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The advection of a passive substance by a turbulent ¯ow is important in many natural and engineering settings. The concentration
of such a substance can exhibit complex dynamic behaviour that shows many phenomenological parallels with the behaviour of
the turbulent velocity ®eld. Yet the statistical properties of this so-called `passive scalar' turbulence are decoupled from those of
the underlying velocity ®eld. Passive scalar turbulence has recently yielded to mathematical analysis, and such progress may
ultimately lead to a better understanding of the still intractable problem of ¯uid turbulence itself.

The concentration of a substance advected by a turbulent ¯ow
exhibits a complex, chaotically evolving structure over a broad
range of space and time scales. The `̀ substance'' could be a pollutant,
as in the familiar case of smoke dispersing in air; it could be heat,
when a hot object is cooled in the ¯ow; or (as in Fig. 1) a ¯uorescent
dye mixed by a turbulent jet. Turbulent advection is important in
many natural and engineering settings, ranging from atmospheric
phenomena1 and combustion2 to the stretching and ampli®cation of
magnetic ®elds on both galactic and terrestrial scales3. It is even
relevant in a biological context. For example, many organisms need
to locate the sources of attractive odours: the chemotactic `algo-
rithms' by which this is achieved will differ according to whether the
organism is in a diffusion-dominated world (as in the case of
bacteria4) where local concentration gradients can be used to
navigate, or in a turbulent world (like lobsters5 or moths6) where
large ¯ow-induced ¯uctuations of the local concentration gradient
render it useless for navigation. In many cases, the advected
`̀ substance'' has a strong effect on the turbulent ¯ow itself, by
generating local forces: for example, non-uniform heating would act
on the ¯ow through buoyancy. However, the phenomenon of
turbulent advection and mixing caused by it may be separated
from the forces responsible for the ¯ow.

Here we concentrate on the case where the advected substance is
passive and so has a negligible back effect on the ¯ow (this also
applies to the temperature ®eld if buoyancy forces are small
compared to the inertial stresses driving the ¯ow), and on situations
of well controlled laboratory turbulence7,8. Given that the sub-
stances are passive and are described by scalar (rather than vector)
®elds, they all behave in the same way. Thus generically we speak of
`passive scalar' advection.

Turbulent ¯ow transports and disperses the scalar by making
parcels of ¯uid follow chaotic trajectories. The spatial non-uni-
formity of the velocity ®eld causes the lines of constant scalar
concentration to stretch and fold; as a result, variations of the
scalar concentration reach progressively smaller scales. This process
ampli®es the local concentration gradients until molecular diffu-
sivity ®nally takes over, causing local variations of the scalar to
dissipate. The result of these processes is a dramatic acceleration of
the rate of mixing which, for a fully turbulent ¯ow, becomes
independent of molecular diffusivity. However, the price of the
(on average) rapid mixing is the frequent occurrence of large
¯uctuations of the scalar ®eld, which are quanti®ed by departures
of the probability distribution functions (PDF) of the scalar ®eld
from gaussian behaviour8,9. Turbulent mixing, de®ned as the
dissipation of scalar variance, is `̀ intermittent''7,9,10Ðit occurs in
spatio-temporal bursts qualitatively similar to the energy dissipa-
tion by the turbulent velocity ®eld itself. Although the dynamics of
the underlying velocity (vector) ®eld is intrinsically nonlinear and
much more complex to describe, there are so many parallels
between the statistics of the scalar ¯uctuations and those of

turbulent velocity that one may justi®ably refer to the behaviour
of the advected scalar as `scalar turbulence'. The basic understanding
of turbulent mixing and transport emerged through the work of
Taylor, Richardson, Kolmogorov, Obukhov and Corrsin (as
reviewed by Monin and Yaglom11). However, while their simple
dimensional arguments11,12 are successful in explaining the average
rate of spreading or mixing of, say, a smoke plume, understanding
the statistics of the large ¯uctuations is a more dif®cult problem. We
will address this below.

The practical relevance of understanding the statistics of large
¯uctuations is obvious if one considers, for example, the probability
of a pollutant concentration exceeding some tolerable level as it
spreads from a source. More subtle, but equally important, is the
role of large concentration ¯uctuations in controlling the rate of
slow (high order) chemical reactions, for example in the process of
atmospheric ozone destruction13.

Figure 1 Fluorescent dye in a turbulent jet. The Reynolds number, Re, is 4,000

(K. R. Sreenivasan).
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This Review is prompted by recent progress in the statistical
description of passive scalar turbulence. Central to this progress has
been the realization that anomalous scaling properties and the
appearance of coherent structures in the scalar ®eldÐwell known
characteristics of ¯uid turbulence itselfÐoccur even for a scalar
advected by a simple random gaussian velocity ®eld (which resem-
bles real turbulence only in the way the ¯uctuations are distributed
over small spatial scales14±17). The non-trivial statistical aspects of
the scalar turn out to originate in the mixing process itself, rather
than being inherited from the complexity of the turbulent velocity
®eld. Study of passive scalar turbulence is therefore decoupled from
the still intractable problem of calculating the velocity statistics, and
so has yielded to mathematical analysis18±20. Conversely, the well
established phenomenological parallels between the statistical
description of mixing and ¯uid turbulence itself9,10 suggest that
progress on the latter front may follow from a better understanding
of turbulent mixing.

