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In this paper the qualitative properties of an inviscid, incompressible, two-dimensional fluid are examined. Starting from 
the equations of motion we derive a series of equations that govei'n the behavior of the spatial gradients of the vorticity 
scalar. The growth of these gradients is related to the transfer of enstrophy (integral of squared vortieity) to the small scales 
of the fluid motion. 

I. Introduction 

In this paper the qualitative properties of an 

inviscid, incompressible two-dimensional fluid are 
examined. Starting from the equations of motion 

(Euler's equations) we derive a series of equa- 
tions that govern the behavior of the spatial gra- 

dients of the vorticity scalar. The growth of these 
gradients is related to the transfer of enstrophy 

(vorticity) to the small scale motion of the fluid. 
We find that the gradients of vorticity will tend to 

grow exponentially fast in a region of fluid, if, in 
that region, the squared magnitude of the rate of 

strain exceeds the squared magnitude of the rate 

of rotation. The rate of rotation can be identified 
with the vorticity scalar. On the other hand, when 
the squared vorticity exceeds the squared rate of 
strain, the vorticity gradients will behave in a 

periodic manner. 

*Note by the editor: This paper has been frequently quoted 
in the literature on two-dimensional turbulence; it was written 
in 1981 as a La Jolla Institute preprint and never published in 
the open literature. 

Essentially, when the strain rate exceeds the 

vorticity, the fluid is in a hyperbolic mode of 
motion that strongly shears the passively advected 

vorticity. Conversely, when the vorticity exceeds 

the strain the fluid is in an elliptical mode of 
motion that advects the vorticity smoothly. As a 

consequence the vorticity gradients will tend to 
concentrate in the regions of hyperbolic motion. 
That is, between the large scale eddies. 

Jack Herring [1, p. 2265] has observed this 

effect in his study of two-dimensional, anisotropic 

turbulence, using a closure-based subgrid scale 

model. Our results confirm this study in the con- 
text of the qualitative properties of the equations 
of motion for the fluid. 

We remark that the quantity, 0 = (strain) 2 -  

(vorticity) 2, is found to be, following an observa- 
tion by Brezis and Bourgoiun [2], related to the 

second fundamental form of the boundary of the 
fluid domain, where the boundary is regarded as 
a smooth manifold, embedded in E2. This, in 
turn, implies a global integral constraint on the 
sign and magnitude of 0. In a sense to be ex- 
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plained below, flows exterior to a smooth, convex 
boundary are more hyperbolic, while interior flows 
are constrained toward elliptical modes. A similar 
behavior has been observed in numerical studies 
of area-preserving maps of the plane [3, 4]. Par- 
ticularly interesting, in light of this result, are the 
remarks in ref. [3] outlining a possible connection 
between the theory of general area-preserving 
maps and hydrodynamical systems. This connec- 
tion is based on the contrasting regions of ellipti- 
cal and hyperbolic motion that appear, in terms 
of our results, to be essential to understanding 
the long time behavior of fluids. 

In section 2 we derive from the equations of 
motion the equations that govern the spatial gra- 
dients of the vorticity. The geometrical implica- 
tions of these equations are examined. In section 
3 the results of the numerical simulation of the 
equations of motion are presented. In section 4 
we present the summary and conclusions of the 
preceeding sections. 

2. Gradients of  vorticity 

The time evolution of an inviscid, incompress- 
ible fluid is governed by Euler's equations for the 
velocity field, t): 

where 

,~ = ( u , ~ , ) ( , , t ) ,  

V . b = 0 ,  

. ~ = ( x , y )  e D ~  2, 

• r h = 0  f o r . ~ e 0 D ,  

rh ± aD, 

t = 0 ;  t9=1)0(~ ). 

It is known [5] that there exist smooth, global 
solutions to (1) where b 0 and D are smooth. 
Furthermore,  these solutions conserve the total 

energy: 

(2) 

and the total enstrophy (squared vorticity): 

~2 = fD½(Curl b " curl b ) = fD½(Curl bo " curl F:o). 

