is needed.

Finally, oceanographers assume seawater to be
completely incompressible. Then the density p is ma-
terially conserved and can be used to form a materially
conserved potential vorticity. The three approxima-
tions are summarized in Table 2. The densities Ppot> P’
or p are not materially conserved when heat conduc-
tion and salt diffusion are added to the temperature

and salinity equations (75¢) and (75d).

4.3. Approximate Forms

Here we discuss various approximate forms of Er-
tel’s potential vorticity. These approximate forms
make assumptions about the geometry and the scales
of the flow. The tracer s is p,,,, p’, or p depending on
whether seawater is assumed to be nonthermobaric,
nearly incompressible, or incompressible.

Spherical approximation. The fundamental geo-
metric approximation in oceanography is the spherical
approximation. It maps the approximate oblate sphe-
roidal shape of the geoid onto a sphere and introduces
spherical polar coordinates (¢, 0, and r) where ¢ is
longitude, 6 latitude, and r radial distance. Gravity
remains exactly perpendicular to r surfaces, i.e., V X



33, 1/ REVIEWS OF GEOPHYSICS

Vi = 0 exactly [Gill, 1982]. The spherical approxima-
tion also assumes that the metric coefficients do not
vary with radial distance and that the gravitational
acceleration g = |V®| is constant. The spherical ap-
proximation represents the lowest order in an expan-
sion of the metric with respect to the two small param-
eters d*/4r} and Hy/r, where d is the half distance
between the foci of the geoid, r, the mean radius of
Earth, and H, the ocean depth. The approximation
also introduces the vertical coordinate z = r — r,.

In the spherical approximation the potential vortic-
ity takes the form

1 ol 1 oy 1 oy
=, ——— —+ w0y ——+2Q 6 ——
17 O 7o cos 9 do @ ro 96 cos ro 99
a d
+“)z_¢+ 2Q sine—lli 91)
0z 9z
where
1 aw  9dv 92
® ry 00 0z (922)
_ou 1 ow 92b)
@0~ 9z rgcos 0 do (
B 1 v 1 d(u cos 0) 92
@™ rg COS 8 d¢ ro cOs O 00 (92¢)

are the spherical components of the relative vorticity
vector and u#, v, and w the zonal, meridional, and
vertical velocity components, respectively.

Scales. Further approximations depend on the
scales of motion. Denote the horizontal length scale by
L, the vertical length scale by H, the horizontal ve-
locity scale by U, and the vertical velocity scale by W.
These scales define the aspect ratio

d=H/L, (93)
the (advective) Rossby number
Ro = U/fL (94)
and the geometry parameter
e =Llr, (95)

which measures the extent to which motions feel the
spherical geometry of Earth. Here

f=f ;=28 sin 6 (96)

is the vertical component of the planetary vorticity
vector, and is called the Coriolis parameter or fre-
quency. The different terms in the right-hand side of
(91) scale as follows: The first term scales as Rod” and
Ro; the second term as Ro and Rod?; the third as 3; the
fourth as Ro; and the fifth as 1. The Rossby number
measures the ratio of the vertical component of the
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relative vorticity to the vertical component of the
planetary vorticity. Nondivergence of the velocity
field implies W = dU.

Shallow water approximation. Motions for which
the aspect ratio 8 is small are described by the shallow
water equations that are given in Appendix F. They
are obtained by expanding the equations of motion
with respect to 8 and keeping only zeroth-order terms.
Performing the same expansion in (91), the potential
vorticity becomes

. P
q=wh'Vh\b+(wz+f)g 97)
where
_ dv du 98)
@hT\T 87 a2
represents the vertical shear and
v 1 a 1 4 99)
B \rg cos 0 d¢ " ry 39 (

is the horizontal gradient operator. The meridional
component f, = 2Q cos 6 of the planetary vorticity
vector does not appear in (97).

Planetary geostrophic motions. Further approxi-
mations depend on Ro and &. Motions with Ro << 1
and & = O(1) are planetary geostrophic motions.
Their potential vorticity is given by

oy
a=f— (100)
9z
These motions will be considered in more detail in
section 5.1.

Stratified fluid approximation. Most of the ocean
is stably stratified. Often one is interested not in the
slow processes that maintain the basic stratification
but only in the fast processes that perturb a given
stratification. In this case one decomposes the density
field

p(x, 1) = p(2) + dp(x, 1) (101)

where p(z) is a prescribed background field and 3p(x,
t) the motionally induced deviation from it. The scale
8D of the motion-induced part and the scale D of the
background part define the parameter

S =38D/D (102)

which measures the strength of the stratification. Gen-
erally, one assumes S < 1 for (101) to be a useful
decomposition. For incompressible seawater the den-
sity (101) is the appropriate tracer s in the potential
vorticity expression (97). For nearly incompressible
flow

p'(x, ) =[p(2) — p ()] + Bp(x, 1)  (103)
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is the appropriate tracer. The first term in (103) defines
the Brunt-Viisild or buoyancy frequency squared

N(z) = ———[p(z) p(2)]=—-——F-=

(104)

If the motion is furthermore nonconductive, nondiffu-
sive, and nonoverturning, one can 1ntr0duce the ver-
tical displacement ¢ by

p'(x, 1) = plz — L(x, 1)) — {(x, 1)

and have it replace p’ as a dependent variable. The
potential vorticity then becomes

pz — (105)

q- —Esz(z— 0q (106)

where

- d

Gg=w -V (z=0+ (o, +f) a2z (z—=0 (107)
The quantity § is the expression for the potential
vorticity when { is used as a variable. It corresponds to
the choice ¢ = z — {. The potential vorticity § does
not contain the high-wavenumber contributions
caused by the fine structure of the Brunt-Viisili fre-
quency. Note that 4 has a different dimension than gq.
The parameter § can be interpreted as the scale of the
vertical strain 9{/9z.

Beta plane approximation. For motions with ¢ <<
1 the beta plane approximation is introduced. It is a
systematic expansion of the equations of motion
around a reference latitude 9, with respect to & ~ 6 —
8o. Terms up to first order in ¢ are kept. The approx-
imation also introduces the horizontal coordinates

x =19 cos Og(@ — o)  y=ro(6 -8y (108)
and expands the Coriolis parameter as
f=fo+Boyt--- (109)
where f, = 2Q sin 6, is the Coriolis parameter and
1 of 20
0= ;—EZZCOS 0o (110)

the beta parameter at the reference latitude. The beta
parameter describes the changes of the planetary vor-
ticity with latitude. The first term on the right-hand
side of (109) scales as 1 and the second as ¢.

When implementing the beta plane approximation,
the lowest order of the potential Vort1c1ty expression
becomes § = fo, which is a given constant. The next
higher order terms need to be considered, Wthh yield
the rather lengthy expressmn
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y v u
+ = tan 6 ——+ —tan Op + fo + By ¥
ry 0x Fry

q = 0,
~%—“ytane % J%— i
x0T Y 09x oy ®iag
y ov df u a{ L
——tan 0 — — — —tan 6y ——fo —
ro an o ax 9z g 09z fo 9z
ag
—Boy = (111)
9z
where
- - Jdv du Jdv ou (112)
(0, @y, 0)) = T ez’ 9z ax  ox

and the 13 terms on the right-hand side of (111) scale as
Ro, Ros, Rog, 1, £, RoS, RoSe, RoS, RoS, RoSe,
RoSe, S, and &S, respectively. This expression is
correct to first order in ¢. Its complexity shows that
the beta plane approximation does not simplify mat-
ters unless combined with other approximations or
applied at the equator, where all the terms propor-
tional to tan 6, vanish. The variables x and y are not
Cartesian coordinates but the rescaled spherical coor-
dinates from (108). The equations of motion in the beta
plane approximation are given in Appendix F.

The following special cases can be derived from
111).

Quasi-geostrophic motions. The case Ro ~ ¢ ~
S << 1 leads to the quasi-geostrophic limit

a
fi=f0+Boy+‘Dz“foa— (113)
where the four terms on the right-hand side scale as 1,
g, Ro, and §, respectively. In this case the potential
vorticity consists of the planetary vorticity f, + Boy,
the relative vorticity o,, and the ‘‘thermal’’ vorticity £,
d{/dz. This limit will be discussed in more detail in
section 5.1.