Observations and phenomenology
The simplest characterization of turbulent mixing is through a local
measurement of the advected ®eld. Measurements of temperature at
a given point in a turbulent ¯owÐfor example, on the axis of a hot
jet mixing with a cold bath21 or within a turbulent boundary layer
over a heated surface22,23Ðare typical of many laboratory experi-
ments. Closer to the idealized case of `homogeneous and isotropic'
turbulence are the recent studies by Warhaft and co-workers24,25, in
which temperature ¯uctuations were measured behind the grid in a
wind tunnel where the inlet ¯ow was preheated to impose a linear
temperature pro®le (in a direction transverse to the ¯ow). In all of
these cases, the temperature measured downstream from the inlet as
a function of time, £(t), ¯uctuates about its mean value h£(r)i at the
point of observation r as parcels of colder or warmer ¯uid sweep by.
The ¯uctuations are then quanti®ed by constructing, from the
temporal sequence, a histogram or PDF, P(£). If the scalar ®eld is
injected randomly11, the resulting single-point PDF is gaussian. In
the more common case when the `injection' produces a large-scale
temperature gradient24,26, a regime of exponential tails (see Fig. 2a)
is observed. In either case, the root-mean-square (r.m.s.) ¯uctua-
tion is of the same order of magnitude as the temperature variation
on the scale characteristic of the ¯ow as a wholeÐthe so-called
`integral scale', which is set by the geometry (for example, the jet
diameter or wind tunnel grid).

Another important observable is the difference between simulta-
neous measurements at two points separated by a distance r,
expressed as Dr£ [ £�x � r; t�2 £�x; t�. The PDF of the difference
is shown in Fig. 2b: it starts as a gaussian for point separations of the
order of the integral scale L, and evolves progressively longer
exponential or stretched-exponential tails as r decreases towards
the dissipation scale h, where the scalar difference can be approxi-
mated by a derivative. This excess of large ¯uctuations (compared to
a gaussian distribution) on small scales, termed `intermittency', is
well known for the statistics of the velocity ¯uctuations themselves
(Drv)9,10.

The behaviour of the scalar ®eld is determined by two physical
effects: (1) transport, the physical translocation of impurities or
heat by the combined action of the ¯ow and diffusion; and (2)
mixing, the irreversible decay of ¯uctuations, ultimately due to the
molecular diffusivity, k, which (in the absence of forcing) will tend
to reduce the scalar ®eld to uniformity. In turbulent ¯ow, both the
transport and mixing rate become independent of k when the
diffusivity is in®nitesimally small. (The latter limit is highly non-
trivial because diffusivity, no matter how small, dominates over
advection by the ¯ow at suf®ciently small scales and expresses the
irreversibility of molecular mixing.)

Taylor proposed12 that the motion of a single particle in turbulent
¯ow is diffusive, and given by hR2�t�i , Deff t (where R(t) is the
particle displacement in the reference frame moving with the mean

¯ow velocity) with the effective diffusivity of the order of
Deff < DV 2tL (where DV is the r.m.s. velocity ¯uctuation at a
point, and tL is the velocity correlation time). As the correlation
length of the velocity ®eld is the integral scale L, the correlation time
tL is estimated dimensionally as L/DV, and the effective diffusivity
Deff turns out to be independent of k.

Single-particle diffusion must be contrasted with the dispersion
of nearby particles, which also governs the spreading of the `plume'
that appears when the scalar is injected locally. According to
Richardson12, the relative motion of a pair of particles with separa-
tion r , L is governed by hr2�t�i , et3, where e < DV 2=tL is the
energy dissipation rate for the turbulent velocity ®eld10,12. Richard-
son's law only holds for short times (while r < L), but does predict
that two particles will separate to the integral scale in a time
independent of their initial separation. Although according to
Richardson r2 grows as a power of t rather than linearly, in fact
the particles are separating more slowly than they would under
Taylor diffusion (note that e , Deff =t

2
L). This happens because the

motion of particles within an integral scale of each other is
correlated. For t . tL and r . L, particles decorrelate and Richard-
son's law crosses over to Taylor's law. In fact, Richardson's law is
obtained by assuming relative motion to be diffusive but with a
diffusion constant D�r� , e2=3r4=3 which increases with r. This
behaviour follows from Taylor's argument once one takes into
account that the variance of the (relative) velocity ¯uctuations on
scale r is h�Drv�

2i,e2=3r4=3 and the corresponding correlation time is
tr < r=Drv , e2 1=3r2=3. The last two expressions are the predictions
of Kolmogorov's 1941 (K41) scaling theory10.

