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Waves and turbulence on a beta-plane 
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Two-dimensional eddies in a homogeneous fluid at large Reynolds number, if 
closely packed, are known to evolve towards larger scales. In  the presence of 
a restoring force, the geophysical beta-effect, this cascade produces a field of 
waves without loss of energy, and the turbulent migration of the dominant scale 
nearly ceases at a wavenumber Ic, = (PI2 U)4 independent of the initial conditions 
other than U ,  the r.m.s. particle speed, and p, the northward gradient of the 
Coriolis frequency. 

The conversion of turbulence into waves yields, in addition, more narrowly 
peaked wavenumber spectra and less fine-structure in the spatial maps, while 
smoothly distributing the energy about physical space. 

The theory is discussed, using known integral constraints and similarity solu- 
tions, model equations, weak-interaction wave theory (which provivdes the 
terminus for the cascade) and other linearized instability theory. Computer 
experiments with both finite-difference and spectral codes are reported. The 
central quantity is the cascade rate, defined as 

T = 2IOw kP(k)  dk/U3(k) ,  

where F is the nonlinear transfer spectrum and (k) the mean wavenumber of 
the energy spectrum. (In unforced inviscid flow T is simply U-ld(k)- l /dt ,  or the 
rate at which the dominant scale expands in time t . )  T is shown to have a mean 
value of 3.0 x 10-2 for pure two-dimensional turbulence, but this decreases by 
a factor of five a t  the transition to wave motion. We infer from weak-interaction 
theory even smaller values for k < kp.  

After passing through a state of propagating waves, the homogeneous cascade 
tends towards a flow of alternating zonal jets which, we suggest, are almost 
perfectly steady. When the energy is intermittent in space, however, model 
equations show that the casoade is halted simply by the spreading of energy 
about space, and then the erid state of a zonal flow is probably not achieved. 

The geophysical application is that the cascade of pure turbulence to large 
scales is defeated by wave propagation, helping to explain why the energy- 
containing eddies in the ocean and atmosphere, though significantly nonlinear, 
fail to reach the size of their respective domains, and are much smaller. For 
typical ocean flows, kil = 70 km, while for the atmosphere, l c ~ '  = 1000 km. In  
addition the cascade generates, by itself, zonal flow (or more generally, flow along 
geostrophic contours). 
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1. Introduction 
Casual scale anaIysis of atmospheric and oceanic velocity fields shows non- 

linearity to be significant on the energy-containing scale. Realizing this, theo- 
reticians, especially in meteorology, have studied two-dimensional idealizations 
of a turbulent fluid, omitting for simplicity the mean flow, baroclinity, rotation 
and orography. The most striking property of two-dimensional turbulence, its 
inability to dissipate energy at  large Reynolds number, had already been realized 
by Taylor in 1917. Somewhat later it was seen that, if only the energy is spread 
about a wavenumber space by the nonlinearity, it  must move predominantly to 
large scales. Meanwhile, linearized theories for the ocean and atmosphere were 
developed which neglected these effects, but included others: wave propagation 
on a rotating earth, or growth of instabilities on a smooth zonal flow, for example. 

Here we want to find how such extremes fare in a combined case, perhaps the 
simplest model to contain both turbulence and wave propagation. The governing 
equation for the stream function $ is 

D(V2$)/Dt +/3$z = uV4$-- RV2$, 

where D/Dt = a p t  + J($, ), 

R = ( u f / P ) i ,  f = 2Q sin (latitude) 

under the usual ,O-plane approximation (or assuming a physically realizable, 
slightly sloping, bottom with uniform rotation). Ox and Oy are axes directed 
east and north, respectively, u is the kinematic viscosity, s1 the earth’s rotation 
rate, /3 the mean value of the northward gradient of the Coriolis frequency f ,  
R the bottom drag and the velocity u = 5 A V$, j being anupward unit vector. 
Preliminary results were reported at the La Jolla IUCRM Symposium, June 1972 
(see Rhines 1973). 

2. Theory 
Two-dimensional turbulence alone 

First we describe the extremes. With /3 = 0, the dynamics are those of freely 
migrating source-free turbulence. The subjugation of viscous dissipation at large 
Reynolds number implies that time dependence, boundary constraints and other 
force fields will be especially important. 

The result of the theory most important here is that the spectral evolution of 
the energy-containhg eddies is predictable under weak assumptions, and inde- 
pendent of deMiled inertial-range arguments. The sense of the initial evolution 
(Batchelor 1953, p. 187) is found from the conservation laws for energy and 
squared vorticity, 

$/omEdk = - 2 u / r k 2 E d k - 2 R / r  Edk, 

k2E dk = - 2uIOm k4E dk - 2R /om k2E dk, ( 2 . 2 )  
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derived from (l.l), where E(k )dk  is the contribution to #V$Iz from Fourier 
components with wavenumber K lying in E < [K[  < k+dE, and k2E(k) is the 
contribution to Q[ V2@12 from the same interval. From (2.2), the squared vorticity 
is non-increasing in time; the right-hand side of (2.1) vanishes as v+O, R - to  
(Taylor 1917). The right-hand side of (2.2) is the subject of controversy in the 
inviscid limit, but it is never positive. Hence, if E(k)  is specified a t  t = 0 to have 
a first moment denoted by ( k ) ,  then the postulate that the peak will spread in 
time, i.e. that 

a / ( k - ( k ) ) 2 E d k  at > 0, 

requires [by (2.1) and (2.2)] that 

that the mean wavenumber, with respect to E,  decreases. The uneven spreading 
of energy is required by the ‘mass ’ of E(k)  being conserved while its moment of 
inertia about k = 0 is conserved (or decreases). If E is initially very narrow, no 
significant fraction of the energy (no more than one quarter) can ever reach twice 
the initial wavenumber. The fluxes of E to small wavenumber, and of k2E to large 
wavenumber, correspond in physical space to the formation of ever larger eddies, 
yet with their vorticity sheared out into ever thinner laminae. The cascade has 
manifested itself in diverse ways: the clustering of point vortices of like sign 
(Onsager 1949), which corresponds roughly to interactions among Fourier com- 
ponents of similar wavelength in the continuous case,? and the two-dimensional 
distortion of small eddies by larger ones, which, if it proceeds in the ‘obvious’ 
sense of the distortion of passive dye traces, transfers energy from the small to 
the large scales (Starr 1968, p. 20) .  It is interestingyhat the cascade may be 
reversed if v+ 0, t < co, by changing the sign of the velocity field at  any time. 
But the improbability of a backward cascade occurring is simply the improba- 
bility of the thin sheared-out tongues of vorticity in figure 2 ( d )  rewinding 
themselves. 