The f plane approximation. When ¢ << Ro, i.e.,
L << (U/By)"? or & << S then all spherical effects can
be neglected. The flow evolves as if occurring on a
plane that rotates with constant angular frequency
fo/2. The expression for the potential vorticity reduces
to

a
q=f0+°)z“foa“§—w'V€ (114)
where the four terms on the right-hand side scale as 1,
Ro, Ro, and RoS, respectively. In this f plane approx-
imation, the shallow water approximation does not
need to be applied. The relative vorticity vector in
(114) is » = ((ow/oy) — (dv/az), (duldz) — (ow/dx),
(dv/dx) — (duldy)), not the shallow water approxima-
tion @ given in (112). The equations of motion in the
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le<<Ro,S

Stratified,
f plane

{114) (F3)

1
l /Ro << 1
Stratified,
non-rotating

l S<<1

Stratified,
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Figure 2. Schematic representation of the most common
approximations to the Boussinesq equations. The approxi-
mations are characterized by the smallness of the indicated
dimensionless parameters. The potential vorticity in a par-
ticular approximation is given by the equations whose num-
bers are in the lower left corner, the equations of motion by
the equations whose numbers are in the lower right corner.

f plane approximation are listed in Appendix F. For
Ro > 1, rotation can be neglected altogether. A par-
ticular interesting case arises when additionally § <<
1. The potential vorticity then reduces to

(115)

q= v,

and the motion is called stratified two-dimensional
turbulence. This case is also discussed more exten-
sively in section 5.1.

For overturning or conductive and diffusive mo-
tions, expressions for the potential vorticity must be
used that contain the density p’ rather than the vertical
displacement ¢.

The approximations of this section are summarized
in Figure 2. Figure 3 additionally shows the character-
istic values of the dimensionless parameters Ro, ¢, and
S that delineate regions where different approxima-
tions are valid in {U, L™'} space.

An important point is that the various approximate
forms of the potential vorticity are indeed materially
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Figure 3. Velocity-inverse length scale diagram for strati-
fied fluids. The diagram shows the characteristic values of
the dimensionless parameters Ro, ¢, and S that delineate
regions where different approximations are valid. The line
S = 1 separates overturning motions § = 1 from nonover-
turning motions. For nonoverturning motions the lines ¢ = .§
and € = Ro separate the region where the beta plane approx-
imation must be made (to the left) from regions where the f
plane approximation is valid. Beyond the line Ro = 1 the
flow can be regarded as nonrotating. The line Ro = §
separates the region where thermal vorticity is dominant
from the region where relative vorticity is dominant.

conserved for the corresponding approximate equa-
tions of motion. This can be demonstrated in all cases
but needs to be done explicitly. If these approxima-
tions were done to the Lagrangian density retaining
the particle-relabeling symmetry, then Noether’s the-
orem would automatically insure that the approximate
equations conserve the corresponding approximate
forms of potential vorticity. Choosing this approach,
Salmon [1983, 1985, 1988b] arrived at a Lagrangian
density and associated equations of motion that are
less restrictive than the quasi-geostrophic equations
and are a generalization of the semigeostrophic equa-
tions introduced by Hoskins [1975] for f plane flows in
the atmosphere. These generalized semigeostrophic
equations are canonical and offer advantages over the
quasi-geostrophic equations in that they allow order 1
variations of topography and planetary vorticity. They
are algebraically complex since they utilize advected
independent variables.
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4.4. Isopycnal Coordinates

Here we give expressions for the potential vorticity
in isopycnal coordinates. In a stably stratified ocean
the density increases monotonically downward with
depth and can be used as an independent variable
instead of the depth z, which becomes a dependent
variable [Kasahara, 1974]. The isopycnal coordinate
system is thus obtained by the replacements

(x,y,2, )= (x, 5, p, )
(116a)

p=plx,y,z, ) —>z=2z(x,y,p, 1)
(116b)

Instead of the density p, any other single-valued mono-
tonic function of z can be used as a new independent
variable. Choosing the specific entropy leads to the
isentropic coordinate system commonly used in mete-
orology. The introduction of isopycnal coordinates
only requires monotony of the density profile. The
density does not need to be materially conserved. If it
is, then the density can be used as a label coordinate
and the isopycnal coordinate system becomes inter-
mediate between the Eulerian and Lagrangian coordi-
nate systems.

In isopycnal coordinates the potential vorticity g =
v(w + 2Q) - Vp takes the form

B 1 v 1 d(u cos 9)
q—vro cos 0 d¢ rgcos 0 a0
1 ow 1 a4z 1 aw 1 9z

—+
to 90 rgcos 8 dp rycos O dg ry 30

. 1 az\[az\™!
+ 20 sin 0 — 20 cos § — — || —
Fo 70 ap

where the partial derivatives with respect to ¢ and 6
are at constant p. In the shallow water limit this ex-
pression reduces to

(117)

(x)p+f

e (118)

q:

Usually, this expression is rewritten by introducing
the height [e.g., Cushman-Roisin, 1994]

(119)

of the layer between p and p + Ap where Ap is an
arbitrary constant density difference. The potential
vorticity then takes the form

(120)

and represents probably the best known specific ex-
pression for the potential vorticity. It was first derived
by Rossby [1940] in isentropic coordinates.
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A layered model consists of a stack of moving
layers of uniform density. It results from discretizing
the density variable into a finite number of values.
Within each homogeneous layer the density cannot be
used as a tracer to define a potential vorticity, but the
vertical equilibrium position 75 can. Thus dz/dp needs
to be replaced by 3z/dr; in (118). In the shallow water
approximation, dz/dr, is independent of depth and
given by

9z h

—=— 121
ar 3 ho ( )
where h is the actual height of the layer and 4, its
equilibrium height. The potential vorticity of each ho-
mogeneous layer is therefore given by (120) where 4 is
the actual height of the fluid layer.

5. MODES OF MOTION

In the linear limit the solution of the Boussinesq
equations for nonthermobaric seawater can be written
as a superposition of vorticity (e.g., Rossby) and iner-
tia-gravity (e.g., Poincaré) waves. These waves are
linear manifestations of modes of motion which can
also be defined in the nonlinear case: the vortical or
potential vorticity carrying mode that becomes a
Rossby wave in the linear limit and the zero-potential
vorticity or inertia-gravity mode that becomes a Poin-
caré wave in the linear limit.

5.1. The Vortical Mode

The conservation of potential vorticity is the back-
bone of the theory of large-scale oceanic motions [e.g.,
Pedlosky, 1987]. This is not because potential vorticity
is materially conserved, which it is not if forcing and
dissipation are included or if seawater is treated as a
genuine two-component fluid, but because potential
vorticity (or a variable closely related to it) becomes
the sole prognostic variable for these motions. All
other fields can be inferred from this variable by diag-
nostic relations. Physically, the flow evolves on space
scales and timescales such that these other variables
have adjusted to their equilibrium values (Rossby ad-
justment). We call this ‘‘potential vorticity—carrying’’
mode of motion the ‘‘vortical’’ mode as advocated by
Miiller et al. [1986]. In oceanography the three most
relevant cases of vortical motion are planetary geo-
strophic motions, quasi-geostrophic motions, and
stratified two-dimensional turbulence. In meteorology,
additional low-Rossby number models are used,
which are intermediate in accuracy between the shal-
low water equations and the quasi-geostrophic equa-
tions. These intermediate models are reviewed by
McWilliams and Gent [1980]. The deduction of fields
such as winds, temperature, and geopotential height
from the potential vorticity field is known in meteorol-
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ogy as the invertibility problem [e.g., Hoskins et al.,
1985; Mclntyre and Norton, 1995]. In general, poten-
tial vorticity cannot be inverted. It only determines the
stream function part of the along-isopycnal velocity,
as shown in section 2.1. Additional assumptions about
the dynamics must be made. The exact necessary
conditions for invertibility are not known. The exam-
ples below give sufficient conditions.