Kolmogorov's theory10 postulates the following: (1) the energy
dissipation rate e is independent of the viscosity n provided that the
Reynolds number Re � DVL=n is suf®ciently large (that is, when
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Figure 2 Probability distribution functions (PDF). a, P(v) 62 grid lengths downstream in a

wind tunnel with (blue) and without (red) a mean gradient (from ref. 24); the scalar ®eld v is

scaled to unity for each curve. b, The PDF of scalar difference Drv at different separations

starting from the integral scale r � 230h (black), through to the inertial range r � 96h

(red), 26h (blue) and 6.5h (green) (from F. Moisy, W. Herve and P. Tabeling, manuscript in

preparation). Note that the r.m.s. decreases with decreasing scale but the ¯uctuations that

are large compared to the r.m.s. become more likely as the PDFs evolve from gaussian on

the integral scale to a stretch-exponential on small scales.
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inertial forces dominate over viscous forces); (2) e is the only
relevant parameter which controls turbulent ¯uctuations on
scales r p L. The ®rst postulate has strong experimental support,
as does the aforementioned 2/3 law for the velocity variance as a
function of r (refs 9±12). Kolmogorov's argument was extended to
passive scalar by Obukhov and Corrsin11. The Kolmogorov±Obukhov±
Corrsin theory states that the dissipation rate of scalar variance11,12,
e£ [ 2 d=dth�D£�2i, is independent of molecular diffusivity and is
set by the large eddy turnover rate t-1

L , so that e£,h�D£�2i =tL.
Because dissipation occurs only on small scales, the same scalar
variance ¯ux must pass through the `inertial range' comprising all
scales intermediate between the initial injection scale L and the ®nal
dissipation scale h (see below). Using the K41 estimate for Drv on
scale r, one obtains h�Dr£�2i,e£e2 1=3r2=3. Molecular diffusivity
enters only in setting the scalar dissipation scale h by matching
the dissipation rate de®ned by kh�Dh£=h�2i , e£.

Kolmogorov±Obukhov±Corrsin (KOC) theory also predicts
simple scaling for the time average of higher powers of Dr£, (the
moments of the PDF) or the so-called structure function, S2n�r�[
h�Dr£�2ni < h�Dr£�2in. Therefore a universal PDF of scalar differ-
ences is predicted, P�Dr£=h�Dr£�2i1=2

�, where all the dependence on
the measurement scale is accounted for by normalizing to the r.m.s.
of the ¯uctuations. Although the KOC prediction for the second
moment is close to experimental values7,8, its predictions for the
high moments are far off: as evident from the strong dependence of
the shape of the difference PDF on scale r, Fig. 2b. The non-
Kolmogorov behaviour of large ¯uctuations can be quanti®ed by
the observed8,9 anomalous scaling of the moments: S2n�r�=S

n
2�r�<

�r=L�z2n 2 2n=3. The deviation of the scaling exponents z2n from their

KOC values (2n/3) are even larger than those known for the velocity
structure function9,10, indicating that the intermittency in the scalar
®eld is even stronger. The anomalous scaling means that e£ (like e in
the K41 theory) is not the only relevant parameter for r , L. On
purely dimensional grounds, the integral scale L must enter inertial
range quantities. However, there is no unique de®nition of L and
numerically any expression for L will re¯ect the anisotropy of the
large scales. Is it even possible that the small scales are anisotropic,
imprinted by the anisotropies on the large scales, and therefore quite
non-universal? The de®nitive answer is still not known, yet the
study of the passive scalar problem sheds light on the mechanism
that could apply to the velocity as well.

Before returning to the failure of the K41 theory in describing the
¯uctuations, we will look further into the physics underlying the
remarkable and correct ®rst postulate: the independence of the
dissipation rate on the viscosity and molecular diffusivity k. Con-
sider ®rst a passive scalar in a random ¯ow characterized by single
length and time scales, L and tL < DV =L, respectively. The char-
acteristic magnitude of the velocity gradient in this so-called
Batchelor ¯ow regime is g � DV =L. A scalar blob will be stretched
and rolled up by the ¯ow and, because of the incompressibility,
acquire structureÐsuch as tendrils and `Swiss roll' shapesÐon
progressively smaller scales l�t� < L exp�2 gt�. Molecular mixing
occurs rapidly and gradients disappear at the time t*, when the folds
of the scalar ®eld reach down to the scale where the diffusion rate
becomes comparable to the rate of stretching, k=l2�tp� < g. This
de®nes the dissipation scale for Batchelor ¯ow expressed as
hB < L=Pe1=2, which depends on k through the Peclet number
Pe [ DVL=k q 1 and the mixing time tp < g2 1 ln Pe which is

review article

NATURE | VOL 405 | 8 JUNE 2000 | www.nature.com 641

Figure 3 Scalar ¯uctuations in time and space. a, Temporal trace of the temperature

recorded at a ®xed point in a turbulent boundary layer over a heated plate from ref. 23.

Note the asymmetry of the derivative. b, Numerical simulation of passive scalar advection

in two dimensions for the Kraichnan model with velocity de®ned by equation (2) and

g � 0:5 on a 8192 square grid31. The concentration scale runs from blue to red.
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only weakly (logarithmically) dependent on k. The rate of mixing
and scalar dissipation follows t 2 1

p . (This argument tacitly assumes
the ¯ow to be suf®ciently random not to be concerned with the
possible existence of stagnation points, separatices and subregions
left invariant by the ¯ow. Their appearance is possible in weakly
time-dependent (single-scale) ¯ows even when trajectories on
average separate exponentially. The latter is the case for chaotic
advection which is an important instance of mixing27,28 in its own
right. Realization of Batchelor's random ¯ow limit has been
plausibly achieved in several experiments29,30, although observation
of Batchelor's scaling12 remains elusive.)