(3) 

It has been conjectured [6] that the existence of 
these dual invariants implies a transfer of energy 
toward the large scales of motion across a k -s/3 
spectral range; and corresponding transfer of en- 
strophy toward the small scales across a k 3 
energy spectrum. This conjecture is supported by 
numerous closure [7, 8] and simulation [9, 10] 
results. The transfer of energy to the large scales 
is thought to explain the tendency of numerical 
simulations to evolve from random velocity fields 
toward states consisting of a few large-scale re- 
gions of like-signed vorticity [10]. On the other 
hand, the transfer of vorticity (enstrophy) to the 
small scales of motion is less well understood and 
the subject of some controversy [11, 12]. Since 
numerical simulations are limited by finite degree 
truncations and the use of eddy viscosities that 
distort the inviscid behavior at small scales, the 
process of enstrophy transfer has remained some- 
what obscure, In this section we present several 
observations that may help to shed light on the 
enstrophy transfer process and aid in the inter- 
pretation of the numerical simulations. 

To begin we note that following a fluid ele- 
ment, the vorticity is conserved. That is, if 

C = l~x - u ,  ( 4 )  

then 

dC 
C , + ~ ' V C -  dt  - 0 .  (5) 
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Thus 

C(.f(  x o, t ) ,  t)  = Co(.fo). (6) 

The vorticity is advected by the velocity field as 
a passive scalar. However, unlike a passive scalar, 
the vorticity is dynamically related to (de- 
termines) the velocity field, and changes in the 
distribution of the vorticity imply changes in the 
advecting velocity field. This intrinsic feedback 
process can be better understood by introducing 
the stress tensor, A: 

Ou i A = V,), Aij = axe" (7) 

If it is assumed that the fluid is contained in T 2 
or ~2 then it can be readily shown from (1) that 

dA 
dt + A 2  = V~TA-I t rA2'  (8) 

Furthermore, since C determines !), and t3 deter- 
mines A, we find 

DA = A ( u + i v ) ,  (13) 

DA = iDC. (14) 

We note that 

t rA  2 = ½(AA - C 2) (15) 

is precisely the magnitude of the rate of strain 
squared minus the rate of rotation squared. We 
believe this to be a key quantity in understanding 
two-dimensional hydrodynamics. 

In terms of the stream function: 

O = O ( x , y , t ) ,  

U = 0 y ,  v = - 0 x .  (16) 

We find that 

where d / d t  = 0, + b • V and tr is the trace. 
Since 

t rA  = V . #  = 0 ,  
l A 2 = ~ t r A 2  I ,  (9) 

the anti-symmetric part of (8) is eq. (5). The 
symmetric part of A is the rate of strain tensor: 

B = ½(A + A ' )  = 
½(a, + vx) ) 

(10) 

We have found that the above is most conve- 
niently described in the following notation: 

O = u x - vy ,  ~ = V x + u y ,  

C = v  x - u y ,  a = O + i O ,  

D = a~ + iay. (11) 

In this notation, eq. (8) becomes 

dX = D2  ( D D )  -I dt ½(AA - C2),  

dC 
dt - 0. (12) 

t rA  2 = ½(AA - C 2) = ~O2~y - ~bxx~yy (17) 

or t rA 2 is equal to the negative of the Gaussian 
curvature of the stream function. 

When tr A 2 is positive the motion is hyperbolic 
in character and when negative, the motion is 
elliptical. 

While the structure of eqs. (12) is by no means 
transparent, combining the Lagrangian deriva- 
tive, d / d t ,  with the Eulerian gradient, D, (in a 
non-local manner), it does imply that the values 
of A following a fluid particle change most rapidly 
in the regions where D2(tr A 2) is large, subject to 
the smoothing (DD) -1. In a sense the operator 
D2(D~) -1  introduces a shape factor in the distri- 
bution of t rA  2 that affects the regions where 
d A / d t  will tend to be large. We shall return to 
this later. 

Eq. (14) indicates that, in wave space, A and C 
have an identical power spectrum, differing purely 
in phase. By Fourier transforming eq. (14) we find 
that 

^ 

A~ = i ~-~- C~, (18) 
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where 

~ _  1 F 2 v i j d ~ e  ' k~A(2) ,  

~ _  1 f d2e , , . .~C(2)  2-rri _ ~ 

/~ = k x + iky, 

k = ( k x , k ,  ). 

