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Two-dimensional turbulence 
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Abstract 

The  theory of turbulence in two dimensions is reviewed and unified and a number 
of hydrodynamic and plasma applications are surveyed. The  topics treated include 
the basic dynamical equations, equilibrium statistical mechanics of continuous and 
discrete vorticity distributions, turbulent cascades, predictability theory, turbulence 
on a rotating sphere, turbulent diffusion, two-dimensional magnetohydrodynamics, 
and superfluidity in thin films. 
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1. Introduction 

Fluid and plasma turbulence is ubiquitous in nature, at all scales from coffee cup 
to universe. Two-dimensional turbulence has the special distinction that it is nowhere 
realised in nature or the laboratory but only in computer simulations. Its importance 
is two-fold : first, that it idealises geophysical phenomena in the atmosphere, oceans 
and magnetosphere and provides a starting point for modelling these phenomena ; 
second, that it presents a bizarre and instructive statistical mechanics. Phenomena 
characteristic of two-dimensional turbulence also play essential roles in the confine- 
ment of thermonuclear plasmas and in superfluid and superconductive behaviour of 
thin films. The  latter subject has had an intense recent development. 

The  intent of this review is to present in a unified way the dynamical equations 
and statistical-mechanical behaviour, both equilibrium and non-equilibrium, of 
turbulent two-dimensional flows described by either continuous vorticity distributions 
or by the interaction of collections of discrete vortices. Then the applications of the 
basic phenomena, and their modifications under certain departures from strict 
two-dimensionality, are surveyed. We mean by turbulence disordered fluid flows 
which are mathematically represented by stochastic initial conditions or stochastic 
driving forces. The mathematical development in $$2 and 3 is given in considerable 
detail, more or less ab initio, in order to provide sufficient framework to discuss in 
some depth the peculiarities of the two-dimensional flow system. Later sections are 
less mathematical and, we hope, do not require digestion of $52 and 3 to be under- 
standable. The  treatment in $2 is similar to that of Batchelor (1967), who gives a 
more extended treatment of some of the topics. 

The  review is incomplete both in thoroughness of coverage of the applications 
treated and, regrettably, by the total omission of some topics. Among the latter are 
numerical methods (see, for example, Orszag 1976, 1977), two-dimensional shear 
layers (see, for example, Saffman and Baker 1979, Aref and Siggia 1980) and recent 
studies of few-vortex systems (see, for example, Novikov 1975, 1978b, Aref 1979). 

The  treatment is phrased in the language of hydrodynamics (except for $7 which 
deals explicitly with magnetohydrodynamics). But much of the statistical-mechanical 
development applies equally well to the partly homologous problems of the guiding- 
centre plasma (Taylor and McNamara 1971) and the two-dimensional Coulomb gas. 
Some limitations on this homology are stated in $3.4. 

No attempt is made to develop three-dimensional turbulence theory, except to 
point out contrasts between two and three dimensions. Some textbook references 
for three-dimensional turbulence are Tennekes and Lumley (1972), Hinze (1975) 
and Monin and Yaglom (1975). 

An incompressible fluid differs from systems usually treated in statistical mechanics 
in that it is non-Hamiltonian. The  energy expression is a simple sum of squares of 
normal-mode amplitudes and carries no hint of the non-linear dynamics expressed 
by the equations of motion. Nevertheless, a Liouville theorem holds in the absence 
of viscosity and provides the basis for an equilibrium statistical mechanics. In  the 
two-dimensional fluid the equilibrium statistics has a most interesting structure, 
despite the simplicity of the energy expression, because there is an additional 
important constant of motion : the enstrophy, or integrated square of the vorticity. 
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The enstrophy constant leads to equilibria in which a large fraction of the energy is 
condensed into the largest spatial scales of motion, a situation closely analogous to 
the Einstein-Bose condensation in an ideal boson gas. But the present condensation 
involves negative (higher than infinite) temperatures. 

Flows consisting of discrete vortices, with vorticity present only in finite concen- 
trated cores, display an additional condensation phenomenon : a collapse into 
‘molecules’ or bound pairs of oppositely signed vortices at low temperature. The 
discrete vortex system shares the negative-temperature condensation with the 
continuum. The  phase space for a discrete vortex system in a finite volume is finite. 
Infinite temperature corresponds to complete statistical independence of the vortices. 
Higher energy states than this, in which vortices of like sign clump together, corre- 
spond to negative temperatures. At a critical value of negative temperature there is 
evidence for a supercondensation phenomenon, not shared with the continuum 
solutions: the cores of all vortices of the same sign become essentially coincident. 

Like all classical fields a velocity field obeying the inviscid Navier-Stokes (Euler) 
equation exhibits an ultraviolet catastrophe. Normalisable inviscid equilibrium 
states are obtained only if the system is truncated by eliminating high-wavenumber 
modes. I n  three dimensions most of the energy in equilibrium lies in the high- 
wavenumber modes of the truncated system. In  a non-equilibrium state in the 
presence of viscosity the fluid seems to seek equilibrium: energy cascades to higher 
wavenumbers (smaller spatial scales) until it reaches wavenumbers high enough that 
viscous dissipation dominates. In  two dimensions, where enstrophy as well as energy 
are constants of inviscid motion, the equilibria are importantly different and so are 
the cascades in disequilibrium. Excitation of the fluid at intermediate wavenumbers 
results simultaneously in a cascade of energy to lower wavenumbers and a cascade 
of enstrophy to higher wavenumbers. The energy cascade to lower wavenumbers 
can have the result that random excitation at intermediate wavenumbers drives the 
(necessarily coherent) largest spatial scales of the system. Thus the two-dimensional 
fluid flow has a self-organising character. 