In contrast to the Batchelor regime, ¯ows at high Re number
involve not one but many length scales. But the above argument can
be used on each octave of scales (starting with the dissipation scale h,
for example, l < h; 2h; 4h;¼L) and the mixing times sum to a
constant (,tL) independent of k by virtue of the Kolmogorov
expression for tr. Thus a multi-scale ¯ow acts as if it had an effective
diffusivity, keff < Deff ,DVL. However, the latter interpretation is
consistent with observation only for the averaged scalar dissipation.
Large ¯uctuations of the dissipation rate reveal a breakdown of the
`effective diffusivity' view of mixing, and may be attributed to
patchiness of the process where intermediate scales become tran-
siently quiescent, leaving the mixing of large variations of the scalar
entirely to the small-scale velocity. K41 `cascade' type theory does
not tell us what these ¯uctuations are.

In turbulence theory, the discussions of intermittency and of the
consequent deviations from K41 scaling often invoke the presence
of `̀ coherent structures''Ðfor example, vortex ®lamentsÐamidst
turbulent ¯uctuations9,10. For the scalar, the excess (relative to K41)
¯uctuations on small scales and associated anomalous scaling
exponents, as well as ¯uctuations of the local rate of mixing, can
all be interpreted in terms of the structures revealed in experimental
traces such as that shown in Fig. 3a. The saw-tooth appearance is
indicative of a ®eld organized into a transient array of plateaux, up
to L in size, separated by sharp cliffs22,23. (The scalar in Fig. 3a is
constrained to have zero mean, which converts the plateaux to
ramps). Remarkably, such events are suf®ciently common (roughly
one per integral scale and turnover time) that the normalized odd
moments S2n+1(r)/Sn+1/2

2 (r) which according to the K41 isotropiza-
tion hypothesis should tend to zero as (r/L)2/3 with decreasing r (or
as Re-1/2 for the corresponding derivative ratio) do so very slowly
and possibly not at all7,23,25.

Furthermore, numerical simulations16,17,31 have shown most
decisively that the `structures' in the scalar are not mere footprints
of organized vorticity in shear ¯ow, but are intrinsic to mixing. In
the numerical simulation the velocity ®eld is a structureless,
arti®cial, gaussian process, yet the plateaux and cliff structures are
clearly evident (Fig. 3b). The mechanism is intuitively appealing:
turbulent mixing effectively expels whatever large-scale gradient
there is, forming patches of nearly constant scalar ®eld which are
reconciled with the existing large-scale gradients by the formation
of fronts (that is, intense gradient sheets).

Contrary to effective diffusivity notions, the sheets are sharp, and
form transiently in the vicinity of the hyperbolic points of the large-
scale ¯ow (Fig. 7 of ref. 16) where `jets' carrying high and low values
of the scalar collide. Large and small scales are thereby directly
coupled, producing large ¯uctuations on small scales and dominat-
ing high moments of the scalar structure function. If a static large-
scale gradients is imposed, the fronts preferentially align normal to
its direction and a violation of small-scale isotropization (for
example, an anomalously large third order moment) is produced
as well, so that odd moments computed numerically agree with
experiment16,17. The remarkable lesson here is that intermittency in
scalar mixing is intrinsic, decoupled from that in the velocity ®eld,
and approachable via the simpler problem of advection by random
¯ow pioneered by Batchelor12 and Kraichnan14,15Ðwhich we shall
discuss next.

Kraichnan's model
Scalar transport and mixing is described by the following advection/
diffusion equation:

]t£�r; t� � v�r; t�×=£�r; t� � k=2£�r; t� �1�

where £ is the scalar ®eld (that is, temperature or dye concentra-
tion), v(r, t) is the velocity ®eld, and k is molecular diffusivity. In the
absence of direct sources in the bulk of the ¯uid (which is often
the case), the scalar is driven by external boundary conditions,
which impose a time independent average h£�r�i. We are interested
in the deviations from this average, the ¯uctuations v�r; t�[
£�r; t�2 h£�r�i. Rewriting equation (1) in terms of v(r,t) we ®nd
on the right-hand side an additional term s�r; t�[ 2 v�r; t�×=h£�r�i:
the gradient forcing.

Alternatively, as a mathematical expedient, equation (1) can be
considered with a gaussian random source. In reality, the velocity
®eld is governed by the Navier±Stokes equation as appropriate to
the experiment or natural phenomenon at hand. However, in the
passive scalar model we replace real turbulent ¯ow by an incom-
pressible random velocity ®eld, which Kraichnan14,15 took to be
gaussian and d-correlated in time. The velocity ensemble is then
fully speci®ed by the two-point correlator14:

hva�r; t�vb�0; t9�i 2 hva�0; t�vb�0; t9�i � D�g�
ab �r�d�t 2 t9� �2�

where the magnitude of the symmetric tensor D(g)
ab (r) varies as

,|r|2-g and the dependence on the spatial indices ensures the
incompressibility (that is, ]a

r D�g�
ab �r� � 0). The averaging denoted

by h¼i is over the gaussian velocity ensemble. The two parameters of
the model are the scaling index g and (as the mathematical problem
is well posed in space of any dimension greater than 1) the spatial
dimension d, which will prove very useful analytically. To make
contact with physical ¯ows which have ®nite and scale-dependent
correlation time t(r), one compares edth�v�r; t�2 v�0; 0��2i with the
(lagrangian) relative diffusivity of particles. Thus Richardson r4/3

scaling of the relative diffusivity Deff(r) is recovered for g � 2=3. The
Batchelor, single-scale ¯ow, limit is described by g ! 0 and a `rough'
(non-differentiable) velocity ®eld by g ! 2.