We remark that for 
satisfying the equation 

d 

the quantity 

- (°.) 
D w =  Dw 

any scalar quantity, w, 

(22) 

Letting 

,{,:. = I~.~le i~ , 

CL = ICt:.l e its, 

~ = I/~le i~ , 

will satisfy the equation 

d D---~ = 8 D---~ 

with B given by (21). 
We recall, from eq. (14), that 

(23) 

we find 

IAk] = ]C~I, (19a) 

a = -rr/2 + 2q, +/3. (19b) 

Furthermore, eq. (14) indicates that the quan- 
tity DC (essentially the gradient of the vorticity) 
is of a certain interest, being simply related to the 
corresponding derivatives of a. 

By applying the operators, D and D to eq. (12) 
it is found, after some algebraic simplification, 
that 

~ D-"-C = B D-'-"C , (20) 

A ( o c )  
D C =  DC = - DA " (24) 

Thus eq. (20) describes the evolution of com- 
plex gradients of the vorticity, complex gradients 
of any passive scalar, and certain gradients of the 
strain. 

It is immediate that 

tr B = 0, (25a) 

= I A 2 B 2 ¼(AX- C 2 ) I =  ~tr I. (25b) 

The eigenvalues of B, w +, satisfy the equation 

W 2 = ¼ ( . ' ~  -- C 2 ) .  ( 2 6 )  

where Thus, when 

_ ( o c )  
D C =  DC 

A A < C  2, we~= + } i  C~7~--AX, (27a) 

a~ > C 2, w += + ½ ~r~ _ C2 " (27b) 

and Since following a particle, C is constant: 

B = (  ½iC - ½ a }  (21) 
1- _ 2 i  C " - 2A 

C = C 0 , (28) 

AA - C 2 = AA - C,~. (29) 
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Now, if A is slowly changing (with respect to 
DC) along a particle path (see eq. (12)) eq. (27) 
implies for DC: 

(i) oscillatory behavior when tr A 2 < 0. 
(ii) exponential growth when tr A 2 > 0. 

The assumption that A is slowly varying with 
respect to DC appears reasonable, especial_, ly since 
(24) indicates that the time scale of DC is the 
same as the gradients of A, DA, and since we are 
interested primarily in the small scales of motion. 
However, eq. (12) indicates that variations of A 
along a particle path are non-local and condi- 
tioned by the distribution of tr A 2. In a sense eq. 
(12) converts the spatial intermittency determined 
by (27) into a temporal intermittency of A. This, 
in turn, may modulate the evolution of DC (the 
spatial intermittency ). 

It is known that the source term in eq. (12) will 
be largest in those regions where ½(AA - C  2) is 
most rapidly varying in space. By the above we 
expect both A and C to be most rapidly varying 
when AA - C 2 > 0. If eq. (23) is differentiated, we 
find 

1 - -  2 d 2 ~(AA - Co) 

dt2-~= -½dA/dt  

where by eq. (12), 

- ½ d A / d t  1~'~, 
1 - -  2 J 

(30) 

dA = D2 ( D D )  -'½(AX - Co2). 
dt  

The local growth rate of DC predicted by (30) is 

l[dA dAl '/211/2 
X = + ¼(AA - C02) + 2 ~ a t  -d-7] ] . (31) 

From this it would appear that the variations of 
A, as described by d A / d t ,  along a particle path 
are of some importance. We remark that the 
operator D 2 in eq. (12) is hyperbolic in its spatial 
characteristics: 

D 2 _ a  x _  2 _ a2 + 2i a x By. (32) 

This would favor largest values of d A / d t  in 
those regions where A-1½(A~ . -C  2) is dis- 
tributed along hyperbolic contours. 

West, Lindenberg and Seshardi [15] have 
demonstrated that when one assumes that A is a 
stationary, Gaussian random function with zero 
mean, then 

dt <DC> 

= ( i( ½C + Im H ) + Re lI 0 ) 
0 - i (½C + Im 17) + Re H 

(<DC>) (33) 
x <bc> 

where < > indicates a moment average and 

l-I(Co)=¼L~(A(t)X(z)>eiCo(t-')dT. (34) 

Here, the generaly complex quantity H can be 
interpreted as the strength of the strain A, fluc- 
tuations at the frequency C O . In general, when 
Re H > 0, there occurs an oscillatory, exponential 
growth of ( D C  > and ( D C ) .  