I n  three dimensions the degree of disequilibrium in actually encountered 
turbulence is large. The dynamics of cascade and evolution of the statistical state 
are all-important and the equilibrium states are of interest only in pointing out the 
direction of energy cascade. In  two dimensions the equilibrium solutions can be 
much closer to realistic states of the fluid. For some flows, and in particular for 
certain almost two-dimensional flows over a boundary surface with height variations, 
computer simulations seem well explained by an equilibrium solution in which the 
enstrophy is spread over all wavenumbers (to effective infinity) while the energy is 
trapped in low-lying modes ($5 ) .  Quasi-equilibrium solutions for the discrete vortex 
system are relevant to the dynamics of superfluidity in thin films ($8). 

Strictly two-dimensional flow in a layer of fluid requires that the velocity vector 
everywhere lie in a given plane and that there be no variation of the velocity field 
perpendicular to that plane. Realisation of such a flow would require plane parallel, 
perfectly slippery boundary planes (say, horizontal) and something to inhibit vertical 
motion and variation. If the fluid layer is thin compared to its horizontal extent, 
large-scale motions are necessarily horizontal, but this does not prevent vertical 
variation of the horizontal motion. The  latter is inhibited by sufficient viscosity but 
also, and importantly for geophysics, by rotation about a vertical axis. The  rotation, 
discussed further in $5, gives an effective stiffness against vertical variations so that 
they can be rapidly equilibrated. In  the Earth’s atmosphere, which is a thin layer 
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on large scales, the effects of rotation are complicated by the curvature of the surface 
and by buoyancy effects. A vertical magnetic field in a horizontal layer of plasma 
has a stiffening effect similar to that of rotation ($7). Thin superfluid films ($8) would 
seem an ideal situation for the realisation of truly two-dimensional flow. But in fact 
the substrate cannot be considered a plane boundary. The  gap between ideal two- 
dimensionality and geometries which occur in the real world must always be kept 
in mind when applying the theory reviewed in this paper. 

2. Some equations of incompressible hydrodynamics 

2.1. Three-dimensional inviscid equations of motion 

given by Euler's equation (Lamb 1945, Landau and Lifshitz 1959) 

where u ( x ,  t )  is the velocity field, p ( x ,  t )  is the pressure field and incompressibility 
is expressed by 

Euler's equation is a local statement of momentum conservation, the u.Vu term 
expressing the advection of momentum by the motion. Because of (2.2) the pressure 
obeys 

and may be eliminated by integration of (2.3) when boundary conditions are specified. 
Equation (2.1) can be rewritten as 

The  evolution of an incompressible, non-viscous fluid of constant density p is 

a+ + U. v u  + vpip = o (2.1) 

v .u=0.  (2 * 2) 

V2p+V.(u.Vu)=0 (2.3) 

aujat - U x (V x U) + v (U212 +pip) = 0 (2.4) 
where u2= U. U .  If the flow is static (au/at=O everywhere) it follows from (2.4) 
that ~ 2 / 2 + p / p  is constant along a streamline (a streamline is the trajectory of a fluid 
element in a static flow). 

The  vorticity field w(x, t )  is defined by 

w = v x u .  (2.5) 

a o / a t = v x ( u x o ) =  - u . v w + o . v u  (2 * 6 )  

U =  V+ v2+ = 0 (2.7) 

The curl of (2.4) is 

in which p does not appear. In  a region of flow where w = 0, we may write 

and + is called the velocity potential. Flows with w#0 are called non-potential or 
rotational. 

In  most of this review we shall take cyclic boundary conditions on the surface 
of a rectangular domain or else require that the normal component of velocity vanish 
on the boundary surface, parts of which may be at infinity. I n  either case, or with 
a combination of the two kinds of boundary conditions, a number of conservation 
laws follow from (2.1) and (2.2). First are the overall conservation laws (the 
integrations are over the entire domain) : 

total momentum: p J U d 'x  =constant 
total energy: 8 p J u2 d3x= constant 

total vorticity: J o d3x= constant. 

(2.8 (4 1 
(2.8 (b) 1 
(2.8(c) 1 
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Equation (2.8 ( a ) )  assumes zero momentum transfer to the walls. 
There are in addition an infinity of constants of motion of the form 

$ u.dl= constant (2.9) 

where the integral is around any closed circuit that moves with the fluid. The left- 
hand side of (2.9) is called the circulation about the circuit and (2.9) expresses 
Kelvin’s circulation theorem (Lamb 1945, Landau and Lifshitz 1959). By Stokes’ 
theorem 

$ u.dl=S w.dS (2.10) 

where d S  is an element of the surface bounded by the circuit. Thus (2.9) implies 
constancy of the total vorticity flux enclosed by a circuit that moves with the fluid. 

The quantity J U. o d3x is called the helicity of the flow. The integrand measures 
the ‘swirliness’ about the local direction of flow. Moffatt (1969) shows that a further 
consequence of (2.9) is 

and that the value of the helicity is related to the degree of knottedness or linkage of 
vortex lines. Vortex lines are lines everywhere tangent to U. Since V. w = 0, by (2.2), 
a vortex line either closes on itself or extends to infinity. 

J U. o d3x = constant (2.11) 

2.2. Two-dimensional inviscid equations of motion 

dimensional motion by 
Let x ~ = x ,  x2=y, x3=z be a right-handed coordinate system. We define two- 

U1 (x, t )  = U1 (x, y, t )  U 2  (x, t )  = U2 (x, y, t )  u3(x, t)=O. (2.12) 

The vorticity reduces to the single component w3 which may be conveniently 
expressed in tensor notation as a pseudoscalar: 

w = w3 = q j  auj1axi ( i , j=  1,2)  (2.13) 

with €12 = 1, ~ i j =  - ~ j i .  Equation (2.6) reduces to 

awlat+ U . V ~ = O .  (2.14) 

Equation (2.14) expresses the important fact that w is constant in time at a point 
which moves with the fluid. This also can be seen from (2.9) and (2. IO) by taking 
an infinitesimal circuit which bounds a fluid element. Thus, in two-dimensional 
flow the infinity of constants of motion associated with Kelvin’s theorem are the 
values of w in every fluid element. Alternatively, we may say that j” w n  d2x is a constant 
of motion for all n. In particular, there is a quadratic constant of motion 

Q=Jw2 d2x (2.15) 

which is called the enstrophy of the flow. The energy and the enstrophy appear to 
be the only quadratic constants of motion for the two-dimensional Euler system 
while energy and helicity appear to be the only such constants for the three- 
dimensional system. In  two-dimensional flow U . U  = 0 identically. 