Planetary geostrophic motions. Planetary geo-
strophic motions are characterized by §, Ro << 1, and
e = O(1). Their equations of motion for nearly incom-
pressible seawater take the form

] N u ] N v 0 N AW 5
at rogcos 0 dp ry a0 wazp—O (1222)
fv= : ! L 122b
vgp*rocoseaqp ( )
_ 1 1 9p’ 122
fu= px Fo 00 ( ©
ap’
- — 1
92 P’y (122d)
ow
f—=PBv (122¢)
9z

where B = (1/ry)(8f/90) is the beta parameter. The
first equation, the density equation, is the prognostic
equation that governs the dynamical evolution of the
flow. Forcing and dissipation terms can be added. The
other equations are diagnostic relations: the geo-
strophic approximation to the horizontal momentum
balance, the hydrostatic approximation to the vertical
momentum balance, and the nondivergence equation,
which is written in the form of a vorticity balance.

The density equation is not the only prognostic
equation. This can be seen by decomposing the pres-
sure

0
P=p:9E+ 9 f dz' p' (123)

4

where the first part is the ‘‘barotropic’’ component due
to the displacement ¢ of the surface and the second
part the ‘‘baroclinic”> component due to density fluc-
tuations. The time evolution of the baroclinic part is
governed by the density equation (122a); the evolution
of the barotropic part is governed by the kinematic
surface boundary condition, which in the planetary
geostrophic limit takes the form

d
—t=w
at"g

z=0 (124)

where again forcing and dissipation terms can be
added. Usually, this equation is converted to an equa-
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tion for the mass transport stream function [e.g., Has-
selmann, 1982] since lateral boundary conditions are
simpler for the stream function than for the surface
displacement.

The density defines the potential vorticity g = f
dp’/dz, which is materially conserved for the planetary
geostrophic equation (122). The surface displacement
enters the equation

ubt 9 vbt 9 R
9+ ——— —+ — —
! rg COS 0 a(.P Fo 006 q

/ 0L s
_—(H()—h)2 ro cos 0 d¢ ro a0 ( )
where
S
PO »
T Hy—h+e (126)
Here u”* and w’ are the ‘‘barotropic” and ‘‘ba-

roclinic’” part of the velocity, H, the mean depth of the
ocean, and & the bottom elevation. The quantity g is
the potential vorticity for a homogeneous ocean (see
(120)). For an ocean of variable density, ¢ is not
materially conserved. The right-hand side of (126) de-
scribes the changes due to the joint effect of barocli-
nicity and bottom relief, the JEBAR effect [e.g., Mertz
and Wright, 1992].

Planetary geostrophic motions are vortical motions.
The inertia-gravity mode has been filtered out. The
planetary geostrophic equations (122), or their gener-
alization to viscous and diffusive flows, are usually
used in their steady state form to study the ‘‘thermo-
cline problem’ [e.g., Pedlosky, 1987]. It remains a
challenge to define suitable boundary conditions for
these equations. The equations are of a highly degen-
erate hyperbolic type with the vertical axis being a
triple characteristic [Huang, 1988]. The upstream-
downstream concept is fuzzy, and weak solutions ex-
ist with discontinuities across characteristics. Solu-
tions that are based on physical reasoning and that
elucidate partial aspects are reviewed by Huang
[1991]. Furthermore, for steady state problems the
distinction between prognostic and diagnostic vari-
ables becomes blurred, and the potential vorticity
loses its special significance. Indeed, ideal thermocline
theories [e.g., Welander, 1971] are often based on the
equations

u-Vg=90

u-Vp'=0 u-VB=0

(127)

where B = p' + p'gz is a Bernoulli function. Equa-
tions (127) imply
q=4q(p’, B) (128)

and Needler’s [1985] formula
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9 e, (Vp' x Vg)
u=—

" (Vo' x Vg) - V(fa—q
Z

) Vo' X Vg (129)

which determines the velocity field in terms of p’.
Though this formula shows that density can be in-
verted, it is of little practical use because it involves
second-order derivatives.

Quasi-geostrophic motions.  Quasi-geostrophic mo-
tions are geostrophically balanced motions in a strati-
fied fluid on a beta plane. They are characterized by
Ro ~ & ~.§ << 1. When the shallow water equations
are expanded with respect to these parameters, the
zeroth-order equations imply the existence of a stream
function ¢ such that

9
u=— % (130a)
ay
)
v = k4 (130b)
ax
w=0 (130¢)
3p = pufod (130d)
_ _Pxod¥
5p = Pl (130¢)

Here 3p and 8p are the deviations from the back-
ground fields E(z) and p(z), and f, is a constant refer-
ence value of the Coriolis parameter. The zeroth-order
equations thus provide diagnostic equations for the
variables u, v, w, dp, and 3p in terms of the stream
function ¢. The zeroth order is degenerate in the sense
that the nondivergence equation is automatically sat-
isfied and does not yield an equation for .

As shown in textbooks [e.g., Pedlosky, 1987}, an
equation for ¢ is obtained from the first order of the
perturbation expansion, which implies the quasi-geo-
strophic potential vorticity equation

b 0 131
YR (131)

with
_32+62+6f%6 + fo + 132
1=\32 0y2 " 9z N2 oz U+ fo+ Boy (132)

D 9 d

a 9
—=— tov—=—+
D o1 v Iy J, ) (133)

u—
ax dy
Equation (131) is called the quasi-geostrophic potential
vorticity equation because the dynamical evolution of
g is governed by small ageostrophic effects: time de-
pendence, advection, vortex stretching, and changes
of planetary vorticity. For nonideal motions the effects
of forcing, viscosity, and diffusion must be added to
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that list. The vertical velocity w is zero to lowest
order. The first-order ageostrophic correction

fo D 8y

1y — 22—~ F
v N? Dt oz (134)
can be obtained from the first order of the density
equation. Note, however, that w does not enter the
material derivative (133), which is strictly along the
horizontal. The expression (132) for the potential vor-
ticity contains the Coriolis parameter in its beta plane
approximation f, + Boy. This is the only obvious
manifestation of Earth’s sphericity. The spherical geo-
metry is also hidden in the horizontal coordinates x
and y, which are not Cartesian coordinates but the
rescaled spherical coordinates (108). Special cases of
the quasi-geostrophic potential vorticity equation can
be obtained depending on the relative magnitudes of
relative vorticity, planetary vorticity, and thermal vor-
ticity.

Once the potential vorticity is known, the stream
function s can be determined by inverting the elliptic
operator in (132). The needed boundary values can be
inferred from the kinematic boundary conditions. At
the surface and bottom these conditions take the form

D
—(g%+Nz¢>= z=0

D ay N’ ah+ oh
Dt 3z f, “ ox vay

(135a)

) = —H0+h
(135b)

and have to be solved simultaneously with (131). They
then give the needed boundary values at the surface
and the bottom. At horizontal boundaries 3A the ki-
nematic boundary condition implies that at each ver-
tical level

oy
—=0 on dA (136)
as
to lowest order and
d d ks d 3€ d 0 (137)
_—_ s —={— X-*u =
dt 54 on dt 5A

to first order where the derivatives d/dn and 9/9s are
outwardly normal and parallel to the horizontal bound-
ary. The additional constraint (137) on the circulation
has to be imposed since (136) determines ¢ only up to
an arbitrary function of time [McWilliams, 1977; Ped-
losky, 1987]. The constraint (137) only states that the
circulations do not change with time. The circulations
themselves need to be prescribed. These prescribed
circulations together with (136) give the horizontal
boundary values that enable the inversion of the po-
tential vorticity.
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Stratified two-dimensional turbulence. Incom-
pressible ideal two-dimensional flow in a horizontal
plane is described by a stream function §i(x, y, ). The
evolution of the stream function is governed by the
vorticity equation

d a d
(a-i—ua-l-vg;)q:() (138)
where
0> 92
qg= (ﬁ+55)¢ (139)

Temporal changes of the vorticity are solely governed
by horizontal advection. The flow is turbulent and
called two-dimensional turbulence. In our context,
two-dimensional turbulence represents vortical mo-
tion. The vorticity g is a potential vorticity, since g =
o - V{ with ¢ = z.

There are two generalizations to geophysical flows.
Both rely on the fact that a strong stratification sup-
presses vertical motion and decouples horizontal lay-
ers. The first generalization is obtained from the quasi-
geostrophic potential vorticity equation (131) in the
limit S, ¢ << Ro. In this limit the thermal and plane-
tary vorticity become negligible and the quasi-geo-
strophic potential vorticity equation reduces to (138)
with the significant difference that now ¢ depends on
the vertical coordinate z as well. The flow consists of
two-dimensional turbulence evolving independently in
each horizontal layer.