The details of the later spectral evolution are predicted by Batchelor’s (1969) 
similarity theory. If the energy-containing eddies become independent of v in the 
inviscid limit, and if they eventually become free of the details of the initial 
conditions, E(k,  t )  should depend only on the total energy, the wavenumber and 
the time. A suitable form is 

E(k , t )  = $U3tf(Ukt) as v+O (t+co), (2.3) 

where +U2 is the (constant) energy density and 

t Unfortunately, a single point vortex is no longer a steady solution of the equations of 
motion on a &plane, and attempts to model turbulence with them will then be misleading. 
Exact, finite amplitude, westward translating ‘vortices ’ like 

@ = Jo(r), r2 = &2((x-~t)2+yZ), G = -/I//?, 

do exist on a /3-plane, but they cannot be superposed, nor are they ‘isolated’. 
27-2 
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The shape f of the spectrum is undetermined; clearly it cannot fit all kinds of 
initial conditions universally. [For example, only one of Kraichnan's (1 967) 
family of equipartition spectra, E(k)  = k-1, remains steady according to (2.3).] 
The flow field implied by (2.3) expands in dominant scale according to 

d(k)-l/dt = T U ,  (2.4) 

where T - l =  IOm cf d t ,  a constant, 

(k) = 1 O0 kE E dk.  
0 

Values of T somewhat less than unity are expected, in analogy with the ' critically 
damped' cascade in three-dimensional turbulence, where U-2d Uzldt = Ak, U ;  
the efficiency A of this cascade N 1 if k ~ l  is taken to be the integral scale, 

(Batchelor 1953, p. 103). (The integral scale, proportional to the - 1 moment of 
the spectrum, seems to be greater than a typical rational length scale or even 
eddy diameter in the flow, and hence the efficiency A will be significantly less 
than unity when based on such scales.) 

What is particularly helpful is that this cascade is so dominated by the spectral 
peak that we may expect to be able to characterize the flow by single scales L, U 
and 7 - L/U (which would not suffice in three dimensions, where the spectra are 
broader). An experimental test of the similarity theory, and determination of 
the cascade rate T and its variability, should be a matter of high priority; some 
partial tests are reported in Batchelor (1969), Lilly (1971) and here in $3.  The 
form (2.3) conserves energy but not total enstrophy. Some comments on this 
problem, and on inertial subranges, are given in the appendix. 

Rossb y waves alone 

When the nonlinear term in (1 .1)  is very small, arbitrary initial values of the 
stream function can be decomposed into plane Rossby waves (plus a geostrophic 
zonal flow), and the time evolution followed simply. The wavenumber spectrum 
is invariant in time, if the domain is unbounded. Plane transverse waves 
I& = exp (iK . x " w t ) ,  by the linear inviscid version of (1. l), have the dispersion 
relation 

w = -PK.i/IKI2 (2.5) 

(1 and 3 are eastward and upward unit vectors, respectively), which favours long 
waves and north-south fluid velocities. The association of large frequencies 
with large scales is a special feature of these waves, and one that is important in 
what follows. 
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The combined case 

First consider the constraints analogous to (2.1) and ( 2 . 2 ) ,  taking the inviscid 
limit. Manipulation of (1 .1)  leads to an energy equation 

D(glV$l')/Dt = - V .  F, 

where F = - @D(V$)/Dt + &Pllf2f. The vector F is not a unique energy flux, but 
its divergence is unique, and equals V . (pressure x velocity). (This particular F 
happens to equal the product of energy density and group velocity in the limit 
of small amplitude.) 

A local conservation law for the enstrophy is found by multiplying (1.1) 
by V2@: 

D($IV2@[2)/Dt = - V .  G, 

G = - &p($; - $;, - 2$x$J = - J ~ I u ~ ~ ( c o s  28, sin 20), 

where u = j A V$ and 0 is the angle of u from east; tan0 = -@z/$u.t The 
enstrophy is in part advected, and in part transmitted in a direction T- 20 by 
the p-effect. In  the limit of small amplitude G reduces to the product of 4lV2$\' 
and the group velocity. 

Integral relations 

Taking a region 8 bounded by a contour 'Z with-outward normal n and arc 
length s, (2.5) yields 

In  the case of a periodic domain, the right-hand sides both vanish, leaving the 
usual conservation laws analogous to (2.1) and (2.2). In  the oceanically interesting 
case of rigid lateral boundaries, however, this is no longer true; see $4. For the 
present we restrict ourselves to a model atmosphere or mid-ocean region with 
re-entrant geometry in both directions. 

Conversion of turbulence to waves 

Imagine doing an initial-value experiment in which a closely packed field of 
eddies with a narrow spectrum peaked a t  k = k, is set off and allowed to advect 
freely. The dividing line between wavelike and turbulent dynamics occurs where 
the nonlinear and /3@x term in (1.1) are comparable; that is, where the Rossby 
wave steepness (the particle excursion divided by a quarter-wavelength, or the 
root-mean-square fluid velocity U divided by the phase speed cp corresponding 
to the dominant scale) is unity. With cp = ,8/2k2 for an average orientation of the 
wave crests, this defines the measure of nonlinearity to be 2k: U / p  = e.  In  terms 

t Exactly analogous relations exist for the physically realizable 'sloping bottom' model 
of the P-plane. 
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of spectra, the fluid velocity o ( k )  at a wavenumber k may be defined by inte- 
grating over the two octaves surrounding k :  

2k 
@(k)2 = E(k’)dk’ z kE(k)  

for a smooth distribution E ( k ) .  Then the curve corresponding to 

typically, is 
O ( k )  = c,(k) = /3/2k2, 

Epfk) = c1/32k-5, 

with c1 a constant of order unity, and divides turbulence (above) from waves 
(below). It is very steep because of the rapid increase of wave frequency with 
scale. 

If, then, the initial wavenumber k, in this experiment exceeds k, = /3/2U the 
dominant eddies will migrate towards large scales, and hence large characteristic 
times (kU)-l  (since energy is nearly invariant). But eventually the motions must 
evolve into Rossby waves, for the continual increase in both the length scale and 
advective time scale makes the restraint due to /3 doubly powerful. If k, $ kfi ,  
the dominant wavenumber will reach kp after a time 

- ( T k ,  U ) - l ( l +  2 + 4 . . . ko/kj)  - 29/T(/3U)4, 

which is independent of k, itself (the estimate T k U  for the turbulent-interaction 
rate has been used). 

Once the field has reached this scale, wave propagation will begin, and we now 
make the further suggestion that near kfi the wavenumber cascade will effectively 
halt. ‘Hot spots’ of vorticity will begin to radiate away before they are distorted 
advectively (recall that the cascade hinges on the ability of the shea? to elongate 
vorticity contours into ever thinner sheets). At the same time individual fluid 
particles will relinquish their random circulations and begin to oscillate about 
latitude lines. 