Let us confine the two-dimensional flow between slippery plane boundaries 
perpendicular to the z axis and redefine p as the density per unit area. 
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Then the kinetic energy may be written as 

E=- i p  J u2 d2x. (2.16) 

The existence of the two constants E and R implies a profound difference between 
the dynamics of two- and three-dimensional turbulence. In  the latter the mean- 
square vorticity can be increased by the stretching of vortex tubes. The constancy 
of Q in two dimensions expresses the intrinsic three-dimensionality of the stretching 
mechanism (Batchelor 19 5 2). 

The velocity field can be derived from a pseudoscalar potential # called the stream 
function : 

(2.17) ~ ( x ,  t ) =  Eij a+(x, t ) /ax j .  

The vorticity is then given by 

u ( x ,  t )=  -v2 #(x, t )  (VZ= a2/ax2+ a2/ay2). (2.18) 

’The condition that the normal velocity component vanish at a boundary is that I/J be 
constant on the boundary. In  the case of a totally enclosed domain or an infinite 
domain with localised velocity field it is convenient to take this constant value as 
zero. ‘In a rectangular domain with rigid slippery walls perpendicular to the y axis 
and cyclic boundary conditions in the x direction a uniform velocity v in the x direction 
is described by I/J = vy + constant. 

A velocity field corresponding to a given u ( x ,  t )  can be found by inverting (2.18). 
It is illuminating to do this for more general boundary conditions than we may 
actually want to use. Consider a simply-connected domain D with a closed boundary 
which is rigid and slippery except for two straight-line segments parallel to the 
y axis, each of length W. We require that U and + be the same on each segment. 
This is a generalisation of cyclic conditions for a rectangular channel and if W=O 
it reduces to a domain totally enclosed by rigid walls. A particular solution of (2. 18) 
is 

$,(x, t )=  J G,(x, x’) w ( x ’ ,  t )  d2X (2.19) 

where the integration is over the entire domain and G, satisfies 

VnG,(x, x‘)= - S(X-X’) (x, x’ E 0) (2.20) 

with the boundary condition that G,(x, x’) vanish for x anywhere on the boundary 
except for the straight-line segments, where it exhibits the required cyclic variation. 
An explicit form for G, is 

G,,+(x, x’)= &(x) +n(x’) (2.21) 
n 

where the complete orthonormal set of eigenfunctions c$n satisfy VZ+, + 
and the boundary conditions for G,. Clearly G,(x, x’)= G,(x’, x). 

= 0 

The general solution of (2.18) is then 

#b, t )  = h ( x ,  t )  + #P(& t )  (2.22) 

where &(x, t ) ,  which represents a potential flow, satisfies V2+,=0 and has zero 
tangential derivative over all of the boundary except the straight-line segments 
where it obeys the cyclic conditions. By (2.17) the difference in value of +p(x, t )  
at the two ends of a straight-line segment gives the rate of flow (integral of U$)  through 
the segment. +w(x, t )  as given by (2.19)-(2.21) represents zero rate of flow through 
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the line segments. I n  the case of a rectangular domain with cyclic conditions on the 
ends, the 9% are trigonometric functions and $p = ay + constant, corresponding to a 
uniform velocity v. If W=O (total enclosure by rigid boundaries) $p is identically 
zero. Whatever the boundary conditions are, if I x I 4 L, I x' I 4 L then 

G,,(x, x') z - (2r)-1 In ( I x - x' I /L)  (2.23) 
where L is some typical distance of the boundary from the coordinate origin. For a 
domain of arbitrary shape this follows from the approach of the 4, to trigonometric 
form for large A, (Courant and Hilbert 1953). 

The kinetic energy can be written in the forms 

E = &p J I V$12 d2X = & p J w $, d2X + &p J 1 V$p I 2 d2X E,  + Ep.  

(2.24(a, 4) 
This follows from (2.16)-(2.18) and V2z,hp= 0, upon a partial integration and use of 
the boundary conditions. Note that there are no cross terms in (2.24(b)) between 
the vortical flow and the potential flow. Equations (2.19) and (2.21) give 

An-2(wn)2 (2.25(a, 6 ) )  

where w n = J  w(x)  &(x) d2x. 
First-order equations of motion for the wn follow from (2.14). $p is fixed by the 

boundary conditions except for a multiplicative constant, which determines the 
magnitude of the potential velocity field, and a trivial additive constant. Since the 
walls are rigid, the total kinetic energy of the flow is constant. Therefore the evolution 
of the potential velocity field satisfies 

dEp/dt = - dE,/dt. (2.26) 
There is dynamical coupling between the vortical and potential velocity fields even 
though there is no interaction energy. In  the case of a rectangular channel with 
cyclic conditions on the ends the potential flow is uniform throughout the domain 
and trivially convects the vortical flow, with dE,ldt = 0. The  uniform flow then is 
constant in time. We shall discuss the implications of (2.26) more generally in the 
context of discrete vortices. 

If $(x)=+,(x), (2.17) and (2.18) give u .Vo=O so that, by (2.14)) the fields 
are constant in time. Thus the &,(x) represent stationary eigensolutions of the 
equations of motion. $p is also a stationary eigensolution. The  general stationary 
flow has w = f ( $ ) .  