Despite the relative simplicity of equations (1) and (2), the
statistics of the scalar ®eld is highly non-trivial. Kraichnan
demonstrated in 1968 (ref. 19) that these equations lead to
h�v�r; t�2 v�0; t��2i,rg, and thus, for g � 2=3, consistency with
KOC. Yet, he later surmised15 that all higher (even) moments of
the scalar difference exhibit anomalous scaling and thus that the
model equations (1, 2) also capture scalar intermittency.

The lagrangian view of mixing
The effect of advection (the v×=v term in equation (1)) can be dealt
with mathematically by changing from the laboratory (or eulerian)
coordinate system to lagrangian coordinates, which follow material
elements in the ¯ow. The diffusion term in these moving coordi-
nates would appear intractable but, thanks to the linearity of the
equation, the effect of diffusion may be correctly represented by
including brownian motion in the lagrangian dynamics:

d

dt
v�t� � s�r�t�; t� �3�

d

dt
r�t� � v�r�t�; t� � h�t� �4�

where v(t) is the scalar concentration of the ¯uid element
presently at position r(t) and h(t) is the Langevin noise
hha�t�hb�t9�i � kdab�t 2 t9� (introduced to represent the diffusion).
In the absence of sources, v is conserved along each trajectory, but
the scalar ®eld at the observation point r at time t is an average over
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all the trajectories of the Langevin ensemble. The ®eld at time t is
related to the ®eld at an earlier time t9 by:

v�r; t� � #dr9G�r; tjr9; t9�v�r9; t9� �5�

with the Green's function representing the probability of trajectory
(described by equation (4)) leaving from point r9 at t9 to arrive at r, t
given by a path integral32±35:

G�r; tjr9; t9� � #
r�t��r

r�t9��r9
Dr exp 2

1

2k #
t

t9
dt0�rÇ 2 v�r; t0��2

� �
�6�

The most likely trajectory arriving at the observation point (r, t) is
the one which makes the `action', in the exponent of equation (6),
vanish. This zero-action path is exactly the deterministic lagrangian
(L) trajectory governed by equation (4) without the Langevin noise.
For short elapsed time t 2 t9, the action localizes these trajectories
close to the L-trajectory so that equation (5) picks out the lagran-
gian pre-image of the observation point and equates the observed
v(r, t) to the v of the pre-image. At longer times, the kernel G in
equation (5) samples increasingly larger and larger volume of r9,
making the observed v(r, t) an average over the initial ®eld and
therefore decreasing its variance. This is how dissipation is repre-
sented by the path integral.

Having introduced the Green's function in equation (6), we
construct a formal solution of equation (1) with sources which
generalizes equation (5),

v�r; t� � #
t

2 `
dt9 #dr9G�r; tjr9; t9�s�r9; t9�:

The path integral lends itself to a semiclassical approximation: the
transition probability expressed in equation (6) is dominated in the
k ! 0 limit by classical, minimal action trajectories (governed by
the Euler±Lagrange equation) each contributing with the prob-
ability given by exp(-Ac/k), Ac representing the action on the
classical trajectory. For large t 2 t9, the classical trajectories diverge
exponentially with the Lyapunov exponent (which measures the
average rate of divergence) depending on the history of velocity
gradient traversed by the L-trajectory. When the r9 integral in
equation (5) extends over a region much larger than the integral
scale, the contribution of the sources self-averages, effectively
cutting off the t9 integral and de®ning a characteristic time for
which the `memory' of the sources persists. The latter quantity (on
average) coincides with the mixing time tp, but for each trajectory it
depends on the velocity ®eld in a well de®ned way enabling a
quantitative analysis of the ¯uctuations.

The semiclassical approximation was used in ref. 35 to calculate
the exponential tails in the single-point PDF P(v) in the presence of
a v-gradient uniform over scales q L. Although the transport
process between regions of size ,L is a random walk, large
excursions in v can occur for ¯uid parcels subject to little mixing.
This is controlled by the trajectory-averaged Lyapunov exponent
and, assuming gaussian statistics of v(r, t), one can show that the
probability distribution of mixing times is exponential35. The
exponential tails of P(v) follow, in agreement with experiments24,26.
A d-correlated velocity model is not a compromise with reality for
processes that naturally occur on times much longer than the
integral time tL, as is the case here. The tails of P(v) can matter in
practical problems. Consider the average rate of a thermally
activated process (energy Df) ed£ exp�2 Df =kB£�P�£� or the
probability that the pollution level exceeds some norm as it spreads
from a source. A gaussian versus exponential distribution make very
different predictions for the probability of rare events.