The vorticity equation (138) with a z-dependent
stream function is also obtained for nonrotating flows
in the limit S << 1 [Riley et al., 1981; Lilly, 1983].
Again the flow evolves independently as two-dimen-
sional turbulence in each horizontal layer. In contrast
to the quasi-geostrophic case the flow is now in cy-
clostrophic balance, and the pressure is given by

Vidp = —puVi- (wy - Vyuy) (140)
Lilly [1983] suggested that this cyclostrophic flow
might describe mesoscale motions in the atmosphere.
Miiller [1984] later suggested that it might describe
current fine structure in the ocean. Lilly [1983] also
coined the name ‘‘stratified two-dimensional turbu-
lence”’ for these cyclostrophic motions. We will use
this name both for the cyclostrophic and geostrophic
case.

5.2. The Zero—Potential Vorticity Mode

Ideal fluids also support motions that do not carry
any potential vorticity, that is, motions for which g =
0 or constant everywhere and at any time. These
zero—potential vorticity motions are identified in this
section, both for general fluids and the ocean. The
discussion is simplest in canonical Eulerian variables.
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Homentropic fluid. Consider a compressible,
nonrotating homentropic fluid. In terms of the canon-
ical Eulerian variables s and B the condition ¢ = 0

becomes
VXB=0 (141)

which implies that B can be expressed as the gradient
of a potential

B=Vo (142)
The velocity is then given by
dp ds; 0
u=—r 28 (143)
aSj 6x,~ ax,'

A compressible homentropic flow of zero potential
vorticity represents irrotational motion. The canonical
Eulerian equation (71b) thus reduces to

0 1
—‘E=—(—u-u+e+€-+¢>)

144
ot 2 (144)

and, together with the continuity equation and a diag-
nostic relation e = e(p), completely describes the flow
evolution. The corresponding variational principle was
first reported by Broer [1974].

One-component fluid. For a one-component fluid,
zero potential vorticity is equivalent to

(VxB);=0 (145)
if s3 = m, is chosen. This implies
Bh = Vh(p (146)

The “‘horizontal’” components of the vector B can be
expressed as the horizontal gradient of a scalar ¢. The
velocity vector is therefore given by

u = (33 - :T‘P) . VS3 + V(P = C3VS3 + V(.P (147)
3

The representation (147) is called a Clebsch represen-

tation [Clebsch, 1859]. Zero-potential vorticity mo-

tions in a one-component fluid are thus motions that

allow a (global) Clebsch representation. Their equa-

tions of motion are given by

a d 1 —
2D cuute+24F] (1489)
ot at 2 p
D o0 148b
D= (148b)
A 148
D37 (148c¢)

and have to be augmented by the continuity equation
and a diagnostic relation e = e(v, m).
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Stratified fluid. For an incompressible stratified
Boussinesq fluid on an f plane, consider motions for
which g = f;, i.e., motions that carry planetary vor-
ticity but no motionally induced potential vorticity. As
before, this condition is equivalent to

(V x B); = f (149)
or
B, = Vo + forié (150)

where we have chosen the equilibrium position r of the
fluid particle as a fluid label. The absolute velocity
vector is therefore given by

d
u+ U= for Vr, + (33 - f)va +Ve  (151a)
3

or

u+U=CVr+CVr+Ve  (151b)

where U = f,/2e, X x in the f plane approximation.

Any velocity vector can be represented in the form
(151b) [Boozer, 1985]. The canonical Eulerian equa-
tions for this velocity representation are

b 0 2,3 152
DT i=2, (152a)
D C 0 152b
D 27 ( )
D 2
Ecsz =N (r3)(z — r3) (152¢)
Veu=90 (152d)

The nondivergence condition (152d) determines the
velocity potential ¢. The variational principle for these
equations is derived in Appendix C, which also lists
the expression for the pressure in terms of the canon-
ical variables r,, r,, C,, C5, and ¢.

For C, = fyry, solutions to the above equation
inherently have g = f;, and represent nonlinear inter-
nal gravity waves which are the manifestations of the
inertia-gravity mode in a stratified fluid. In the linear
limit

dv  du

am
q fO dlin ox 3)’ fO 9z ( 3)

and the equations can be recombined to yield the
standard linear internal wave equation

52
(yﬂ%)v V4 (N2~ [V Vyln =0 (154)

Flow in the vertical plane. The vortical or inertia-
gravity mode of motion can also be suppressed by
purely geometrical constraints. In the previous section
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we showed that two-dimensional flow in a horizontal
plane, i.e., two-dimensional turbulence, is purely vorti-
cal motion. The counterpart is a two-dimensional incom-
pressible stratified Boussinesq flow in a nonrotating
vertical (x, z) plane. The conditions 4/dy and
v = 0 imply

g=w-V(z=-0)=0 (159)

Two-dimensional motions in a nonrotating vertical
plane have zero potential vorticity and represent the
inertia-gravity mode of motion.

5.3. Normal Mode Decomposition

Normal mode decompositions are based on the
eigenvectors of the linearized dynamical equations.
They are an inherently linear concept. As an example,
consider motions of an incompressible stratified fluid
on an f plane. The equations of motion are given in
Appendix F. They contain three prognostic equations.
In the linear limit these equations can be cast into the
form [e.g., Lien and Miiller, 1992]

s

—+ = 15
Py Hy =0 (156)
with the state vector
du dv
—_— + —_—
dx dy
_ dv  du 157
b= dx dy (157)
an
Jo 9z
and the system matrix
A\ —N?A,
— 1 e — —_
0 fo( A ) 7 A
Tl o 0 (159)
fo 0 0

Here A, is the two-dimensional horizontal and A the
three-dimensional Laplacian. The vertical velocity and
the pressure are given by the diagnostic relations

N2
Jo
For an infinite linearly stratified ocean with no top and
bottom boundary, (156) has wave solutions of the form

ow
9z

Ap = pufodr — px Y (159)

=

W(x, 1) = P exp {i(k - x — opt)} (160)
with dispersion relation
oy = SO s=0, +, — (161)

where
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and polarization vectors

0 o
i 2
o N 1 , foB fi
%% | g o KTk |1
TN 1
s=+,—  (163)

Here k = (k,, k,, k) is the wavenumber vector, and
a, B, and k the moduli of the horizontal, vertical, and
total wavenumber vector, respectively. The frequency
oy and the polarization vectors P, represent the eigen-
values and eigenvectors of the system matrix . Since
there are three prognostic equations, there are three
wave modes, labeled by the index s. The mode s = 0
is a steady, horizontally nondivergent and geostroph-
ically balanced flow. It is the linear version of the
vortical mode on the f plane. The modes s = +, — are
linear internal gravity waves. Their linear motionally
induced potential vorticity

dv  du an

3qin = —
dlin ox ay 0

ox (164)

is zero, and they represent the linear version of the
inertia-gravity mode of motion.

For each wavenumber vector the three polarization
vectors Py (s = 0, +, —) form a complete basis in s,
space, i.e., in the Fourier space of ¥. Therefore each
vector s, can be decomposed into the three compo-
nents

Uy = a)Pp + a/ P + a; Py (165)
The amplitudes are given by
ay = Py - (166)
where
o N o e R
Hel) e |
N-a
fi?
s=+,— (167)

are the adjoint eigenvectors or polarization vectors.
The decomposition (165) is a unique decomposition of
an arbitrary flow field into a part that carries linear
motionally induced potential vorticity 8q,;,, and a part
that does not. The normal mode decomposition can
trivially be generalized to an ocean of finite depth and
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nonconstant Brunt-Vaisild frequency by introducing
the appropriate vertical eigenfunctions, instead of exp
{ik,z}. For situations where horizontal and vertical
dependence cannot be separated, Hasselmann [1970]
gives the decomposition in a form that involves polar-
ization and frequency operators.

6. SUMMARY AND CONCLUSIONS

Potential vorticity is a central concept in fluid dy-
namics and in physical oceanography. We reviewed
some of its fundamental theoretical aspects: its con-
servation, its relation to particle-relabeling symme-
tries, and its role in defining modes of motion. The
major findings and conclusions are these:

Potential vorticity is not a unique concept. First, it
has been used to denote a class of quantities. The
tracer ¢ in the definition of ¢ is any (materially con-
served) tracer. Second, potential vorticity has been
used to denote a specific member of this class, ob-
tained by specifying the tracer {s. Usually, the tracer is
chosen such that this specific member ¢ becomes
materially conserved. Usually, it is clear from the
context what potential vorticity refers to.