The hypothesis that the cascade to small wavenumbers will slow up sevhrely 
as the transition to wave motion occurs seems intuitive, for then weak, selective, 
spectral interactions replace the indiscriminate cascade of turbulence. But this 
description conceals the fact that, to the accuracy of scale analysis, second-order 
wave interactions are just as rapid as turbulence: each occurs in a time - (kU) - l ,  
even though in the former case many ( N e-1) wave periods may be required. One 
suspects, however (and we subsequently demonstrate), that the above estimate 
represents an interaction of the greatest possible efficiency, which turbulence 
approaches, yet which weak interactions fall short of, owing to their sensitivity 
to the relative phases of the Fourier components. P u t  most simply, wave inter- 
actions require wavenumber and frequency resonance, as well as physical 
coincidence, in order to fulfil the scale analysis of their cascade rate. 

The weak-interaction limit : cascade to small wavenumber 

Since the nonlinearity sends energy predominantly towards the wave regime, it 
is of interest to characterize, as generally as possible, the weak interactions that 
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can occur deep within it. The integral constraints (2.6) and (2.7) apply no matter 
how weak the nonlinearity, hence a spreading peak of energy must continue to 
move its centroid to smaller wavenumbers. 

Cascade to small frequency 
In  the turbulent regime the migration to small lc is also a migration to small 
frequency w, for the two are directly related, roughly with proportionality U.  
(We are thinking of the frequency that characterizes the Fourier time transform 
of the velocity over a time interval of several units of ((k) U)-l.) In  the wave 
regime E < 1 there is evidence from weak-interaction theory that the decrease in 
frequency continues, for it is easily shown that, in a resonant triad, the wave of 
highest frequency is unstable to growth of small amounts of seed energy in the 
two remaining numbers. This instability was demonstrated in an apparently 
general derivation by Hasselmann (1967). Some uncertainty has been expressed 
about the applicability of the general theory to Rossby waves, however, so we 
shall verify the result. 

The weak-interaction equations for three waves, 

$, = 9a i ( t )  exp (iK,. x - iw,t) ,  i = 1,2 ,3 ,  

are 
lcg - k i  

ci, = B- a,a,, I, m, n cycled 
k? 

(e.g. Kenyon 1964), where B is twice the area enclosed by the wavenumber 
triangle, B = ~ K , A  K21, k, = IK,J, ZK, = Xu, = 0, and w, = -PK,.f/lKiI2. 
Frequencies and wavenumbers may take either sign. Following Simmons (1969) 
we transform to amplitudes whose squares are proportional to energy density, 
yielding a, = Cw.B.8 z 3 k ,  

where 8, = kia, (no summation), 

Conservation of energy follows from the sum of the three equations. The ampli- 
tude of each member of the triad changes at  a rate directly proportional to its 
frequency. Take 0, to be the largest frequency, then w1 = - (w2 + 0,) and w2 and 
w3 have the sign opposite to that of w,. Now the initial-value problem &, = 1, 
a2 = 6, < 1, ti3 = S3 < 1 has solutions a2, a3 = (a2, 6,) eAt with positive growth rate 
h = (w,w,)~CJ&,f, yet if 8, = I, say, and 8, = 6, < 1 and &, = S3 < 1, the per- 
turbations aie damped, h2 = - I w1w31 C2(8212, verifying Hasselmann’s conclusion. 
(The amplitudes S2 and 6, must occur in the ratio (w2/w3)4 for the unstable case. 
Arbitrary values of 6, and a,, specified initially, will excite in addition the 
damped mode.) 

In  this particular problem the energy moves predominantly to small fre- 
quencies. If the system were closed, with no other wave components admissible, 
the field would return periodically to its initial configuration, but McEwan (1972) 
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and Martin, Simmons & Wunsch (1972) have emphasized that the interaction 
sets are open, allowing a continuous cascade to lower frequencies via an ever 
widening set of triads. Their experiments, especially the latter, show this 
preferred sense. 

Anisotropy : zonal currents 
This movement of energy simultaneously towards small wavenumbers and small 
frequencies cannot occur with the field remaining isotropic, for the dispersion 
relation (2.5) would associate small frequencies with Zarge wavenumbers if we 
were to  fix the direction of propagation. The fluid must adjust by favouring 
north-south wavenumbers (east-west currents) : the eddies are flattened by the 
p-effect. Kenyon (1967) found this to occur in particular calculations of the 
initial tendency of a weakly interacting continuous spectrum. 

Such production of zonal energy contrasts with the often-cited inability of a 
precisely zonal current to gain or lose energy from triad interactions with 
planetary waves (e.g. Longuet-Higgins & Gill 1967; Newel1 1970). But a likely 
end-state of the cascade, in fact, is a steady zonal current, bands of eastward and 
westward flow alternating with scale somewhat larger than, but of the order of 
(2 U//3)S. This is because, as the anisotropy increases, the north-south velocities 
become slight perturbations, to which the flow is absolutely stable if /3-u,, 
never vanishes (a= -I+?v), Stability in the mean occurs if I+?, p I+?z and 
/3- U(k4)3 > 0. We have shown that the cascade causes (k )2  to fall below /3/2U, 
so that unless (k)2/(k4)9 is very small (recall the peaked shape 0: the spectrum) 
the ‘average’ flow is indeed stable, and most non-zonal motion will die expo- 
nentially away. These remarks apply to homogeneous fields of eddies, but if 
the energy is intermittent in space, the onset of wave propagation will spread 
the energy ever more thinly, causing interaction to cease before the zonal state 
is reached. This will also occur if the eddies are overdamped bffriction. 

Estimates of the interaction rates : Kenyon’s result 

It has been conjectured that the wavenumber cascade will proceed much more 
slowly once the transition to wave motion has occurred. If the nonlinearity were 
of third order rather than second, resonant interactions would require four waves, 
and the cascade ‘barrier ’ could be established by scale analysis (one has a feeling 
for the suddenness of such a linear-nonlinear transition with surface gravity 
waves). Here, with triad interactions, this cannot be done, and so we look to 
numerical computations of the interactions like those of Kenyon (1967). One 
consequence of the Hasselmann formulation for homogeneous fields, of course, 
is that the solution for the cascade from a given set of waves holds for arbitrary 
amplitude (so long as it is sufficiently small), the time being rescaled by the 
average wave steepness. Thus, the weak-interaction theory predicts T to be 
independent of E for E < I. 