When the temporal correlations of A are as- 
sumed to be rapidly varying with respect to < DC), 
then 

<;~(t) ~ ( ~ ) >  = ~ ( t  - ~ ) ,  (35) 

where a > 0. 
Then, eq. (33) simplifies to 

o ) 
dt ( D C )  = 0 l ( - i C o + a  ) 

( (DC))  (36) 
x <be>" 

This predicts an oscillatory, exponential growth 
of the moments (DC>,(DC). The above does 
show that the effect of temporal variations of A is 
to modulate the otherwise pure exponential 
growth of DC. 
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We conclude this section by examining a con- 
straint that relates t rA  2 to the shape of the 
boundary. 

It is a consequence of incompressibility that 

Eq. (43) indicates a constraint toward elliptical 
motion for this type of domain. 

If the tangent plane is everywhere contained in 
D, then /3(.~,t3,~) is positive definite and 

t rA  2 = d iv (b .  71)). (37) 

Bourguignon and Brezis [2] have shown that, if 
the boundary of the fluid domain, aD, is defined 

by 

aD = {)~e ~":  b(2~) = 0} 

and fi = - V b ,  the normal at OD, then 

fDdiV(~  • V~)  = £ D ( ~  " V~)  " h 

a~b(,f) 
= £ D , ~ j  axiaxj tV' ,. (38) 

The quadratic form 

m2f f,.f~<fDLe(AA-C2)<M2f b.13. (44) 
i) l) i~D 

Exterior domains of this type are constrained 
towards hyperbolicity. Conditions (43) and (44) 
are, in reality, constraints on AA, since 

fD C = ~)C,~. (45)  

The influence of the boundary on the qualita- 
tive properties of the motion appears  to be quite 
natural. 

a 2 b  
fl(.f,~,~) = y' ~ t , i v  j (39) 

U 

is the second fundamental  form of 8D in N". By 
(37), 

f l ( a X  -- C2) = £D/3( a?, I), b) da?. (40) 

Several consequences of (40) follow immedi- 
ately. If OD = 4~,  i.e. D = ~2 o r  T 2, then 

fDAA= fD C2. (41) 

If the tangent plane to aD is exterior to D at 
every point then /3(o?, 13,13) is negative definite: 

-M2~3 • # </3(J?, ~),t3) < - r n 2 ~  • ~3, (42)  

where .~ ~ aD and M 2, m 2 depend on the curva- 
ture of aD. 

As a consequence 

--M2f~}DV'V< fD 2 ( a x - C 2 )  < -m2f  ~ • 9. 
aD 

(43) 

3. Numerical  simulation 

We have studied the evolution of a random 
initial realization of the stream function. The 
Euler equations in the stream function-vorticity 
formulation were solved by the fully dealiased, 
spectral method of Orszag [13]. The program to 
implement this method was developed by Profes- 
sor R. Salmon of Scripps Institute of Oceanogra- 
phy. For this particular simulation a cutoff" 
wavenumber  of 32 and an eddy viscosity term 
-~A2C, where ~r = 1 × 10 6, were employed. 

Starting from an initial stream function with am- 
plitude proportional to k2/(1 + k  6) and a ran- 

dom phase, the method employs a leap-frog time 
differencing with smoothing every 20 time steps 
to eliminate the spurious computational mode. 
Since the energy is normalized to be one and a 
time step is 0.01, an eddy turnover time consists 
of nearly 100 time steps. Every 10 time steps the 
stream function was output onto disk. Thus in the 
figures a label Record 17 indicates a time of 1.7. 
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From the stream function we have produced con- 
tour plots for the vorticity, magnitude of strain, 
the quantity AA- C 2, the magnitude of dA/d t  
and the magnitude of the gradients of vorticity. In 
addition, we have produced graphs of the spectra 
for the vorticity (= rate of strain) and the gradi- 
ents of the vorticity. 