When considering the conservation of potential vor-
ticity, one has to distinguish between global and ma-
terial conservation. Potential vorticity is always glo-
bally conserved. The local time rate of change of pq is
given by the divergence of a flux vector. The global
conservation holds for any tracer, materially con-
served or not, and for any fluid, ideal or real. Actually,
what is conserved is a substance of which pg is the
density or g the amount per unit mass. Global conser-
vation is a consequence of the fact that the quantity pg
can be written as a divergence.

Material conservation means that the potential vor-
ticity of each fluid particle does not change under fluid
motion. It is a much stronger conservation law and
holds only under restrictive conditions. The first con-
dition is that the fluid be ideal. Molecular viscosity,
conductivity, and diffusivity inevitably destroy the
material conservation of potential vorticity. The sec-
ond condition is a constraint on the equation of the
state of the fluid. The fluid must be a one-component
fluid. Then there exists a tracer { such that the poten-
tial vorticity formed with this tracer is materially con-
served. There is a slight complication here. Although
such a tracer does exist it might not be expressible in
terms of the variables used to describe the flow. This
happens for homentropic or homogeneous fluid flows
described in standard Eulerian variables.

The intrinsic reason for the material conservation of
potential vorticity is the physical insignificance of par-
ticle labels. The thermodynamic state of a one-com-
ponent fluid is completely specified by two indepen-
dent thermodynamic variables. A one-dimensional
particle-relabeling transformation can be carried out
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without changing the thermodynamic state of the fluid.
In field theories it is shown that the infinitesimal gen-
erators of such invariances or symmetries are con-
served quantities. The invariance under particle rela-
beling causes material conservation of potential
vorticity. The proof is simplest in a Lagrangian de-
scription of the fluid flow using Noether’s theorem.
The invariance is a local invariance leading to local or
material conservation. If the fluid is homentropic, then
its thermodynamic state is completely determined by
one thermodynamic variable, and a two-dimensional
relabeling transformation can be applied without af-
fecting the thermodynamic state of the fluid. Therefore
two independent potential vorticities are materially
conserved. The symmetry considerations also identify
the physical significance of the tracers ¢ that make
potential vorticity a materially conserved quantity.
They are particle labels. Often physical quantities,
such as the specific entropy or density, can be used as
such particle labels.

The material conservation of potential vorticity has
to be distinguished from the global conservation of
pseudomomentum which follows when the thermody-
namic specification is invariant under a uniform trans-
lation in label space. A two-component fluid conserves
globally one component of the pseudomomentum vec-
tor but does not materially conserve potential vortic-
ity.
~ The relation between potential vorticity conserva-
tion and particle-relabeling symmetries also explains
why potential vorticity is such an enigmatic concept in
the standard Eulerian description. Ertel published his
theorem nearly 200 years after Euler’s *‘Principes géné-
raux du mouvement des fluides.”” Particle labels are
nonphysical variables. They are eliminated in the stan-
dard Eulerian description in favor of physical variables
such as the specific volume and entropy, thereby,
however, obscuring potential vorticity conservation.
The Lagrangian and canonical Eulerian descriptions
which retain the particle label as independent or de-
pendent variables, on the other hand, provide a natural
and transparent access to potential vorticity conserva-
tion but at the price of carrying dynamically inconse-
quential information.

The second part of this review covered oceanic
approximation of Ertel’s theorem. Seawater is a
nonideal two-component fluid. Potential vorticity is
never materially conserved. The thermobaricity of
seawater and its molecular viscosity, conductivity,
and diffusivity always change the potential vorticity of
a fluid particle. The thermobaric effect becomes im-
portant for large-scale motions that traverse a signifi-
cant part of the water column. The molecular effects
are most effective at small scales. The thermobaric
changes can be suppressed by assuming seawater to be
nonthermobaric, nearly incompressible, or incom-
pressible. In these cases the respective choices, § =
Ppot> P> OF p, will make the potential vorticity materi-
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ally conserved for ideal fluid motion. The fact that it is
the thermobaricity and the molecular dissipation
mechanisms that change the potential vorticity re-
mains true even if approximations are applied to the
dynamical equations. We considered the Boussinesq,
spherical, shallow water, planetary geostrophic, beta
plane, stratified fluid, quasi-geostrophic, f plane, and
stratified two-dimensional turbulence approximations.
What all these approximations do is that they provide
specific expressions for the potential vorticity. Mate-
rial changes of potential vorticity are still caused by
thermobaricity and molecular processes.

Potential vorticity owes its central role in physical
oceanography to the fact that it defines the vortical
mode of motion, which is a dynamical mode that
carries potential vorticity and for which potential vor-
ticity or a quantity closely related to it is the sole
prognostic variable. Vortical motions include plane-
tary geostrophic flows, quasi-geostrophic flows, and
stratified two-dimensional turbulence. They exhibit
their own kind of characteristic dynamics, which are
described in textbooks of geophysical fluid dynamics.

For vortical motions the potential vorticity can be
inverted, that is, all other variables can be inferred
from the potential vorticity by diagnostic relation-
ships. The most general set of dynamical equations
that allow such an inversion are not known. Even for
planetary and quasi-geostrophic flows the inversion is
complicated. Boundary conditions might not be given
or might contain additional prognostic variables.

Potential vorticity is also important in oceanogra-
phy because it defines nonlinear internal gravity waves
in a stratified fluid, that is, the inertia-gravity mode of
motion. Nonlinear internal gravity waves are motions
that do not possess any motionally induced potential
vorticity. This condition immediately leads to a reduc-
tion of the number of prognostic variables in the ca-
nonical Eulerian descriptions but not so in the stan-
dard Eulerian description. In the linear limit this
distinction between canonical and standard Eulerian
description disappears.

A linearized form of potential vorticity enters the
normal mode decomposition of an arbitrary flow into a
part that carries linear (motionally induced) potential
vorticity and a part that does not. This decomposition
can be performed for any flow. It is most useful for
linear or nearly linear flows. For nonlinear flows it is
not a decomposition into the vortical and inertia-grav-
ity mode. Since decomposition is an inherently linear
concept, it is unlikely that a general gravity-vortical
mode decomposition exists.

This review has covered fundamental theoretical
aspects of potential vorticity and its conservation. It
has not covered any applications or phenomenological
aspects. Many of the fundamental applications of po-
tential vorticity conservation are described in text-
books. Phenomenological aspects such as the distribu-
tion of potential vorticity in the world’s ocean, its
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variability, and spectral distribution represent a major
challenge for the future. Among the theoretical aspects
the invertibility and the implications of global conser-
vation are major open questions.

APPENDIX A:
THERMODYNAMIC SPECIFICATIONS
OF N-COMPONENT SYSTEMS

Gibbs’s rule states that the thermodynamic state of
an N-component system, that is, one consisting of N
different components, is completely specified by the
values of N + 1 thermodynamic variables. Different
choices can be made for these independent variables
and lead to different thermodynamic representations.
This appendix describes the two thermodynamic rep-
resentations used in this paper.