Kenyon used two model spectra as initial conditions for this tendency calcula- 
tion. Prom the first, a narrow-band spectrum centred on (0, - k) with an angular 
dispersion of 22” and wavelength dispersion of I0 yo, we estimate T s 4 x 
The second model was isotropic, with the same wavelength distribution, and led 
to a value of T so small that it was not measurable from the published figure. This 
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is not to say that the resonant interactions were all inefficient, but most of the 
initial change in the spectrum involved orientation, rather than wavelength. To 
see this, we estimated a second version of the cascade rate: 

which is sensitive to changes in the vector wavenumber spectrum l?(K). The 
result is much larger estimates T’ = 4.7 x 10-2 and 3.3 x for the two 
respective initial conditions. 

Lorenz’s and Gill’s results 
The reason for the smallness of T is thus that the wave interactions send energy 
to other directions more readily than to other wavelengths. The different, yet 
still analytical approach of Lorenz (1972) and Gill (1974) may be used to reach 
the same conclusion. A single plane Rossby wave of arbitrary amplitude is found 
to be unstable to  the growth of other Fourier components. In  the case E 4 1, we 
showed earlier that the energy flux from the primary wave into two growing 
waves, subscripted 1 and 2, occurs in the ratio wI/w2. Now the resonance condi- 
tions mapped out by Gill contrive to give the longest wave of the triad an especi- 
ally small frequency, and hence the long wave, which would lead to significant T, 
is in disfavour. A primary wave (w,, k,) directed due west, for example, has most 
unstable partners (w,, k,) = (0.80w0, i.09k0) and (a,, k,) = (0.20w0, 0*54k,), with 
energy flux into the wave of nearly the same length (k,) which is four times greater 
than that into k,. The cascade rate T calculated from Gill’s results for the most 
unstable perturbations to a basic wavenumber ( - k,, 0) is 

T = O.O12m/(l- 0.025~n)~ z O.O121h, 

lllz being the fraction of the total energy lying in the perturbations. The calculation 
is strictly valid only for small m, but suggests values T M 3 x 10-f6 x for 
a well-developed instability (m = 0.25-0.5). The numerical rates are similar to 
those found from Kenyon’s model despite the vastly differing initial conditions. 

The calculation also works for large 6, providing the simplest imaginable model 
of the turbulent cascade with negligible wave propagation. In  this case 
T M 0.045m, nearly four times larger than with E < 1, approaching T = 2.4 x 
at m = 0.5. The difference is that the aversion to changes in IKJ does not occur 
in this case, fully 38 yo of the energy going to the wavenumber 0.59k0 and most 
of the remainder to  1.16k0. 

Both linear and weakly nonlinear theory suggest cascade rates that are similar 
to those found in the turbulence experiments, to be described below. There are, 
however, questions about the theory which deserve study. It is difficult to 
account for the changing bandwidth of the instability, for example, in proceeding 
from large to small 6. But the qualitative feature, the favouring of energy flux 
to new directions of K rather than new magnitudes IKI when /3 is strong, and the 
consequent inhibition of the cascade appear to be reliable. 
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Inhomogeneity : a model cascade 
The above estimates suggest that T should be an increasing function of E .  If, in 
addition, the energy is inhomogeneously distributed, this tendency can even be 
stronger. Within sparsely distributed patches of energy, surrounded by quiet 
fluid, turbulent interactions will prevail, but, once waves begin to radiate, the 
energy will quickly be distributed over a broader area, reducing E ,  and hence the 
real-time cascade rate d(lc)/dt. But in addition the number of Fourier components 
present in the far field may be few, making it less likely that conditions for weak 
resonance will be satisfied. Viscous damping can accentuate this situation by 
preventing the far-field ‘mix ’ from becoming rich. The contrast between cascade 
rates (even after rescaling by the local E )  in the turbulent and wavelike regions 
will increase with this kind of intermittency. 

Consider a model of a turbulent ‘spot’ which is surrounded by fluid a t  rest; 
classically this would be an entrainment problem. Take the dominant diameter 
of the energy-containing eddies to be L, the radius of the patch to be R (9 L)  
and a typical velocity of the eddies within to be U .  A plausible set of model 
equations is 

R = pL2, L = TU, U R  = U,R,, 

where the dots denote time derivatives and /3, T ,  U, and R, are constants. The 
first relation says that the region of motion expands into its Surroundings at the 
group velocity of Rossby waves (ignoring anisotropic effects), the second, that 
the dominant scale increases a t  a rate TU, and the third, that the total kinetic 
energy is conserved. 

The implicit solution is 

where a subscript zero indicates a prescribed initial value. The dependence of R 
upon L is so severe as to resemble a step function. Initially the eddy scale L 
increases linearly, without a great change in R, then the patch increases explo- 
sively in size, reducing U, and thereafter the change in L is much slower than 
logarithmic. Time histories of L and R for a particular case are shown in figure 1. 
The scale L, a t  which linear growth of L (‘turbulence ’) gives way to linear growth 
of R (‘radiation’) is L, = (3U,R0//3)*. 

A termination of the cascade can thus occur through the spreading of energy 
in space. The two length scales of the evolved waves given by the entirely different 
closures have a Tatio k j  L, = 3*(/3Ri/U,)6. kp  L, is nearly unity for geophysical 
choices of the initial conditions. The same parameter, /3Ri/U0, determines whether 
a patch of turbulence is effectively unbounded (if large), L tending to k ~ l  before 
radiation to the exterior has an effect, or effectively intermittent (if small or order 
unity). The model could be criticized for overestimating R in the nonlinear 
regime and overestimating L in the linear regime, but more accurate expressions 
would only accentuate the tendency for R to ‘explode’ and L to equilibrate. 
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FIGURE 1. Growth with time of the radius R of an isolated region of eddies of (changing) 
length scale L, according to the simple model equations (2.10). 

Equilibrium spectrum ? 
It can be argued that the slowing down of the cascade once the spectrum has 
crossed the transition will cause a statistically steady spectrum E M E,(k) to 
develop. For this to work, energy must constantly be supplied, and either dissi- 
pated a t  wavenumbers near kp or allowed to fill out the equilibrium spectrum at 
ever smaller wavenumbers. The detailed arguments for the development of 
equilibrium share some of the difficulties of other predicted, steep, geophysical 
equilibrium spectra, and make the precise power law uncertain. A superficially 
appealing statement is that in each band of wavenumbers energy in excess of 
Ep(E) will be 'turbulent' with large cascade rate T and will flow to smaller wave- 
numbers until that band just becomes wavelike, inhibiting further change. This 
is like the local saturation of wind waves (Phillips 1966), but in reverse. The 
difficulty is that, with a k-5 law, the shear working on eddies of wavenumber k 
is really dominated by those of smaller wavenumber (lying near the spectral 
peak), making the local argument suspect. Nevertheless the k3 spectra of two- 
dimensional turbulence and of wind waves have been useful, if temporary (and 
often overstressed) ideas. The corresponding dimensional argument, that the 
spectrum should depend only on /3 and k itself a t  large Reynolds number and far 
from the peak, is unconvincing for the same reason, that the position of the 
spectral peak is a vital parameter. 
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The conclusion is that this flow is dominated by the energy-containing eddies 
and, better even than two-dimensional turbulence, characterized by single 
dominant scales U ,  k and T N (kp U)-1. In  a steadily forced flow the spectrum 
should develop a peak at k,, decreasing rapidly towards larger k. 