E,=+p J G,(x, x') ~ ( x )  w(x')d2x d2x'=h p 
n 

2.3. System of discrete vortices 

If the vorticity is initially confined to small regions separated by irrotational fluid 
this situation will persist because the vorticity moves with the incompressible flow. 
The  study of systems of such discrete vortices was initiated by Helmholtz in 1858, 
and other early contributions were made by Lord Kelvin (W Thomson), J J Thomson, 
Kirchhoff and T von Khrmhn (Lamb 1945). A comprehensive treatment is given by 
Lin (1943). I n  three dimensions the typical localised vortex is the vortex ring (smoke 
ring). I n  the two-dimensional flow between parallel plates the typical vortex is a 
circular cylinder of fluid, with uniform vorticity, extending perpendicularly between 
the plates and surrounded by vorticity-free fluid. The  two-dimensional analogue of 
the vortex ring is a pair of such cylinders with equal and opposite vorticity. 
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A single circular (cylindrical) vortex far from boundaries will keep its shape and 
maintain its position unchanged. This follows from symmetry if there is no flow 
except that due to the vortex itself. If a number of such vortices are present, each 
will move in the total velocity field, and gradients in that field will act to distort the 
vortical cores. If the core diameters are small compared to the separations between 
vortices the core distortion will be small, and it is further reduced by stability proper- 
ties (Lamb 1945). We wish now to discuss the dynamics of a system of discrete 
vortices in the approximation where core distortion is neglected. We limit discussion 
to the case where all vortices have the same core diameter and distribution of vorticity 
within the core but allow variation of sign and magnitude of total core vorticity from 
vortex to vortex. 

We want then to consider vorticity fields of the form w ( x )  = Ci qiA( I x - r .~  I )  
where qi is the circulation about the ith vortex, whose position is rz, and A ( x )  is the 
core shape function satisfying J A(x) d2x= 1. This cannot be done with complete 
consistency both because there is no way to consistently rule out all close encounters 
of vortices and because the cores cannot intersect the rigid walls. We shall eventually 
be interested in the limit of point vortices, for which these problems disappear, but 
we do not simply take A(x)= 6(x) at the outset because, as will appear below, this 
implies an infinite kinetic energy. Perhaps the cleanest resolution is to restrict A(x) 
by 

w ( x ) = C  qiA(x,  ri) A (x, rt) = Cf(M 612 (4 612 (4 (2.27 (a, b)  
i n 

where 
f(&)= 1 ( d n  < 1) f(L) = 0 (ah12 > 1) (2.28) 

and a is a characteristic dimension of the core. If a+O, A(x, f i )+S(x-ri) .  If a> 0 
but is small compared to domain dimensions, (2.28) represents a wavenumber 
cutoff of A ( x ,  p i )  if x and rz are located at distances much greater than a from the 
walls, since the high-order eigenfunctions are essentially trigonometric functions 
away from the walls. 

Most recent papers on systems of discrete vortices in hydrodynamics and the 
guiding-centre plasma have assumed a = 0 at the start. Finite a is essential in treating 
vortex dynamics in two-dimensional superfluids. 

Because of the orthonormal property of the +%, it follows from (2.19) and (2,25 (a))  
that the stream function and the kinetic energy of the vortices are 

where 
G { ( x ,  x ’ ) = C f ( h )  Xn-2dJlz(x) d J n ( ~ ’ >  (2.30) 

is a modified Green function regular everywhere in the domain. Under our approxi- 
mation that there is no distortion of the cores, the evolution of the system is deter- 
mined by dri/dt= u(ri, t). Thus, by (2.17) and (2.29) 

n 

pqi dxt/dt = aE,/ayi pqi dyi/dt = - aE,/axi (2.31) 

where r.~ = (xt, yz). 
If the boundaries are infinitely removed from the vortex system, symmetry 

requires that each vortex be unmoved by its own velocity field. Then E, in (2.31) 
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may be replaced by the interaction energy 

(2,32) 

If, in addition, the vortices are separated by distances large compared to a then 
G,‘ in (2.32) may be replaced by (2.23). If the cores are exactly circular and wholly 
localised within a radius a, then this replacement is exact if the cores do not intersect, 
but except in the limit a+O the exactitude is illusory since the cores will not stay 
precisely circular. The quasi-Hamiltonian formulation (2.3 1) with Eint replacing 
E,  was first given for point vortices by Kirchhoff (Lamb 1945). 

If a single vortex is near a slippery rigid boundary it will move in its own velocity 
field. In  analogy to electromagnetic theory, this can be interpreted as motion of the 
vortex in the field of an induced image vortex which has equal and opposite circulation 
and is symmetrically placed on the far side of the boundary. By symmetry the 
combined fields of the two vortices satisfy the boundary condition of zero normal 
velocity. The contribution of the self-energy term (j=i) in E,  to (2.31) may be 
interpreted as image velocity field. If the boundaries have arbitrary shape, an image 
contribution AG,(x, x’) to the point-vortex Green function may be defined by 
(see (2.23)) 

AG,(x, x‘) satisfies Laplace’s equation (Lin 1943). 
The kinetic energy of a single vortex far from boundaries with a core of diameter a 

may be obtained by using (2.23) to compute the velocity field external to the core 
and noting that the velocity goes to zero at the centre of the core. This gives 

G@(x, x’)= -(2n)-1 In ( I x - x ’ I / L ) +  AG,(x, x’). (2.33) 

Ei = (p/4n-) qi2 [in (L/a) + O( l)]. (2.34) 

Next consider a pair of equal and opposite vortices separated by a distance y i j  and 
far from boundaries. Using (2.23) in (2.32) we have 

Eij I= (p/2n)42 In (rtj/L) (qiqj= -q2) (2.35(a)) 

Ea+Eiji- Ej-(p/2n)$ [In ( r i j / ~ ) + O ( l ) ]  (2*35(b) )  
for the interaction energy and total energy of the pair. If a vortex is a distance 1 from 
a rigid boundary plane, and other boundaries are far away, we may apply (2,35 ( b ) )  
to the pair formed by the vortex and its image. This gives 

for the kinetic energy of the actual vortex, where we note that half the pair energy is 
in the image space. Since the velocity field of an isolated vortex is everywhere 
perpendicular to the radius vector, an isolated pair of equal and opposite vortices 
maintain a constant distance apart and travel with velocity of magnitude 4/2nrij 
perpendicular to the line joining them. This result also applies to a vortex-image 
pair. If a pair of equal and opposite vortices are separated by ~ $ 5  and a distance 1 
from a boundary plane, (2.35 ( b ) )  is valid if r i j<  1 << L. The effects of the boundary 
on l?i and Ej exhibited in (2 ,36)  are cancelled by effects on Eij. 