The statistical properties of =v may be computed in a similar
fashion (in the Batchelor limit)35±37. The key difference is that the
gradient is ampli®ed by the action of the strain along the path. This
ampli®cation is again controlled by the Lyapunov exponent along

the L-trajectory, and thus is in direct competition with dissipation
acting through divergence of nearby paths expressed in equation
(5). The PDF of the scalar dissipation P(=v)2) and the statistics of
the Lyapunov exponents are discussed in refs 36 and 37 and can be
compared with experimental data38.

Multi-point correlators
Further information about the ¯uctuating scalar ®eld may be
obtained by studying multipoint correlators, CN � hv�r1; t�v�r2; t�
¼v�rN ; t�i which involve simultaneous measurements of the ®eld at
N points. Unlike the traditional two-point structure function, SN(r),
these objects contain not only the information about scaling
properties but, through their dependence on the con®guration of
the measurement points, also probe the spatial structure of relevant
¯uctuations. Remarkably, these multipoint correlators also provide
a convenient point of departure for the mathematical description of
scalar statistics. An explicit path integral expression relating CN(t) to
its value at earlier times follows readily from equations (5) and (6),
but it is even more useful to consider evolution over very short
times. For Kraichnan's d-correlated model given in equation (2) the
latter may be expressed in a differential form14,35:

]t hv�r1; t�¼v�rN ; t�i � HN hv�r1; t�¼v�rN ; t�i � IN �r1;¼rN ; t� �7�

with the so-called `Hopf' evolution operator:

HN [ 2
îÞj

bD�g�
ab �ri 2 rj� � kdabc]a

i ]
b
j �8�

where the pair diffusivity D(g)
ab (r) de®ned in equation (2) appears

upon performing the gaussian velocity average. The inhomogeneous
source terms, IN(r1,¼rN, t), on the right-hand side depend only on
the lower-order correlators (N 2 2 and N 2 1 for gradient forcing)
so that equation (7) is a closed hierarchy which can be solved
starting with N � 2. This equation was ®rst written down and
solved for N � 2 by Kraichnan14. Physically, the Hopf operator
generalizes Richardson diffusion to many pairs of particles as they
follow their lagrangian trajectories. Just as for ordinary diffusion,
equation (7) is ®rst order in time and second order in spatial
derivatives. The same operator governs the evolution of a `swarm' of
N particles advected by random ¯ow, and de®nes the transition
probability from one con®guration to another. The evolution
operator HN plays the role of the hamiltonian in the Schrodinger
equation: this analogy with quantum mechanics is particularly
evident in the path-integral representation.

In the presence of steady forcing, the correlators become sta-
tionary, the time derivatives vanish, and each CN has to be
determined in terms of the previous Cj,N in the hierarchy by
inverting the Hopf operator HN. By analogy with the harmonic
polynomials which solve =2w � 0 and are necessary to satisfy the
boundary conditions in electrostatics, homogeneous solutions or
zero modes, HNW � 0, have to be added to each order to satisfy the
boundary conditions, where the inertial range solution is matched
to the large-scale ¯ow. Thus the general solution has this form:

CN � H 2 1
N IN �

ĵ

ajªN ;j �9�

Each term in equation (9) can be characterized in the inertial range
by a scaling exponent l, de®ned by f �bri� � blf �ri�. The exponents
for the inhomogeneous solutions H-1

N IN are given by simple dimen-
sional analysis, l�I�

N � Ng=2, and agree with KOC theory. However
for the zero modes of HN, the scaling exponents are non-trivial and
have to be determined as nonlinear eigenvalues along with ªN,j

themselves. (The index j further enumerates the behaviour of ª
under symmetries such as re¯ections, rotations and permutations.)
Each of the terms in equation (9) varies with scale as (r/L)lN,j and
hence, in the inertial range r q L, the term with the smallest positive
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exponent dominates, so that the structure function exponent is
zN � min{l�I�

N ; lN;j}. Anomalous scaling or intermittency corresponds
to zN , l�I�

N . Modes other than the one with smallest positive l
de®ne the rate at which all the details of the integral scales decay
away within the inertial range. (Negative lN,j also exist, and describe
how the in¯uence of dissipation or local source decays as r
increases.) This `̀ zero mode'' mechanism of anomalous scaling
was recognized and investigated independently in refs 18±20.

In identifying zN with the dominant scaling exponent of CN, we
have tacitly used the fact that the moments of the structure function,
SN, can be obtained simply by `fusing' points together. This can be
demonstrated explicitly. Furthermore, whenever a pair of points get
very close, say r � r12 much less than all other rij, one ®nds from the
local analysis using equation (7) that the r dependence of CN follows
S2(r) (refs 37, 39, 40). This allows the scaling of CN to be related to
the scaling of the correlators of dissipation at different points37

providing a link between the Hopf equation approach and the
traditional parametrization (since Kolmogorov's 1962 theory10,11) of
intermittency10 in terms of the ¯uctuations in the dissipation rate.
However, it is not possible to circumvent the need for global
solution of the (N 2 1) d dimensional Hopf equation for CN in
computing the exponents by working with the structure function
(depending on the single distance r). There is no closed equation
with any of the rij � 0, as is evident in the path integral formulation:
bringing the ri observation points together, for example, hvN(r1,t)i,
does not eliminate the need to integrate over N distinct trajectories
(now ending at the same r1).