3. Numerical experiments 
To test these ideas, (1 .1)  was integrated by a CDC 6600-7600 computei. Three 

different programs, and two different numerical schemes, were used: first, a 
64 x 64 finite-difference model (called FD64 here) with a second-order Arakawa 
formulation of the nonlinearity and Adams-Bashforth time step. This was 
essentially the coding used by Lilly (1969 ff.) in his successful studies of two- 
dimensional turbulence. Subsequently, 128 x 128 (SP128) and 64 x 64 (SP64) 
Fourier-mode Galerkin programs were used, borrowing the coding developed by 
Orszag (1971) and Fox & Orszag (1972), with centred time differencing and 
removal of all aliasing effects. Each program was tested with known analytic 
solutions. Linear Rossby-wave propagation was accurate for wavelengths 
greater than 6 grid intervals or so (FD64) and nearly perfect in the spectral model 
(but for errors in time stepping). An advection test was made, similar to Orszag’s 
test with coloured cones, in which a small Gaussian vortex was superimposed 
upon a disk-like rotation of the fluid (any steady solution may be rotated, with 
/3 = 0). The test seemed severe, but vortices of diameter four times the cut-off 
wavelength (spectral model) moved several diameters before distorting notice- 
ably. The spectral code was able to produce thinly sheared-out vorticity contours 
(figure 2a) rather better than the finite-difference model. Seven turbulence experi- 
ments are described here, representing perhaps two-thirds of the number carried 
out. The remainder were rejected only because of obvio& numerical inaccuracy 
or outright instability. Table 1 gives a summary of the runs. The intention is not 
to make exhaustive comparison of different numerical schemes: see Orszag (1 971) 
and Herring et al. (1974) for such information. 

Turbulence alone 

Experiments similar to Lilly’s (1971) work were repeated with each of the 
programs (runs 1, 2 and 3) as controls, and because experimental values for T 
with pure turbulence are of interest in themselves. Values of the stream function 
were initially set by choosing randomly from the population of Fourier compo- 
nents with scalar wavenumber 7, 8 or 9 (FD64 and SP64) or 11-14 (SP128, 
figure 2 b ) ;  the ttTavenumber 1 is periodic in the width of the square box, and an 
integer wavenumber N refers to all vectcr wavenumbers falling in a unit annular 
band of mean radius N .  Subsequently the flow was allowed to migrate freely, 
without forcing, with weak damping and periodic boundary conditions. 

A detailed realization of Batchelor’s solution for the free cascade is an 
important goal, but here we can test only the gross behaviour of (2.4). The evolu- 
tion of the dominant eddies is of more interest to the present problem than the 
indirect measures of the cascade, the dissipation of enstrophy and energy, 
examined by Lilly (1971). (Recall that Batchelor’s (1969) result predicts the 
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FIGURE 2. (a)  Vorticity contours for a typical pure-turbulence run, p = 0, using FOX & 
Orszag’s spectralcode. -,positive ; ------, negative. ( b )  Streamline field near the beginning 
of the free-evolution experiment (21st time step), /3 = 0, run 2. Contour interval = 0.038. 
See table 1 for details. ( c )  Streamlines at t = 6.8 (725th time step), run 2. Contour interval 
= 0.1. (d )  Vorticity contours a t  t = 5.8, run 2. Contour interval = 1.3. 

enstrophy flux at the upper end of validity of the similarity solution; whether or 
not this should be equated to the dissipation of enstrophy in these transient flows 
is unclear. In  addition the enstrophy dissipation, cc k4E, is notoriously difficult 
to simulate.) 

The flow in figure 2 ( b )  (with p = 0) cascaded in the usual fashion to large scales. 
Figures 2 (c) and (d), showing the stream function and vorticity at time t = 5-8, 
indicate the irreversible distortion responsible for the enstrophy moving to large 
wavenumbers. By following the development of the vorticity filaments, one 
learns to assess the goodness of the simulation; a t  excessive Reynolds numbers 
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Waves and turbulence on a beta-plane 

Run / 3 

7 
c 4 

t 

6 

43 1 

FIGURE 3. Experimental growth of the dominant scale of the eddy field with time. 
-, p = 0; ---, ..*.., p > 0. U,, is the particle velocity at time t = 0. Run numbers 
indicated. 

a ‘droplet’ instability occurs (particularly in FD64) in which the filaments break 
up, artificially accelerating the cascade. 

An experimental test of (2.41, figure 3 (solid curves), shows the increase with 
time of the dominant scale (k)-l  for each of the numerical models. The ordinate 
has been normalized by the initial r.m.s. velocity. A combination of statistical 
fluctuation$ (initial conditions were not identical) and inherent differences in 
accuracy caused the curves to differ. But, on the whole, the increase of scale with 
time occurred smoothly across 2& octaves of (k), with little change in rate once 
the spectrum had broadened and forgotten its initial form. There was some sign 
of the cascade slowing down when the confines of the computational box were 
felt (see run 2, final (k) = 3.3, or run 1, final (k) = 2.2), but perhaps less so than 
would be expected from Kraichnan’s (1971) prediction that the cascade involves 
essentially wavenumbers far smaller than (say less than 20 yo of) (k). 
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I I P 
1 2 3 

€-I 

FIGURE 4. Cascade rate T ws. inverse wave steepness E-1 = P/(~U(JC)~) .  Error bars, for the 
pure-turbulence runs, indicate the spread of T remaining after averaging over 100 time 
steps. SP128: 0, run 2; (>,run 5; 8 ,  run 6. SP64: 0, run 3; 0 ,  run 7. FD64: A, run 1;  
A,  run 4. Correction has been made for viscosity (Tp). Curve faired by eye. 