A correspondence between continuous and discrete representations of vorticity 
may be set up as follows. Divide up a continuous vorticity distribution into sub-areas 
such that each contains vorticity of one sign only and the magnitude of vorticity 
in each sub-area is the same. Then concentrate the vorticity of each sub-area into 
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a concentrated core occupying a small fraction f of the sub-area and located at the 
centre of gravity of the latter. Now consider a limit in which the number of sub-areas 
increases indefinitely with f constant. In  the limit the total self-energy of all the 
concentrated vortices goes to zero and their interaction energy (which is independent 
o f f  if f < l )  equals the kinetic energy of the continuous distribution. Optimum 
correspondences (in a statistical sense) between continuous vorticity and a finite 
number of discrete vortices are considered in 53.3. 

2.4. Vortex momentum and the Magnus force 

The vortex flows described by (2.19) or (2.29) have zero momentum; there is 
instantaneously no net flow through either of the boundary segments with cyclic 
boundary conditions. This follows immediately from the condition that (x) 
vanish on each of the rigid boundary segments. However, the generation of a vortical 
flow by forces applied to the fluid in general does impart momentum to the fluid. 
If the boundaries are indefinitely remote from the vorticity, and the forces are local, 
this momentum has a unique value (Lamb 1945). But in the presence of boundaries 
the imparted momentum is non-unique; it depends on the distribution of the forces. 
Vortex flow with momentum is described by adding to y!~~(x) a potential-flow 
contribution $p(x). 

The creation of a single vortex infinitely far from boundaries is impossible since 
by (2.34) the energy is infinite. Consider then the creation of the vortex pair whose 
energy is (2.35 ( b ) ) .  Lamb (1945) points out that there is an oval, within which the 
vortex centres are symmetrically placed, such that the fluid within the oval stays 
inside and is carried along with the linear motion of the cores, while the fluid outside 
executes a potential flow identical to what would be induced by the motion of a rigid 
body that occupied the oval. This is the two-dimensional analogue of the motion 
of the core of a smoke ring through a fluid. The  flow can be started from rest by 
applying forces confined in the oval which produce the internal spinning about the 
cores together with the linear motion. Generation of the linear motion requires that 
an impulse be delivered to the fluid such that the total fluid momentum becomes 
(i a n d j  denote the two vortices) 

P$iz= ~(4i~g+4i~j) pgiu = - p (46% + 4 p g )  (qi = -@I. (2 * 37(a, b ) )  

Lamb shows further that this result is independent of the specific force distribution 
employed provided that the forces are localised within some finite region containing 
the cores and that the boundaries are infinitely distant. The  result extends to any 
set of discrete vortices whose strengths add to zero, and to continuous vorticity 
distributions. Thus 

(2.38) 

is the total momentum imparted in the creation of the flow. Since the creation by 
forces can be imagined to take place anytime in the evolution of the flow, a corollary 
is that the right-hand sides of (2.38) are constants of motion in the absence of 
boundaries. The  destruction of vortices by local forces imparts momentum of 
opposite sign to the fluid. 

I n  the presence of a rigid boundary these considerations are importantly changed. 
A single vortex now has a finite energy (2.36) and can be created by applying the 
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above pair-creation mechanism to the vortex and its image; that is, by applying 
forces to a half-oval of fluid bounded by the wall. If there is only a single straight 
boundary and &qi = 0, it can be seen that the total imparted momentum is the same 
whether the vortices are created in real pairs or as halves of real-image pairs. But if 
there are two rigid boundaries, or the boundary is curved, this is not the case. Px 
and Pu defined by (2.38) are then not constants of motion in general because of 
interaction between the real vortices and the images. However, they are constants 
of motion in a straight-walled channel of uniform width with cyclic (re-entrant) 
ends. This is because in such a channel there is no possibility of momentum transfer 
between flow and walls or, in other words, between flow and image flow. 

Now consider a vortex pair infinitely far from boundaries. Let the core of vortex i 
be moved through the fluid by an applied force. The  rate of change of the imparted 
momentum (2.37) associated with creation of the flow from rest is 

Fz= dPil,/dt=pQz[dyi/dt-ul,(ri)] F y =  dPijy/dt= -pqt[dxe/dt-~,(v{)]. 
(2.39) 

I; is then the force exerted on the core. (Note that motion of the core with the fluid 
velocity u(vt) produces no change in Pij.) The reaction on the forcing system - F is 
called the Magnus or lift force (Lamb 1945, Landau and Lifshitz 1959, Milne- 
Thomson 1960). It arises from pressure differences on the surface of the core due 
to interaction of the circulating motion and the motion through the fluid and is 
independent of whether boundaries are present provided that they are many core 
diameters distant. Since a pair may be created at a very small separation and then 
pulled apart by forces on the cores, it follows that (2.37) is valid in the presence of 
arbitrarily placed and shaped boundaries if the core diameters are small enough 
and Pzi denotes the total impulse delivered to fluid and boundaries. A discussion 
of the Magnus force on curved vortex cores in three dimensions is given by Huggins 
(1970). ' 

Suppose that there is initially a uniform flow with velocity vo directed along the 
x axis of a rectangular channel of length L and width W with rigid walls and cyclic 
boundary conditions on the ends. Let a system of vortex pairs be created by 
nucleation within the channel, that is, each pair is created at very small separation 
and then spread to some finite separation by forces on the cores. The  momentum 
imparted to the fluid is given by (2.38) and the uniform velocity after creation is 
U =  vo + P / M  where M =  pLW is the total mass of fluid in the channel. The  total 
kinetic energy after creation is 