The {v, n, c,, * - -, cn} Representation

In this representation the specific volume v, the
specific entropy m, and the concentrations ¢,, ** -, ¢y
are chosen as the N + 1 independent thermodynamic
variables. Only N — 1 concentrations can be used as
independent variables since the concentrations sum to
1. For this choice of variables the specific internal
energy
(AD)

e=e{v, m, ¢y, ", CN}

is the thermodynamic potential and completely de-
scribes the system. Specifically, the pressure p, the
temperature T, and the chemical potential differences
Ap; = p; — py (i = 2, +-+, N) are given by the first

derivatives
de
p= —(——) (A2a)
ov
My Cx
de
T= (——) (A2b)
M/ e mey
de
Api=(——) i=2,+++, N (A2¢)
OCi/ 4 mcsr - ven

where the subscripts denote the variables that are
being held constant in the partial differentiation. The
individual chemical potentials w; (i = 1, -+, N) can
be inferred from (A2¢c) and Euler’s identity

N

e+pv—T*n=2 Wi
i=1

(A3)

The {v, m, c,, * * * , cn} representation cannot be used
for incompressible fluids since (A2a) does not give a
unique value for p.
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The {p, m, ¢c3, - * -, ¢z} Representation

In this representation the pressure p, the specific
entropy m, and the concentrations c,, -+-, ¢ are
used as independent variables. The specific enthalpy

h=e+pv (A4)
is the thermodynamic potential with
dh
v=|— (A5a)
op Myt *
oh
T=\|— (A5Db)
M/ e
oh
Ap;=|— i=2,+++, N (A5c)
ac; .
PiMcy e Gy

The relation v = v(p, m, ¢, = *° , ¢x) I8 the equation
of state. The adiabatic compressibility k, the adiabatic
temperature gradient I', and the adiabatic chemical
potential gradients D; are defined by the derivatives

1 [dv
K=——|— (A6a)
EATTY -
ov oT
r= 6_ = 6_ (A6b)
M/ pcp ey P N,Cy "y
v dAW;
D, = (_> = (-—’) (A6c)
9Ci/ pmesyr - ex 0P Jcpr s mcn
i=2,++-,N

The second equality in (A6b) and (A6c) arises from the
fact that the order of differentiation can be changed.

APPENDIX B:
THERMODYNAMIC SPECIFICATIONS
OF SEAWATER

Seawater can be treated as a two-component fluid
consisting of water and salt. The concentration of salt
is the salinity S. Various thermodynamic representa-
tions are used in oceanography. This appendix de-
scribes the two representations used in this paper and
an indeterminacy of the specific entropy.

The {p, 0, S} Representation

When a fluid particle is moved at constant specific
entropy and salinity across a pressure surface, its
temperature changes at a rate given by the adiabatic
temperature gradient I'. To remove this pressure effect
on temperature, oceanographers introduce the poten-
tial temperature
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which is the temperature a fluid particle would attain if
moved at constant 1 and S to a reference pressure p .
Since p, T, and S are usually measured, the equivalent
expression

P
0(p, T, S)=T+f
p

“dp' T[p’, n(p, T, S), S]

(B2)

is used for the actual calculation of 0. Processes for
which m and S remain constant do not change the
potential temperature.
The equation of state in the {p, 0, S} representation
is given by
p=p(p, 6, 9) (B3)

The derivatives

1 <8p) 1 <6p) 1 (é)p)
K=—|— a=——-—|— B = —_ j —
p \dp 0.5 p \90 .S p \dS 2.0

(B4)

define the adiabatic compressibility k, the thermal ex-
pansion coefficient o, and haline contraction coeffi-
cient B. The equation of state is nonlinear in the sense
that the coefficients k, o, and B depend on p, 6, and §.
Among the six independent second-order derivatives,
two are of particular importance. The first one is the
thermobaric coefficient

b_l 1o 1oda) 1 16K+16‘K B3

“2\Bap adp] 2\BAS « a0 (B3)

which describes changes of the isopycnal slope v =
B/a with pressure

(B6)

(B7)

which describes changes of the isopycnal slope along

isopycnals
a'y)
—_— — d'y
).

The {p, pyor S} Representation
In this representation the potential temperature is
replaced by the potential density

Ppotl P> 8, S) = p(px, 6, 5)

which is the density a fluid particle would attain if
moved at constant 8 and S to a reference pressure p..
Processes for which 6 and § are constant do not

(B8)

(B9)
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change the potential density. The equation of state is
given by

p =p(P, Ppots ) (B10)

and its derivatives are

&

= pK =
s 9Ppot p,s  Ppot a(ps)

(a_p) _ pa<g_ B(p+)
as PoPron a  a(py)
If the thermobaric coefficient b is zero, the slope B/a
does not depend on p and (9p/dS) = 0.

PsPpot

Ppov

(B11)

Specific Entropy

For seawater there exist empirical formulae for (1) p
= p(p, T, S) (equation of state), (2) ¢, = c,(px, T, S)
(specific heat at constant pressure), and (3) dn/0S =
(dp/aS)(p, Ty 4, S), where T, is the boiling and T the
freezing temperature and p, a standard pressure [Fo-
fonoff, 1962; Kamenkovich, 1977]. From these empir-
ical formulae the specific entropy can be determined
up to a linear function of salinity [Kamenkovich, 1977].
This indeterminacy does not affect changes of the
specific entropy. Using n = m(e, p, S) these changes
become

d an d am d am d
—_ - | — —_ + [ — — + {— —_
dt " (ae)p’s dr ¢ <6p)e’s dr? (as ., dt s

(B12)

and are invariant when r is replaced by n + a + bS.

APPENDIX C:
IDEAL FLUID EQUATIONS IN STANDARD
EULERIAN FORM

This appendix lists the ideal fluid equations of an
N-component fluid in their standard Eulerian form.
The adjective ‘“‘Eulerian’’ implies that the independent
variables are the position x and time ¢. The adjective
“‘standard’” implies that the dependent variables are
the velocity u and any complete set of N + 1 thermo-
dynamic variables. According to the choice of thermo-
dynamic variables, different sets of equations are ob-
tained.

The {u, v, , ¢,, * * *, c5} Representation

In this representation the ideal fluid flow is de-
scribed by prognostic equations for the velocity u, the
specific volume v, the specific entropy m, and the
concentrations ¢,, ***, cy. These prognostic equa-
tions are
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D
—u+2()><u+9.xU=—va—V<I>g

D1 (Cla)
D A% 1

D v=9V-u (C1b)
D 0 C1

YRl (Clc¢)

D 0 =2 N Ci1d

Dt Cc; = 1= 4, s ( )

The momentum balance (Cla) is written in a frame
rotating with constant angular velocity Q. The veloc-
ity u is the velocity relative to the rotating frame; the
velocity U = X x is the velocity of the frame at
position x. The acceleration terms on the left-hand side
include the Coriolis and centripetal accelerations. The
centripetal acceleration can be expressed as a gradient
of a potential

QxU=VD, (C2)

with

d.=-1U-U (C3)
Usually, @ is combined with the external (gravitation-
al) potential ®, to form the total potential ® = ¢, +
®, and (Cla) reduces to (2). The pressure p that
appears in the momentum balance is determined by a
thermodynamic relation

(C4)

p =p(v, M, €25 """, CN)

which is a diagnostic relation. Note that neither the
temperature T nor the chemical potential differences
Aw; are needed in this representation but can, of
course, be determined if the specific internal energy
e = e(v, m, ¢y, =++, cp) is known. The {u, v, 1,
-, ¢} representation cannot be used for incom-
0) fluids since no diagnostic relation

Cyy *
pressible (x =
exists for p.

The {u, p, v, c,, - * -, c5} Representation

In this representation, u, p, m, and ¢,, **+ , ¢y are
chosen as the prognostic variables. The continuity
equation (C1b) is replaced by

D 1
—p:———V.u
K

Dt €5

which is a prognostic equation for p, and the specific
volume is determined by the equation of state
(C6)

UZU(P, N, C25 " ° CN)a

which is a diagnostic equation. The momentum bal-
ance (Cla) and the equations (Clc¢) and (C1d) for the
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specific entropy and concentrations remain un-
changed.

Incompressible Fluids

Incompressible fluids have zero adiabatic com-
pressibility k. This limit is most easily performed in the
{u, p, m, ¢,, *+, cn)} representation. The pressure
equation (C5) reduces to the nondivergence condition

Veu=90 ((o7))

and (Clc), (C1d), and (C6) can be combined into

D
—v=90

Di (C8)

The specific volume is materially conserved. Equa-
tions (C7) and (C8) together with the momentum bal-
ance (Cla) form a complete set of equations of motion.

APPENDIX D:
LAGRANGIAN DESCRIPTION OF IDEAL
FLUID MOTION

Kinematics

In the Lagrangian description the fluid motion is
described by the position x of a fluid particle as a
function of its label s and time

x = x(s, 7) (D1)

Often the initial or equilibrium position r is used as a
label. The fluid velocity is given by

u(x, 1) = — x(s, 7) (D2)
aT

To avoid ambiguities, time is denoted by 7 in the

Lagrangian frame and by ¢ in the Eulerian frame.