The cascade rate was evaluated in two ways, both from its definition 

T = 2lOm kP(k)  dk/U3(k) 

in terms of the transfer spectrum and by measuring the change in the mean wave- 

where Re = U / ( k )  v and (En) = / knE d k / /  E dk, depending on the first three 
moments of E(k) .  The results were in agreement, and henceforth, and in table 1, 
the second method, in which T = Tobs - T,, is used. Tobs is just the slope of the 
curves in figure 3, which is shown corrected in figure 4. The purely turbulent 
cases (p = 0 )  lie along the vertical axis; the mean of each run is plotted, with 
brackets indicating the maximum and minimum T found in any block of 100 
time steps. The value T = 3.00 x 10-2 is most representative of these experi- 
ments, the standard deviation from this value being about 15%. While we 
cannot fully represent the physics of infinite Reynolds number, unless the truly 
inviscid spectra turn out to have shapes very unlike ours the corresponding T’s 
will be similar. Other measures of the cascade could have been defined, for 
example T 7 IdE(k)/dtl/U3(k). In  these experiments T’/T z 2. 

SP128, run 2, seemed to be running a t  an optimal Reynolds number ( N 150), 
judging by figure 2, whiIe in SP64, run 7, Re ( N 30) was smaller than necessary, 
and in PD64, run 1 (Re 21 200), it  was somewhat larger than was strictly valid. 
Nevertheless the corrected cascade rates agree surprisingly well. 

An interesting statistic describing the breadth of the wavenumber spectra is 
the ratio of the standard deviation about the mean to the mean: 

((k - ( k > ) 2 ) l ( ~ > 2  = (k2)/(k)2-  1- 
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The initial behaviour of a narrow spectrum causes the breadth to increase. 
Values (table I )  for p = 0, averaged over entire runs (but omitting the period of 
initial transience), are 0.34 for SP128, which is the most reliable value, 0-28 for 
SP64 (rather viscous) and 0.68 for FD64 (rather aliased). For comparison, a 
model spectrum E = k-4 for wavenumbers above some cut-off (and E = 0 below) 
gives a constant value of Q. A k-3 spectrum above a cut-off is, by our definition, 
infinitely broad (logarithmic divergence). The breadth implied in Batchelor's 
solution is 

also a constant. 
The spectral shapes at  large wavenumber (yet below the viscous cut-off) are 

quite well defined (table I). In  SP128, run 2, E cc k-4'3, suggesting that spectra 
at large Re may indeed be steeper than the famous k3 law. 

Waves and turbulence 

The effect of wave propagation is most easily seen in time-longitude diagrams 
ofthe stream function at a single latitude, with and without 8. Figures 5 (a) and (b)  
show a purely turbulent case, run 2 (at two latitudes, y = 0 and y = n). The 
coalescence of the initially small eddies occurs until the size of the box is 
approached (in these plots the apparent wavelength is somewhat greater than 
2n[(k) ,  essentially because @ is a smoother quantity than the velocity; the 
spectrum of @ is k-2E(k) ) .  Beside the space-time plots are drawn triangles whose 
hypotenuses have slope 77-l. Similarity suggests that typical slopes of the 
contours vary with U ,  with constant of proportionality 2nT 21 0.2. 

A very weak beta-effect is present in figures 5 ( c )  and ( d ) ,  run 5 ,  for which 
initial conditions were identical to those in figures 5 (a )  and (b).  The wave steep- 
ness E was 158 at the start, so that turbulent effects dominated. By mid-run, 
Fourier components of larger scale began to propagate westward with phase 
speed given by the slopes of the @ contours. Then E had reached 15. No alteration 
of the purely turbulent cascade rates occurred, for the energetically dominant 
wavenumbers had not begun to propagate. Finally, at the end of the run, the 
wave steepness had reached 5.9,  and westward propagation was becoming estab- 
lished a t  all latitudes (the steepness of Fourier components with k = 2, which 
contribute heavily to the figure, had descended to 2.2). The corresponding 
time-latitude plots show no systematic phase motion. 

Owing to the finite computational region, which defines the largest possible 
eddy (hence the smallest possible E ) ,  the small value of pin run 5 affected only the 
phase of the biggest eddies, and not the energetics; the wavenumber spectrum 
differed by a t  most a few per cent from that in run 2 .  Run 7 (SP64, figure 5f), 
with larger 8, began roughly where run 5 left off. Westward propagation was 
evident a t  the very start, when E = 2.5. It accelerated with time, as the eddies 
increased in size. After E reached unity ( t  = 2.5),  further changes were gradual. 
Recalling that for simple Rossby waves the westward phase speed c, = p/k2 

depends only on wavelength, the prediction for the transition from turbulence 
to waves becomes just c, = 2U (when k = kP). For comparison, the observed c,, 

28 F L M  69 
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t 

t 

X 

(c )  

FIGURE 5. Time-longitude plot of the stream function. Time increases downwards. Tri- 
angles have hypotenuses of slope U-I. Units of lo3. (a) Run 2, p = 0, a t  latitude y = 0. 
I n  this purely turbulent case the scale increases without propagation. (a) Run 5,  weak 
beta-effect, p = 3.25, a t  latitude y = 0. (c) Run 2, p = 0, at latitude y = 7r. ( d )  Run 5, 
B = 3.25, at latitude y = n. (e )  Run 3, SP64, pure turbulence, p = 0, at y = 0. (f) Run 7, 
strong beta-effect, p = 52, at y = 0. Here there is some turbulent increase of scale, but 
westward propagation of Rossby waves dominates both the phase and, eventually, the 
energetics. The final quarter of the run is heavily viscous. 

A 
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n 
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7.1 
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7. I 
2 

(f ) 
FIGURES 5 (c f ) - ( f ) .  For legend see facing page. 
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averaged over 3 < t < 4, was 1-1 and 2U was 1.0. As these numbers and the 
comparison of the inclination of the phase lines with the adjacent triangles show, 
the field of motion seems to sense this transition by taking up the linear dispersion 
relation and relinquishing nonlinear changes in scale. Two features, however, 
tended to make cz exceed 2U at the later stages, t > 5: first, components domi- 
nating the space-time plots have rather smaller wavenumber than (k), and 
second, the large viscosity in this run, by itself, caused (k) to decrease and E to 
fall below unity. For comparison, figure 5 (e) shows the evolution from identical 
initial conditions but with /? = 0 (run 3). Further experiments, with FD64, are 
reported in Rhines (1973). 

The variation of the dominant scale with time is shown, for runs with the beta- 
effect, by dashed curves in figure 3. Despite the range of Re present, the slowing 
down of the turbulent cascade is evident, particularly when pairs of runs using 
the same program and the same initial conditions are examined (runs 1 and 4 or 
3 and 7). Figure 4, showing the cascade rate as a function of E - ~ ,  gives the clearest 
demonstration. T decreases by a factor of five between e - l =  0 (where 
T = 3 x 10-2) and e - l =  1 (T = 6 x There is rather little scatter about the 
faired curve considering the variety of codes, initial conditions and Reynolds 
numbers, and also the inherent unpredictability of nonlinear flows. 