E=E,+BMvZ. (2.40) 

The interaction energy of the created pairs with the pre-existing uniform flow is 
the contribution P . U O  to &M$. It should be noted that once creation is complete 
there is no way to distinguish the individual pair contributions to v .  Each pair 
moves in the total U. A different result is obtained if the vortices with positive and 
negative signs of circulation are independently nucleated at the walls as partners in 
vortex-image pairs and then moved to positions in the fluid by forces on the cores. 
Then (2.38) must be replaced by the more general form 

(2.41) 
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where Y ~ O  is the position of nucleation. If all positive vortices are nucleated at the 
wall y = W and all negative ones at y =  0 then Pm= p&q$(yt - Q W ) .  In  any event 
Pg is transmitted to the walls and does not appear as fluid motion. 

In  the channel with straight parallel walls v is constant, independent of the motion 
of the vortices once they are created. The  potential flow is in general not constant 
if the walls are non-parallel or curved. Consider a long channel with two sections 
of different width and a smooth transition between them. Suppose that a vortex 
pair aligned at right angles to and symmetric with respect to the channel axis is 
convected by potential flow from the wide to the narrow section. If the difference 
in width is large enough and the original separation yt-yj  is large enough this must 
be accompanied by a decrease in separation and a consequent decrease in the kinetic 
energy of the vortex motion E,. By (2.26) the kinetic energy of the potential flow 
must increase. If the initial velocity of the potential flow is below some critical value 
the vortex pair cannot enter the constriction and instead is repelled by the image 
field. This is because the required increase in kinetic energy of the potential flow 
if the pair were to enter involves more momentum than the system has available 
by exchange with the walls (images). 

2.5. Viscosity 

equation (Landau and Lifshitz 1959) 
If the viscosity is non-zero (2.1) is replaced by the incompressible Navier-Stokes 

aujat-t u.vU+vplp= vv2u (2.42) 

where v is the coefficient of kinematic viscosity, and (2.14) becomes 

awlat+ u . v w =  vv2w. (2.43) 

Viscosity directly affects only the vortical flow since V2$,=0. But with viscosity 
it may be physically appropriate to replace slippery boundary conditions by no-slip 
conditions with the result that vorticity can be generated at the walls in an initially 
purely potential flow. The  viscous term in (2.43) diffuses the vorticity through the 
fluid so that the vorticity in each fluid element no longer is a constant of motion. 
The  diffusion of vorticity may be interpreted in terms of Magnus forces associated 
with the viscous stresses (Huggins 1970). 

If the flow is localised in an infinite domain or if there are cyclic boundary 
conditions Sw d2x remains a constant of motion under the action of viscosity since 
the integral of vV2w is then zero. But this is not so if there are slippery rigid 
boundaries (real and image vorticity can diffuse into each other), and, for any of the 
boundary conditions, viscosity makes E and !2 decrease with time. The  viscous 
effects on the inviscid constants of motion have a simple expression in terms of the 
eigenmode amplitudes. I n  correspondence to (2.25(b)) we have 

R =  wn2 J = J w  d2x= wn &(x) d2x (2.44(a, b ) )  
n n 

and the decay is given by 
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If the boundary conditions are fully cyclic on a rectangular domain the +n(X) are 
sin and cos functions satisfying Xn'J+n (x)  d2x = 0,  +o(x) = (L  W)-1/2. Then 
J- ( L  W)%JO and U can be defined only if J =  0. 

3. Absolute statistical equilibrium 

3.1. The detailed Liouville theorem 

The equilibrium statistical mechanics of a classical system with canonical co- 
ordinates q, and momenta p ,  is based upon Liouville's theorem 

2 (aqtiaqi + aj,/ap,) = 0 ( 3 . 1 )  
or 

(Tolman 1938), which expresses the incompressibility of the motion in phase space. 
The  parenthesised expression in (3.1) vanishes individually for each i in consequence 
of Hamilton's equations 

qi = aH18p'pi l j z  = - arq aqt . (3  *2> 
We shall call this the detailed Liouville theorem. 

although this system is not Hamiltonian. It is (Lee 1952) 
A detailed Liouville theorem also exists for the two-dimensional flow system, 

aciJn/awn = 0 ( 3 . 3 )  
where the wn are the eigenfunction amplitudes defined after (2.25). Equation ( 3 . 3 )  
is easily derived by a method (Kraichnan 1965a, Salmon et a1 1976) which uses only the 
conservation of energy E, (2.25 ( b ) )  and the stationary property of the eigenmodes. 
Assume to start with that the domain is simply connected, with rigid boundaries, 
so that there is no potential flow. Then the quadratically non-linear equation of 
motion (2 .14)  may be written in the form 

ciJn=C Anrswrws (Anrs=Ansr) ( 3 . 4 )  
rs 

where the coefficients A,,, are constants. By supposing that at some instant only 
wqZ, wr, ws are non-zero we see that the conservation of the sum of squares Q (2 ,44 (a ) )  
implies 

and conservation of E,,, implies 
Anrs+Arsn+Arnr=O (3 * 5)  

( 3  6) Xn-2Anr.g + hr-'A,Sn + Xs-zAsnr = 0. 

Terms in (3 .4 )  with n, r and s all different give no contribution to a&,/aw,. 
The coefficients Anss vanish by the stationary property of the eigenmode C#~(X). 
Ann,  vanishes in particular, and by ( 3 . 6 )  Ans,y=O implies Ansn=Anns=O. This 
exhausts the possibilities and we have ( 3 . 3 ) .  

Now consider more general boundary conditions which permit a potential flow 
described by &,. We may take fully cyclic boundary conditions, a channel with rigid 
sides and cyclic ends, or a multiply connected domain with a rigid closed outer 
boundary that encloses R rigid closed interior boundaries. In  the last-named case, 
which is most general, the stream function for potential flow may be written 

c aa40(",(4 ( i= l ,  2 , .  . , , R)  (3.7) 
2. 