Similarly, V denotes the gradient in x space and V the

gradient in s space. Lagrangian and Eulerian time

derivatives are related by

d D D3
an(S’ T)_th(xa t) ( )
The Lagrangian specification (D1) represents a time-
dependent mapping from label space to position space.
The Jacobian of this mapping is

)

= @ (D4)

Eulerian and Lagrangian descriptions are equiva-
lent. To transform from the Lagrangian description
x(s, 7) to the Eulerian description u(x, ), one has to
differentiate x(s, T) with respect to 7 to obtain u(s, 7),
invert x(s, T) to obtain s = s(x, t), and substitute s =
s(x, ) into u(s, 7) to obtain u(x, ¢). To transform from
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the Eulerian to the Lagrangian description, one has to
solve the set of ordinary differential equations

d
o x(1) = u(x(s), t) (DS)

subject to the initial conditions x(¢ = 0) = r.
Equations of Motion

In the Lagrangian description the equations of mo-
tion take the form

%+2Q xx=—yVp — VD (D6a)
v(s, 1) =K (D6b)

n(s, 7) = Mo(s) (Dé6c)

cf(s, ) =cp(s) i=2,:++,N (D6d)
p=pv,m, ¢z, """, CN) (D6e)

where the overdot denotes differentiation with respect
to time T and the subscript zero prescribed initial
fields. In (D6b) the label s is chosen such that the initial
density is uniform in label space, that is, dsds,ds; =
po(r)dridr,drs. In the Lagrangian frame the momen-
tum equation becomes a differential equation that is
second order in time, whereas the continuity, specific
entropy, and concentration equations become diag-
nostic equations. The pressure equation remains a
diagnostic equation.

Hamilton’s Principle

The momentum equation (D6a) can be derived from
a Lagrangian density using Hamilton’s variational
principle. In general, the Lagrangian density

L=%Lx, x, D, s, 7) (D7)

is a function of position x, velocity x, displacement
gradient tensor & with components D;; = dx;/ds;, and
the independent variables s and 7. Hamilton’s principle
states that the action is an extremum for actual fluid
motions, that is,

feffeses

for variations 8x that vanish on the boundaries. This
principle implies the Euler equations

(D8)

9 L

aT Sxi,,,

9 8% 3L

——-—==0

aSj SS,-,J-

(D9)

where we have used index notation for the derivatives
and the symbol & to denote the functional derivative.
The Euler equations constitute the differential equa-
tions of motion for the system.

The specific momentum €quation (D6a) can be de-
rived from the Lagrangian density
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§£= ,CN)_'¢

(D10)

x-x+x-U—e(v,m, cpy =

N —

where e is the specific internal energy. The Lagrangian
density is the kinetic energy density minus the internal
and potential energy density. For a two-component
system e = e(v, m, c¢), for a one-component system
e = e(v, m), and for a homentropic fluid e = e(v),
respectively. In all cases the pressure is given by
p = —(3e/dv). The Lagrangian density (D10) is not
unique. A total divergence AL = d/ot Ax, s, T) +
8/ds; B;(x, s, 1) can be added without changing the
equations of motion.

APPENDIX E:
EULERIAN FORMS OF HAMILTON’S PRINCIPLE

The Eulerian forms of Hamilton’s principle use po-
sition x and time ¢ as independent variables. Most
forms were originally derived in an ad hoc fashion. It
has only recently been shown by Salmon [1988a] that
all Eulerian forms can systematically be derived from
the Lagrangian form. Here we follow Salmon’s ap-
proach.

Eulerian Variational Principle
The Lagrangian form of Hamilton’s principle states

ajdeffd%(%:k-Hx-U—e—d)):o

(ED)

for arbitrary variations 8x(s, 7) that vanish on the
boundary. Instead of the mapping x = x(s, 7) from label
into physical space, consider the inverse mapping s =
s(x, t) from physical into label space. Interchanging
dependent and independent variables in (E1) results in

8fdtfd3xM(%u-u+u-U—e—®)=0
(E2)
for arbitrary variations 3s(x, 7). Here

a(s) N

“ow K

(E3)

is the Jacobian of the inverse mapping. The velocity u
has to be determined from the Lin [1963] constraint

Drs= 0 (E4)
and is given by
-1 as; .
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where G; = 9s;/0x; are the components of the dis-
placement gradlent tensor § of the inverse mapping.
The variational principle (E2) with (E3) and (E5) is
the Eulerian form of Hamilton’s principle. For a two-
component system it has to be augmented by the
continuity, entropy, and concentration equations
which take the form
v(x, 1)=M"!

nx, 1) =me(s)  c(x, 1) = cols)

(E6)

where the subscript zero denotes given initial condi-
tions. The specific internal energy in the variational
principle (E2) is therefore of the form e = e(M ™1, n,,
co). More customary forms of Hamilton’s principle are
obtained by adding constraints and using canonical
conjugate variables.

The B Representation

Here the constraint (E4) is added to the variational
principle (E2) with associated Lagrange multiplier B
One obtains the intermediate form

fa [

: ' Ds :
M 5u-u+u-U—e~—¢—B-th =0 (E7)

where s, u, and B are to be varied independently.
Variations du yield the velocity representation

ut U= B1Vs1 + BzVSz + B3VS3 (ES)

The Lagrange multiplier B is therefore the pseudo-
momentum discussed in section 3.1. Substitution of
(E8) into (E7) yields Seliger and Whitham’s [1968]
principle

Js
8fdtjffd3xM{%u-u+e+d)+B-5}=0 (E9)

where s and B are canohical conjugate pairs and are to
be varied independently. The vector u is just an ab-
breviation for (E8). Variations 8B and &s yield the
equations of motion (71).

The C Representation

A more common form is obtained when the conti-
nuity equation is added to the variational principle
(E7) with an associated Lagrange multiplier ¢. Then

afd,mdsx[p(;u.u+u.u_e_¢

Ds ap 1
-C- D) e at+V (pu) (E10)
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where s, u, C, p, and ¢ are to be varied independently.
Variations du yield the velocity representation

u+ U= C,Vs, + C3Vss + Vo (E11)

where C, has been set to zero for reasons discussed by
Salmon [1988a] and Boozer [1985]. The vector C is a
pseudomomentum but differs from B. The Lagrange
multiplier ¢ is a velocity potential. When the velocity
representation (E11) is substituted into the variational
principle (E10), it takes the form

a : ++<I>+Cas2
8fdtJ’ff xpzuue 27,

as dp
+C3"—3+'—")—0

at at (E12)

where (s,, C,), (53, C;) and (p, ¢) represent canonical
conjugate pairs and are to be varied independently.
The vector u is an abbreviation for (E11). A variational
principle for incompressible fluids can be obtained by
setting p = po(s) in (E12).

APPENDIX F:
EQUATIONS OF OCEANIC MOTIONS

Shallow Water Equations )

- The shallow water equations are obtained by ex-
pressing the Boussinesq equations of motion (76) in
spherical coordinates and expanding them with re-
spect to 8, keeping only zeroth-order terms. They are

u u du v Jv ou uv
—t————— 4+ ——+w———tan § — fv
ot rocos 0 de 1y T 9z  Fp

1 ap

= - (Fla)
p*ro cos 0 de¢

2

dv u dv v av dv u
—t— +w —+—tan 0 + fu
dat Fog COS 0 (")<p Fo 86 9z 14
1 ap
=——— (F1b)
px 00
ap’
0=—+p'g (Flc¢)
0z
1 du 1 (v cos B) Iw .
. — +—= (F1d)
ro cos 0 d¢ rg cos @ a0 az
dp' u ap' v ap’ op’
L S R LA PP (Fle)
aft rgcos 0 o rg 00 0z

The vertical momentum balance reduces to the hydro-
static balance (hydrostatic approximation). The shal-
low water approximation also eliminates all terims that
contain the meridional component f, = 2() cos 6 of the
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planetary vorticity vector (traditional approximation).
The traditional approximation must be introduced with
the hydrostatic approximation to maintain a represen-
tation of the Coriolis force that is consistent with the
energy and angular momentum balance [Phillips,
1966]. The linear shallow water equations have sepa-
rable solutions. The scaling arguments leading to (F1)
are straightforward only for the off-equatorial case and
require more care for equatorial regions [e.g., Kamen-
kovich and Kulakov, 1977; Gill, 1982]. In (Fla) and
(F1b) the terms on the left-hand side scale as Ro, Ro,
Ro, Ro, Roeg, and 1, respectively, and the right-hand
side scales as 1. (Ro is the temporal Rossby numbei.)