The Hopf equation ignores the temporal correlations of the
velocity ®eld, tr < r2=3 except in so far as they enter Dab(r). However
at high Reynolds number ¯uid mechanics requires on average that
trDrV < r, that is, the displacement of two points in one correlation
time is of order their spacing. Thus, if one takes the t ! 0 limit
while maintaining trDrV < r scaling, the evolution equation (7)
must be scale invariant and hence the scaling dimension of the HN

should be 0. Because temporal correlations are de®ned in a
lagrangian frame, it is not possible to provide a simple gaussian
model in eulerian coordinates analogous to equation (2). One
approach is to eschew a model velocity ®eld completely and
model the Hopf operator directly, using symmetries and known
limits as a guide20,40. A similar methodology has proved effective for
the strong interactions in high-energy physics. Consequences of this
approach are contained in the following section, but the discussion
so far should already convince the reader that the scaling exponents
for CN do depend on the precise form of HN, and thus in principle
on more (or other) parameters than g and d which were de®ned in
equation (2).

Anomalous scaling
For general parameter values, analytic solution of equation (7) is
hopeless; but by moving away from the physical regime (d � 3,
g � 2=3), perturbative expansions for exponents can be obtained,
which de®nitively establish the intermittency corrections to KOC.
Three limits have been explored: (1) the diffusion limit 2 2 g p 1
(corresponding to a rough velocity ®eld) studied by Gawedsky and
Kupiainen18; (2) the large spatial dimension limit d q 1 of Chertkov
et al.19 and (3) the near-Batchelor limit g p 1 (corresponding to a
smooth velocity ®eld) studied by Pumir and the authors20,40,41. In the
former two limits the expansion is about a gaussian solution where
the 2n point correlators factorize pairwise. The two limits can be
combined into a single expression, z2n 2 zK

2n � 2 2�2 2 g�n�n 2 1�=
�d � 2� � o�2 2 g�2=d2. The nearly smooth ®eld case, g p 1, relies
on the integrability of the Batchelor limit20,40,42 resulting from the
underlying high symmetry of HN in that case. However, the
dependence on small g is non-analytic, and the required singular
perturbation theory has only been performed for N � 3. The third
moment, which appears in the presence of large-scale anisotropy, is
the lowest correlator with non-trivial scaling: z3 � 1 � o�g3=2�,
zK

3 � 1 � g. In the 2 2 g p 1 limit43, z3 � zK
3 2 2g=5 is also

anomalous. Furthermore, Pumir43,44 obtained a numerical solution
of the Hopf equation for N � 3 (and all g in d � 2; 3) yielding in
particular z3 � 1:38 for the physically relevant case of g � 2=3 and
d � 3.

Frisch, Mazzino, Noullez and Vergassola45 implemented the
lagrangian path integral representation of equation (4) as a numeri-
cal Monte Carlo algorithm for solving equations (1) and (2), and
calculated z2n for C2n by following 2n 2 1 points (the centre of mass
is irrelevant) backwards in time. Results for n � 2 appear in Fig. 4.
In addition, for a velocity ®eld with realistic temporal correlations
and g � 2=3, it has been established46 in two dimensions that the
z2n approach a constant value of 1.4 with increasing n. The
saturation of the exponent would be expected if intermittency
was due to front-like structures, and was predicted by the semi-
classical analysis47,48.

Returning to the third order moment, we note that it is interest-
ing both as a lowest-order anomalous correlator and because its
anomaly carries a clear physical signi®cance: it indicates that the
anisotropy which is always present on large scales ®nds its way to the
small scales. Enforcing isotropy on the large scales does not
eliminate this phenomenon, but merely requires a multi-scale
correlator to make it visible again. Experiments in many
geometries7,8 quite generally ®nd z3 < 1Ða much stronger
anomaly than the 1.38 found in the d-correlated model. The
disagreement is not altogether surprising given that, as we have

review article

644 NATURE | VOL 405 | 8 JUNE 2000 | www.nature.com

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1 1.5 2

γ

2ζ
2 

– 
ζ 4

Figure 4 Anomalous scaling exponent, 2z2 2 z4, versus scaling index g (see equation

(2)). The structure function, was obtained from the lagrangian Monte Carlo simulation45 of

the Kraichnan model (circles) and is compared with analytic perturbation theory18,41 of the

Hopf equation (blue, green) and the prediction of the linear Ansatz15 (red).
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already remarked, the latter model does not properly capture the
lagrangian correlation and that the scaling exponents are non-
universal eigenvalues which depend on the details of the evolution
operator HN. The class of phenomenological evolution operators
introduced in ref 20 allows for stronger intermittency. The theory
also produces a prediction for the full con®guration dependence of
C3(r1,r2,r3) which has been compared to the experimental measure-
ments in a wind tunnel25 (with an imposed temperature gradient).
The con®guration dependence of C3 is the simplest measure of the
`geometry' of the intermittent structures. Figure 5 illustrates how
the contribution (to C3) of randomly distributed, but preferentially
oriented, fronts depends on the geometry of the triangle (within a
naive model where the fronts are sharp, straight and of unitary
height). To the extent that z3 < 1 (expected if the fronts are sharp
and unitary), and the con®guration dependence based on the `naõÈve'
model qualitatively conforms with the observation, the front
interpretation stands. Yet both the explicit calculation C3 and the
observation25 exhibit quantitative deviations from the simple front
model, indicating that the height of the fronts, their width and
spatial extent all have non-trivial distribution46.