The few points in e-l > 1, which have entered by losing their steepness to 
viscosity, show values of T descending to  0.0015 at e-l = 3. But the corrections 
T, are so large then (table 1) that we do not have great confidence in such points. 
Primitive integration of the equations becomes difficult in E-1 % 1 (if one waits 
for significant nonlinear effects to occur) and in this sense the computer and 
theoretician complement one another. Further work to better establish T(e) is 
awaited. Kenyon’s and Gill’s linear theories suggest values of T of the order of 
those observed a t  both extremes: T . 5  4 x (Kenyon, E aj 1); T M 3-6 x 10-3 
(Gill, E << 1); and T M 1-3 x (Gill, E 9 1). 

The linear dispersion relation for Rossby waves appears to have escaped non- 
linear modification for Fourier components whose E was as great as 2. Table 1 
shows that the experimental westward phase speed in this range, inferred from 
the x, t plots, usually differs from / ? / ( l ~ > ~  by less than the error in determining the 
appropriate choice for k. 

Anisotrop y 

Our theoretical arguments, and Kenyon’s tendency calculation, predicting 
a growing anisotropy due to beta, were borne out in all runs. Figure 6, for example, 
shows the streamlines for runs 3 and 7 (SP64) at t = 5.1. The eddies in run 7 
manage to cluster together along latitude lines more easily than across them, and 
eventually form alternating bands of mean current across the fluid. The ratio of 
r.m.s. northward to r.m.s. westward velocity is about 0.5 and decreasing. Further 
examination of the prediction that the end-state of the cascade is a steady pattern 
of zonal jets is merited. 

Vorticity and breadth 

The slowing down of the energy cascade affects also the vorticity field, for it is 
the very movement of energy to small wavenumbers that permits squared 
vorticity to go to large wavenumbers. By inhibiting the former, we have removed 
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( a )  
FIGURE 6. Streamlines at  t = 5.1. (a)  Run 3, /3 = 0, contour interval = 0.16. ( b )  Run 7, 
strong beta-effect, /3 = 52, contour interval = 046.  Beside keeping the scale small, beta 
acts to produce predominantly zonal flows. 

the supply of vorticity for the latter. Given a persistent dissipation of enstrophy 
a t  large wavenumbers, the vorticity field must lose much of the fine-structure 
associated with two-dimensional turbulence. The shearing of the vorticity con- 
tours into thin laminae gives way to the propagation of vorticity without 
significant changes of wavenumber. 

The energy dpectra respond by narrowing. A typical value (table 1) for the 
evolved spectra, of the breadth, is 0.1 (with /3) compared with 0.34 (without) and 
a typical shape of the spectrum above kfl is k-5*4 (with /3) compared with k-4'3 
(without). This makes ever more valid the simplified description of the field by 
single length, time and velocity scales (or perhaps pairs of scales, owing to the 
growing anisotropy), and suggests the reason for the success of the scale analysis 
used to establish these phenomena. 
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'*:\ \ 

FIGURE 7. Evolution of wavenumber spectra, runs 3 (/3 = 0) and 7 (p = 52) ,  from identical 
initial conditions. The Reynolds number is rather small, causing the tail to slope very 
steeply. Solid curves correspond to p = 0. 

Figure 7 is a time sequence of energy spectra, with and without p, from SP64 
(runs 3 and 7), corresponding to the fields shown in figure 6. In  the absence of p 
the flow expanded quickly. The interactions? seemed to have a great reach, 
sending energy from a wavenumber of 10 to a wavenumber of 1 almost at the 
outset. With p present, the spectra evolved in smaller steps, remaining narrow 
and increasing the dominant scale slowly. The Reynolds number of these runs 
was rather small (20-40), and consequently the large wavenumber tail was 
steeper than normal (table 1). Other spectral plots may be found in Rhines (1973). 

4. Geophysical applications and conclusion 
Two-dimensional turbulence models have been applied t o  the dynamics of the 

atmosphere, mostly to  rationalize the steep spectral slope found at large wave- 
number. But it may be that such barotropic models are, instead, more relevant to 
(global) wavenumbers smaller than about 7, at which wavenumber kinetic 

7 Nonlinear barotropic models have been criticized for omitting interactions with 
baroclinic modes (whereas in linear constant-depth models the modes are independent), 
but work in preparation with a baroclinic computer model shows the present results to 
have extensive validity. In addition, initially pure barotropic motions remain so, even in 
a baroclinic model. See also Gavrilin, Mirabel & Monin (1972). 
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energy is being supplied from the large-scale temperature field. In  this case there 
is need to explain the lack of violently 'red' spectra, for turbulence left to itself 
would quickly produce eddies of global extent. Observed spectra, however, tend 
to be level or to decrease at wavenumbers less than 5 (e.g. Leith 1972, figure I). 

Any of several geophysical effects neglected in the pure-turbulence model may 
account for this: mean-flow interactions (although the direct flux of energy from 
eddies to the mean flow is small, relative to other sources and sinks, the eddy field 
is delimited by the mean zonal flow, meanders of the jet stream in fact being a 
part of the nominal eddy field); dissipation by friction [Lilly (1972) recognized 
the short (3- to 6-day) e-folding time for kinetic energy to dissipate, and con- 
structed a turbulence model with forcing balanced in the mean by surface drag. 
Energy put in, say at a wavenumber of 8, proceeds towards larger scales but is 
quickly damped, leading to a realistic spectrum. Use of such estimates of overall 
dissipation, however, may exaggerate its effect on the 'red' cascade, for less than 
half the observed dissipation occurs in the surface boundary layer, and the rest 
appears to be intermittent in space, as Lilly points out]; or, in the present case, /3. 

As evidence for the importance of /3, the zonal wavenumber corresponding to 
kfl falls between 3 ( U  = 15 m s-l, 45" latitude) and 5 ( U  = 10m s-l, 35" latitude), 
implying a barrier to the cascade, which helps to explain the observed flattening 
of the spectra. Indeed, Elliasen & Machenauer (1965), and of course Rossby, have 
invoked wave dynamics to explain the progression of phase a t  long and ultra-long 
atmospheric scales. There is also anisotropy in the observed fields reminiscent of 
the present experiments. Spectra of north-south winds overlie spectra of east- 
west winds a t  larger wavenumbers, but, below k = 5 or so, there is considerably 
more energy in the east-west winds (see Kao & Wendell 1970; Elliasen 1958; 
Baer 1972, who uses an isotropic index, so that his spectra are more like those 
in this paper). 