Since it is necessary to use an eddy-viscosity 
term to prevent reflection of energy at the cutoff 
wavenumber, the total enstrophy is decaying with 
time. See fig. 1. Nevertheless, the qualitative fea- 
tures of the solution are quite interesting. 

The random initial gradients of vorticity have 
evolved by frame 11 into a tightly localized pat- 
tern that is related to the central hyperbolic re- 
gion. There are two hyperbolic regions. The 
stronger one located at the center of the frame 
and a weaker one located in upper left corner, 
with label on the left. These hyperbolic regions 
may be identified with reference to either the 
vorticity or tr A z contours. 

The strain appears to be confined almost solely 
to the hyperbolic region. The magnitude of dA/d t  
is highly intermittent; being confined to several 
small regions that appear to migrate from left to 
right during the evolution. 

A curious event occurs in frames 26 through 
37. In these frames the vorticity gradients stream- 
ing from the hyperbolic centers are observed to 
interact and intensify. This phenomenon is strik- 
ingly similar to the interaction between hyper- 
bolic (unstable) fixed points observed for general 

area preserving maps [3]. This process is associ- 
ated with the first peak in the value of the total 
vorticity gradients; the following decrease being 
associated with the increased dissipation caused 
by the transfer of enstrophy to the higher 
wavenumbers. The further evolution of the sys- 
tem appears to involve the wrapping of vorticity 
gradients about the hyperbolic centers, by folding 
and stretching of the fluid in these regions. 

Further numerical studies of the phenomena 
discussed in this paper are presented by M. 
Brachet et al. in ref. [16]. 
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4. Summary and conclusions 

In section 2 we have presented several equa- 
tions and relationships that may be useful in 
understanding the enstrophy transfer process. It 
is indicated that the transfer of vorticity to small 
scales occurs in the regions of hyperbolic motion; 
and that the transfer, subject to certain assump- 
tions on the behavior of the strain fluctuations, 
proceeds exponentially fast. An identity connect- 
ing the shape of the boundary to the qualitative 
properties of the flow is established. 

The numerical solution of Euler's equations 
described in section 3 supports, in general, the 
hypothesis that enstrophy transfer is associated 
with the stretching and folding of fluid in the 
hyperbolic regions. 

A major unresolved point is the validity of the 
assumption that the strain is slowly varying along 
a particle path with respect to the vorticity gradi- 
ents. Inspection of the numerical solution reveals 
that the Lagrangian derivative of the strain is 

highly intermittent in space, and is possibly asso- 
ciated with the turning of the vorticity gradients 
about the central hyperbolic region. In regard to 
this, the folding of fluid about the central hyper- 
bolic region that occurs in frames 26 to 37 can be 
seen, from the spectra for the vorticity gradients, 
to be the cause of the intensification of the vortic- 
ity gradients at the lower wavenumbers. The bump 
in the spectra is subsequently translated to the 
higher wavenumbers by the stretching process. 
This sequence of events is somewhat reminiscent 
of the Smale horseshoe map. 

We recall from eq. (12) that 

dh 
dt  = D 2 ( D D )  -1½(hA - C2).  (46) 

The shape operator, D2(DD) -1, relates d h / d t  
to I ( A A - C  2) in the same manner that h is 
related to C in eq. (14). That is, 

dA D~i-=DO, 0 = ½(AA-  C2).  (47) 
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At several points in this paper we have re- 
marked that there appear to be similarities be- 
tween two-dimensional hydrodynamics and the 
general theory of  area-preserving maps. It is use- 
ful to remember that hydrodynamics does define 
an area-preserving map: 

where 

and, when t = 0, ~ = -to. 
The Jacobian J of  the map 2 o ~ 32 is 

Yx,) ] d2  
d--}- = ~ '  (48) (49)  
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(50) 

gradients directly reflects the properties of the 
underlying area-preserving map. 
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dJ d~=JA and VC=-AVC, (51) 

From eqs. (51) it follows immediately that 

d y/(y vc) =0, (52) 

and using J = I at t = 0 

J VC = VC ,; (53) 

o r  

VC = J-  l VC0. (54) 

Thus, the inverse of the Jacobian is the evolu- 
tion operator for the gradients of the vorticity. 
This being the case, the evolution of the vorticity 
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