Beta Plane Equations

The beta plane equations are obtained by introduc-
ing a background stratification into the shallow water
equations, expanding them around a reference latitude
8, with respect to ¢ ~ 8 — 6,, and keeping terms up to
first order in €. They are

—to—+w—

Ju ou ou
0x dy az

du y
—+ u| 1+ — tan 6,
at ro

uv
- r_ tan 90 —fov - B()y”U
0

1 y adp
=——1{1+—tan 6] —
Px ro ax

(F2a)

where the terms on the left-hand side scale as Ro, Ro,
Roe, Ro, Ro, Rog, 1, and &, respectively, and the
terms on the right-hand side scale as 1 and &, respec-
tively,

dv y du dv v u’
—+ull+—tan 0g) —+v —+w —+ —tan 9,
at o ax dy 3z rg
1 adp
+f0Ll + Boyu = - (sz)
Px 0y

where the terms on the left-hand side scale as the
respective terms in (F2a) and the right-hand side scales
as 1,

3%
0=gSp+——lz

7 (F2c)

where the terms on the right-hand side scale as 1,

du  Jov v aw
—t———tan 6+ —=0
9z

(1 + Y tan 0,
dx dy ry
(F24d)

ro

where the terms on the left-hand side scale as 1, €, 1,
e, and 1, respectively, and

d y ad d d
—tull+—tan 8y —+v —+w —dp
at Fo dx ay at
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= wN? 9 (F2e)

Px

where the terms on the left-hand side scale as S, S,
Se, S, and S, respectively, and the right-hand side
scales as 1. These beta plane equations are seldom
used, except at the equator where all terms propor-
tional to tan 6, vanish and where the beta term be-
comes the only manifestation of Earth’s spherical ge-
ometry.

The f Plane Equations
The f plane equations are obtained by neglecting all
terms of O(¢e) in (F2) and take the form

ou au+ 6u+ ou P 1 a8p (F3a)
—+u— —tw——fo=——— a
ot “ ox v dy az o Px OX
ov dv 6v+ 8v+f 1 odp (F3b)
—tu—tv—tw—t+fu=—-——
at “ ax v&y 0z 0 pPx 0y
ow w ow ow 1 9dp
—+tu_—+v-—+w_—=——-—"—"—-3pg
at dx ax a9z px Ot
(F3c¢)
ou dv ow
—+—+—=90 (F3d)
dx Jdy 9z
] ] ] d 5 g
—+tu—+v—+w—|8p=wN" — (F3e)
at 0x ay a9z Px

Here we have reinstated the acceleration terms in the
vertical momentum balance, that is, suppressed the
hydrostatic approximation but not the traditional ap-
proximation. The f plane equations describe motions
in a stratified fluid that rotates uniformly with angular
velocity f,/2. If Ro or Ro >> 1 the Coriolis accelera-
tions can be neglected and the equations describe
motions in a nonrotating stratified fluid.

APPENDIX G:
VARIATIONAL PRINCIPLE
FOR STRATIFIED FLUIDS

Here we derive a variational principle for incom-
pressible stratified Boussinesq fluids on an f plane,
both in its Lagrangian and Eulerian forms.

Lagrangian Form

The starting point is the Lagrangian density (equa-
tion (59)) for incompressible fluids. When the equilib-
rium position r is used as a fluid label, the variational
principle takes the form
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Sde ijd3r[p0(r)(%x-x+x-U)

—po(r)® +p(J-1)]=0 (G1)
where J = 9(x)/3(r). The f plane approximation is
accomplished by setting

U=Q><x=%ez><x (G2)

where e, is the vertical unit vector. Stratification is
introduced by assuming

po(r) = p(r3) (G3)

where p(r;) is the background density field. The
Boussinesq approximation is accomplished by replac-
ing py(r) in front of the specific kinetic energy term by
the constant reference density py.

The potential energy term can be rewritten as

po(r)® = p(r3) gz

= p(r3)grs + p(r3)g(z = ry)
where @ = gz with gravitational acceleration g has
been used. The first term is the potential energy of the
background stratification and the refore an irrelevant
constant. The pressure term in (G1) can be rewritten
as

p(J—1)

(G4)

(p(z) +3p)(J — 1)
=[p(z) — p(r3)] + p()J = p(rs)
+dp(J—1) (G5)

where again the second and third terms represent
irrelevant constants. When all these expressions are
substituted into the variational principle, it takes the
form

8]dﬁrjd3r[p*(%k-x+x-U) (G6)
—T+dp(J—-1]=0
with the potential energy density
T = p(r3)9(z ~ r3) = [p(2) — p(ry)]
(G7)

z - ~
=gf dz’ [p(r3) — p(z')]
rs

It is the work done by the buoyancy or the Archimed-
ean force when the fluid particle moves from its equi-
librium position r; to its actual position z. When ex-
panded with respect to the displacement { = z — 5,
the potential energy density becomes

T=pN* 202+ « -+ (G8)
and is quadratic in { to lowest order. Note that the
potential energy is only defined up to a constant
(which we have set to zero for the equilibrium state)
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and that the potential energy density is only defined up
to a nondivergent part. A further ambiguity arises
since the potential energy of a fluid particle can be
allocated to its equilibrium or actual position. Expres-
sion (G7) is a particular choice and implies that the
Lagrange multiplier is 3p. Other choices are possible
and lead to different identification of the Lagrange
multiplier.
Variations 8x yield the momentum

px(X + foe, X X) = =V8p — glp(r3) — p(2)]e,
(G9)
and variations 8p the incompressibility constraint J =

1.

Eulerian Form

For incompressible fluids the Eulerian variational
principle (equation (E12)) in the C representation takes
the form

1 ar2
detfjfd3x po(r)<5u-u+<b+C25

ar 0
+ c3—3+—‘P)=0 (G10)

at at

where C,, Cs, r,, r3, and ¢ are to be varied. Making
the same approximations as before, one arrives at

5 | dt d’x p*lu-u+C2-82
2 at

6r3 6<p
Cy—+—|+T[=0 (G11)
H at
where
Jo
u=0C)Vry + C3Vr; + Vo — 5 e, X x (G12)

Variations 8C,, 8C;, 8r,, dr5, and 3¢ yield the equa-
tions of motion (152). The pressure is identified as

dp =p —p(2)
or or G| T
= —pxizu * u+C2—2+C3~—3+—(P+—
2 ot at ot px
(G13)

An equivalent variational principle for a set of canon-
ical conjugate variables was ‘‘derived”” by Henyey
[1983] using a ‘‘motivated recipe.”’

NOTATION

b thermobaric coefficient.
B pseudomomentum vector.
¢ concentration, sound speed.
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modified pseudomomentum vector.
specific internal energy.

unit vector in physical space.
unit vector in label space.
Coriolis parameter.

flux vector.

vertical length scale.

Jacobian.

Jacobian.

horizontal length scale.
Jacobian.

normal vector.

Brunt-Viiséila frequency.
pressure.

eigenvector, momentum vector.
potential vorticity.

radial distance.

mean radius of Earth.

initial or equilibrium position.
Rossby number.

label vector.

salinity, vertical strain parameter.
time (in Eulerian description).
temperature.

fluid velocity.

horizontal velocity scale.
velocity of rotating frame.
zonal velocity component.
meridional velocity component, specific
volume.

vertical velocity component.
vertical velocity scale.

position vector.

material derivative.

gradient operator in physical space.
horizontal gradient operator.
gradient operator in label space.
Laplacian.

horizontal Laplacian.
displacement gradient tensor.
displacement gradient tensor.
system matrix.

Lagrangian density.

thermal expansion parameter.

beta parameter, haline contraction parameter.

adiabatic temperature gradient, modified
Bernoulli function.

aspect ratio.

geometry parameter.

vertical displacement.

specific entropy.

latitude, potential temperature.
adiabatic compressibility.
chemical potential.

surface elevation.

potential vorticity vector.
density.

potential density.
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time (in Lagrangian description).
geopotential.

longitude, velocity potential.
tracer, stream function.

rotation rate.

relative vorticity.
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