Two-dimensional turbulence 561 

where V ~ + O ( " ( X )  = 0 throughout the domain and +o(i)(x) is zero everywhere on the 
boundaries except that it equals one on the ith internal boundary. The  total kinetic 
energy is (2 .24 )  where 

( 0 1 3  -= Dji) (3.8) 8 --E - -  2 &jaw 

Lj 

and Dij, which has only positive eigenvalues, is a constant matrix which depends on 
the particular geometry. The  c$o(~)(x) are a degenerate set of stationary eigen- 
functions of the equations of motion (eigenvalue zero), and any linear combination 
(3  .7) is a stationary eigenfunction. 

The preceding arguments, using only the quadratic form of the kinetic energy 
and the stationarity of the eigenfunctions, readily extend to the system with potential 
flow. They show that the equations of motion for the wn and ai are restricted to the 
form 

(Cinnz = Csmn) where ( 3 . 5 )  and (3.6) are augmented by 

hn-2Bnim + Xm-2Bmin + C DijCjnrn= 0 (3.10) 
j 

and An,, = Ann, = Bnfn = Cinn = 0. Thus (3  .3) is replaced by 

acjn/awn = 0 adi/aaL = 0. (3 11 (a, b ) )  

Equations (3.7)-(3.11) continue to apply in the case of a rigid-sided channel with 
cyclic ends, where y ! ~ ~  has only one component and in the case of fully cyclic boundary 
conditions on a rectangular channel, where I/J~ has two components ~o(" ( (x ) .  In  the 
latter case, or in the case of a rectangular channel, the potential flow is spatially 
uniform and unaffected by vortex motion, so that all Cinm vanish. 

It should be emphasised that the detailed Liouville property depends both on the 
quadratic form of the constant of motion and the stationarity of the eigenfunctions. 
A rotation to new phase-space coordinates which are linear combinations of the wn 
and which preserve the form of E, as a sum of squares in general destroys (3.3) or 
(3.11). The importance of the detailed Liouville theorem is that the overall 1,iouville 
theorem 

acj,/aw,, + adzpat = o (3 .12 )  
7l i 

holds under a truncation of the dynamical equations in which all terms involving 
any modes outside an arbitrarily chosen subset are dropped from (3.9). 

The detailed Liouville theorem for a system of discrete vortices 

a3;.,/ax, + a j t /aye  = o (3.13) 

follows immediately from the pseudo-Hamiltonion equations (2.3 1) if the domain 
is simply connected and enclosed by a rigid boundary. Under more general boundary 
conditions, which permit potential flow, (2.31) is replaced by 

pqii.I = aHjay, pqijz = - a q a x ,  H =  E ,  + C pqi$p(rl) 
i 

(3 I 14(a, ?), c)) 
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and (3 .13)  continues to hold. Since ( 3 , 9 ( b ) )  is independent of whether the vorticity 
is concentrated into discrete cores (3 .11 ( b ) )  also continues to hold. H i s  a Hamiltonian 
in a limited sense only. The  term pqi#p is not part of the kinetic energy, nor can it 
be used to obtain a Hamiltonian equation for the effect of the vortices on $p. 

3.2. Continuum equilibrium states 

The wn and ag may be taken as phase-space coordinates. An immediate conse- 
quence of (3 .11)  is that a phase-space probability distribution of the form f ( K )  is 
stationary under the equations of motion provided that K(w, a )  is a constant of 
motion. The canonical distribution with respect to K has the formf(K) ccexp ( - PK) 
where is a constant parameter. This distribution has a unique property of in- 
variance or stability under arbitrary perturbations of the equations of motion which 
preserve the constancy of K. Thus suppose there are two systems with constants 
of motion K1 and K2 and distributions fl(K1) and fi(K2). Let the two initially 
independent systems be coupled by arbitrary coupling terms subject only to the 
constraint that K1+ K2 is a constant of motion of the coupled systems. The initial 
joint distribution fi (Kl)f2 (K2) can be invariant under the couplings only if 

f l (Kl) f2(K2) = f ( G S K z ) .  (3 .15)  

Differentiation of (3.15) with respect to argument readily shows that the general 
solution isf1 (K1) cc exp ( - PKl), f 2  (K2) cc exp ( - PK2). Specialisation of the couplings 
to particular infinitesimal forms leads to the fluctuation-dissipation relations 
associated with the canonical distribution (Kraichnan 1959). The arbitrary couplings 
are an idealised representation of thermal contact. 

Now let us take pK=PE+aQ, a linear combination of energy and enstrophy. 
Here we identify P with ~/KBT,  where K B  is Boltzmann’s constant and T i s  temperature 
while a: is a second parameter associated with enstrophy. Since both E and SZ are 
additive over the wn, the two systems of the preceding paragraph can be taken as 
subsystems of the actual system, and the arbitrary conservative couplings can be 
taken as perturbations of the Any, which obey a suitable linear combination of (3 .5 )  
and (3.6).  

It is convenient and illuminating to call ( K ~ p ) - l  the ‘energy temperature’ and 
( k ~ a ) - l  the ‘enstrophy temperature’. This represents a reversal in the roles of the 
symbols 01 and /3 from the usage in the previously mentioned literature, which we 
hope will not cause undue confusion. 

More conventionally, the canonical distribution for the two-dimensional flow 
system can be obtained from the microcanonical distribution for a supersystem along 
the lines laid out by Khinchin (1949). (The microcanonical distribution is confined 
to and uniform on a surface of constant K in the phase space.) This has been carried 
out by Montgomery and Joyce (1974) for the discrete vortex system and can be 
extended to the continuum system. A very large number of (dynamically identical) 
individual flow systems are weakly and conservatively coupled by terms added 
arbitrarily to their equations of motion, thereby forming the supersystem. The  
canonical distribution for an individual flow system is then obtained from the micro- 
canonical distribution for the supersystem by an application of the central limit 
theorem. 