Examination of the general circulation models should reveal the relative 
importance of wave propagation in determining the true spectrum. I hope, a t  
least, that the present work will help in understanding the partial models of 
atmospheric processes. For instance, the strong dependence of T on E argues 
against total acceptance of either Kenyon's (1967) weakly interacting model of 
energy near a wavenumber of 5 (which predicts too slow a cascade) or the applica- 
tion of pure two-dimensional turbulence a t  longer scales (which cascades too 
quickly). 

For the ocean the transition scale kjjl is 70 km, based on 5 em s-1 (barotropic 
component) currents at  30" latitude. (The box represents 2300 km of ocean, with 
the time unit 83 days.) The implied diameter of eddies is about 220 km, close to 
present observations. Like the atmosphere, the ocean has a wavenumber 
spectrutn which is level or decreasing a t  wavenumbers smaller than kP, as this 
paper would predict. The source of the 'Swallow' eddies (Crease 1962) is a subject 
of current interest: some candidates are baroclinic instability, either of the broad 
ocean circulation or of the intense boundary currents, yielding energy a t  scales 
N 40km, flow over rough topography, or direct wind generation (with enhance- 
ment at  the western boundary). 

A word must be said about the last two effects, which were omitted from this 
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study. First, roughness of the sea-bed occurs at all scales. Even in the linear 
problem (infinitesimal currents) there is a quasi-turbulent cascade of energy 
from large to small scales (see Rhines & Bretherton 1973). This reversal of the 
‘red’ cascade is allowed by a generation term in the enstrophy equation (2 .5) .  
Scale analysis and computer experiments with the linear wave problem suggest 
that, for topography occupying a narrow band of wavenumbers near k,, this 
cascade occurs a t  a rate fS,, where 8: is the variance of the depth. Comparing with 
two-dimensional turbulence, Uk,/fcY1 appears as the relative measure of turbulent 
effects, which would lead to clustering of the eddies, and topographic effects, 
whioh would fragment them. If, instead, the bottom slopes are broader than the 
initially imposed eddies, they will simply act to reinforce the /3-effect ( f /h  contours 
replace latitude lines), and hence to reduce the scale at which turbulence turns 
into waves to (2U/hIV(f /h)l )8 .  (Over the continental rise, for instance, depth 
contours act like latitude lines, and the anisotropy we predict will favour motion 
along these contours. It appears that, despite the stronger restoring force, eddies 
there are no more linear than elsewhere (Schmitz 1974).) 

Second, coastal boundaries alter the problem, also by adding a generating term 
to the enstrophy equation. With 9 vanishing on V, (2.7) becomes 

where 8, is the angle of a positively directed vector tangent to the boundary, 
with respect to east. The total enstrophy in a basin is thus not invariant, shoreline 
lying to the west of the fluid acting as a source and shoreline to the east as a sink. 
This formula applies to the nonlinear equations, whether steady or not, and 
affects the tendency for western intensification. (i) Jn a linear frictional ‘Gulf 
Stream’, for example, enstrophy produced at the western wall is dissipated by 
bottom friction (the generation of enstrophy by wind stress being relatively 
negligible) ; (ii) in the nonlinear frictionless free boundary currents of Fofonoff 
(1954), east-west symmetry allows a steady solution with enstrophy produced 
in the west being lost at the eastern wall; and (iii) the linear reflexion of Rossby 
waves (Phillips 1966; Pedlosky 1965) at the western wall converts large-scale 
energy to small-scale energy, increasing the total enstrophy. Combined with the 
notion that small-scale (large enstrophy/energy) motions propagate slowly, the 
integral relations give general cause for the concentration of both energy and 
enstrophy to the west. The presence of energetic, small eddies in the Sargasso Sea 
may in part verify this effect, but the other sources are also working nearby. 
Distinction between boundary-induced eddies and eddies of the sort we have 
conside+ed here may be possible by observing their orientation: the former 
should have predominantly north-south currents, while the latter should favour 
east-west currents (or those along f / h  contours). 

There may be applications of these turbulent models other than to energetic 
questions. The study of lateral mixing of water masses depends on the under- 
standing of the same advection working in figure 2(a) .  Observations in the 
North Atlantic of the shapes of sheared patches of Mediterranean water and of 
intrusions a t  the Gulf Stream front are examples. 
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Turbulence in this study acts as a source of waves. In  three dimensions, waves 
seem more often to feed turbulence, the reverse process occurring only at a low 
efficiency (see Rhines 1973). Here, in addition, the restoring forces contrive to 
sharpen the energy spectra while dispersing energy in physical space. The distinc- 
tion between turbulent and wavelike dynamics corresponds simply to the 
frequency of occurrence of closed contours in maps of the potential vorticity 
V2$ +&. Only a t  energy levels small enough that the contours are predominantly 
open, and the northward gradient of potential vorticity is persistently felt, can 
organized propagation occur. As run 5 showed, however, phase propagation 
obeying the linear dispersion relation may be embedded in energetics which are 
rather nonlinear. 
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Appendix. Note on inertial ranges 
We have considered here the transient behaviour of the energy-containing 

eddies, which is predictable independently of inertial-range arguments. The 
recent literature, however, has centred on the possibility that inertial ranges, in 
equilibrium and local in wavenumber, may exist. The enstrophy inertial range 
may be compatible with Batchelor's transient solution, for which the energy 
flux P is - Ek/t and enstrophy flux G is 

- t-lk3E + %,lok k2Edk, 

if P, Gk+ 0 sufficiently closely in such a range. But Kraichnan (1971) has shown 
that such a range is far less local than energy-carrying ranges in either two or 
three dimensions. His spectrum E cc k3(ln (k/k,))-* is sensitive to the position of 
the energetic peak, near k,, and any steeper choice of the spectrum (such as those 
occurring in our experiments) will be dominated by energy near k,: all compo- 
nents of the flow then reflect the nature of the big eddies (in accord with the 
simplified dewription of the field by single scales L, T and U ) .  

The impetus to establish the enstrophy range seems to have come through 
analogy with energy flow in three-dimensional turbulence. But, in addition to 
the lesser importance of enstrophy, the analogy obscures the slowness of the 
enstrophy cascade: as v+O it  takes an infinite time for enstrophy to reach dis- 
sipation wavenumbers (the time required to flow from a wavenumber k, to 

k 9 k, is 2 ( som k2Edk)-'ln (k/k,)). This is in contrast with the efficiency of 

three-dimensional turbulence, where a t  large Reynolds number the energy is 
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dissipated rapidly, in a time N (k ,  U)-l. The arguments about the nature of the 
inviscid limit are thus far less important in two dimensions, for enstrophy dissipa- 
tion vanishes for all finite times if Y = 0. The upward enstrophy flux 

G, = 2t-llOm k2E dk 

as k -+ cg in Batchelor’s transient solution does not imply the contrary, only that 
the solution fails to be uniformly valid for any finite time. 
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