Higher multipoint correlators of v and ]v can be used to study the
latter in detail. It would be particularly interesting to examine the
four-point correlator h]v(r1)]v(r2)]v(r3)]v(r4)i. If the ¯uctuations
are dominated by sheets, this four-point object should be maximal
when the points are coplanar49. The decay of the correlator as one of
the points leaves the plane would quantify the width of the sheets
which may be expected to depend on the scale, controlled by the
separation of the other three points.

Lessons of scalar turbulence
The study of nonequilibrium problems has lagged behind systems in
thermal equilibrium because there is no way, analogous to averaging
over the Boltzmann distribution, to compute equal time averages.
Equilibrium statistical mechanics would be a very different subject if
it were necessary to time-average solutions to Newton's equations.
Thus, the recent progress in understanding passive scalar turbulence
was grounded on the computationally useful representation of the
stationary statistics. The lagrangian path integral formulation
mapped the problem into statistical mechanical form. The Hopf
equation (7) made possible systematic perturbative calculations of
the multipoint correlators. Qualitatively new is the mechanism for
generating anomalous scaling via zero modes of the Hopf operator
which associates intermittency effects with the existence of statisti-
cally stationary unforced solutions in the inertial range. The
operator is inherently multidimensional, and the statistics of the
multipoint con®gurations are essential to understand intermit-
tency. The theory naturally allows for an in®nity of subdominant
exponents that parametrize how all manner of large-scale aniso-
tropies decay away in the inertial range. There is good evidence that

the anomalous scaling exponents reach saturation for large N as
would be the case with sharp unitary fronts dominating large
¯uctuations as in Burger's `̀ turbulence''10.

Exponents appear as nonlinear eigenvalues, and thus depend on
all details of the velocity statistics embodied in the Hopf operator.
This dependence on the velocity ensemble makes the exponents for
passive scalar turbulence non-universal, and unless the statistics of
the turbulent velocity itself proves to be fully universal (that is,
independent of the forcing and boundary conditions) in an experi-
mentally attainable regime, this lack of universality should manifest
itself in observations.

The lagrangian path integral representation has provided both a
useful analytic tool and a new numerical simulation approach. It has
been used to produce considerable analytic insight into dissipation
statistics37 and into the nature of the direct and inverse cascade50, as
well as a reliable numerical calculation of the structure function
exponent45,46. Also signi®cant is the emergence of the 1/d
expansion19 in the context of turbulence51. The most immediate
application for these tools is in the context of the magnetic dynamo
problem34,49, where the ampli®cation of the magnetic ®eld vector is
in a certain way analogous to the behaviour of the passive scalar
gradient.

It is useful to contrast passive scalar turbulence with critical
phenomena at second-order phase transitions52, as both problems
exhibit scale-invariant correlations. The obvious distinction is that
the scaling behaviour in turbulence is con®ned to inertial scales
(r , L) and the correlations grow with r/L rather then decrease at
long distance as in critical phenomena. The universality in critical
theories is embodied by the ®xed-point equation for the effective
free energy at long wavelength, and that only two exponents suf®ce
to determine all the others. Scaling exponents are additive as long as
the ®elds entering the correlator are not at the same point and
develop `anomalies' when the observation points are fused. Cur-
iously, the situation is opposite for the passive scalar, where addition
of an observation point to a correlator picks up a new, higher-order
exponent, whereas points fuse with impunity.

The lessons and methods of the passive scalar problem have
implications for hydrodynamic turbulence, even though the de®n-
ing equations are no longer linear. Subgrid modelling or Reynolds
stress closures which seek to parametrize the unresolved small scales
have a long history in turbulence modelling11, and multipoint
correlators might point to better representation of the interactions
between scales. Furthermore, the tendency towards the formation of
structures for the passive scalar may be robust enough to carry over
to the velocity ®eld. In particular, scalar gradient sheets and their
alignment with the large-scale gradient may have an analogue in the
transient appearance of vortex sheet structures in shear ¯ow53,54. The
latter would result in the persistence of anisotropy on small scales
which becomes only stronger for higher-order moments.

Ultimately, the most signi®cant lesson of the passive scalar
problem is the fundamental importance of the multipoint correla-
tors. The con®guration dependence of CN is both measurable and
dynamically signi®cant. Prior work on turbulence concentrated on
either two-point statistics and its scaling or on `snapshots' of the
velocity or scalar ®elds and identi®cation of spatial `structures'.
Multipoint correlators naturally ®ll the gap between the two
approaches; they provide new, physically interesting observables
for the experiments and direct numerical simulations, and
ultimately new prospects for the quantitative understanding of
turbulence. M
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