It is important to note that the supersystem cannot be formed by simply taking 
the flow system of interest as part of a very large volume of fluid. As we shall see, 
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excitations of the gravest modes of the system, which depend directly upon the 
dimensions of the fluid, can be very important in equilibrium. In  this respect the 
two-dimensional hydrodynamic equilibrium differs sharply from that of, say, a 
three-dimensional gas of hard spheres. 

The  systems usually considered in statistical mechanics are large, with many 
similar components, with the result that fractional fluctuations in energy are small 
over the canonical ensemble and low-order averages are nearly the same in canonical 
and microcanonical distributions. We shall see that this is sometimes not so with 
two-dimensional flow systems. The  microcanonical distribution (for an individual 
flow system now) is appropriate where there is isolation and the system is ergodic. 
The canonical ensemble is appropriate where there is weak coupling to an environ- 
ment. The couplings may be time-dependent (Kraichnan 1959) and arbitrary, 
thereby forcing ergodicity. 

In common with all classical fields, the two-dimensional flow system exhibits 
an ultraviolet catastrophe. ’There is a finite energy in equilibrium associated with each 
of the infinite set of modes wn, so that the mean energy of the whole system is infinite 
for finite p and 01. The equilibrium statistical mechanics therefore is meaningful 
only if the system is truncated. We do this by choosing two cutoff parameters hmin 
and A,,, and retaining only the wn such that hmin2 6 Am2 < hmax2. Every term in (3.9) 
involving a mode outside this range is dropped. The lower cutoff hmin is not needed 
to avoid the ultraviolet catastrophe but is included for completeness. Because of 
(3. 5), (3.6) and (3.11) the truncated system has the conservation and Liouville 
properties of the full system. 

The  equilibrium statistics which we shall now discuss do not have a direct 
pertinence to typical turbulence, which is far from absolute equilibrium (but see 
$$S and 8). But the equilibrium states do appear to represent states toward which 
the actual turbulent states tend to relax and thereby are of value in predicting the 
direction and structure of the exchange of energy among the modes (Novikov 1974). 

The average value (g) of any function in the canonical distribution for the 
truncated system is given by 

(g)= J gexp(-PE+d2)I1 doT1 da /Z (3.16) 

where Z is’the partition function 

Z =  j” exp (-/3E+d2)Il  d o n  da. 
These formulae yield 

(3.17) 

where Dtj-1 is the inverse matrix to Q j .  The averaged total energy and enstrophy 
are 

If cy= 0, (3.18) and (3.19) give simple equipartition of energy among the modes 
of the vortical and potential flow. The  general case with a# 0 has a much richer 
structure. Unless R = 0 (singly connected domain enclosed by a rigid boundary), 
the requirement that ED be finite and non-negative implies /3 > 0. 01 can be negative 

36 
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as well as positive but is restricted by pp+2ahm,,2>0. For any given values E 
and a there are values of a: and p which satisfy these bounds. Very large values 
of X,2 3 p@2E correspond to the negative a: values and characterise equilibria with 
strong excitation of the modes with the highest A, (note that A, < Amax). Very small 
A, (the minimum value is A, = 0 if R > 0) corresponds to positive a and very small p. 
As p+O (T-too), E increases without limit and is dominated by Ep, 

If R = 0 (singly connected enclosed domain) there is no potential flow and negative 
,B (negative temperatures) are possible. Equilibria of this type are also possible for the 
rectangular channel with cyclic ends and for fully cyclic boundary conditions on a 
rectangle provided that the potential flow degrees of freedom are deleted from the 
dynamics. Such deletion has the justification that the CzlZln in (3.9) vanish for these 
conditions so that an initially zero potential flow remains unexcited. The  negative p 
continuum equilibrium states have been discussed by Kraichnan (1967, 1975)) 
Deem and Zabusky (1971), Cook and Taylor (1972), Seyler et aZ(1975) and Fox and 
Orszag (1973). The general properties are most simply discussed for the case of 
fully cyclic boundary conditions (potential flow deleted), where the eigenmodes are 
trigonometric and An becomes an eigenwavenumber kn. Suppose to start that kmin 
is sufficiently large compared to the lowest eigenwavenumber ko that the summations 
in (3.20) can be replaced by integrations over the two-dimensional wavevector space. 
Then (3.18) yields 

E/L2 = (np/8a) In [(pp + 2akmax2) (pp  + 2akmin2)-1] (L= box size) 

(3 -21 (4 1 

(3 * 2 1 ( b ) )  
n/L2=(n/4a)(kmax2-kKmin2)-(npf1/8a2) In [(pp+2a.kmax2)(pp + 2akmin2)-1]. 

Three regimes may be distinguished by the signs of a: and ,B and by the value of 
kc2 = pQ2E. Let 

ha2 = &(kmax2 - kmin') In (kmax/kmin)-' kb2= 4 (Amax'+ Amin'). 

Then the three regimes are 

(i) kmin' < kc2 < ka2 a: > 0, - 2 ~ k m i n 2 <  p p <  0 

(ii) ka2 < kc2 < kb2  a>o,  p > o  
(iii) k$ < k,2 < kmax2 ,$ > 0, - p/3 < 2akmax2 < 0. 

The  energy-equipartition state a: = 0 and the enstrophy-equipartition state p = 0 
separate the three regimes. There is no discontinuity of any sort in passing from one 
regime to the next. Decrease of /3 corresponds to increase of energy and this increase 
is smooth as ,8 passes from positive to negative values. Because C2 is present in (3.16), 
p = 0 (infinite T )  corresponds to finite energy. The  negative p states may be thought 
of as being at temperatures higher than infinity. Further details are given by Fox 
and Orszag (1973), Seyler et aZ(1975) and Kraichnan (1975). In  no sense is there a 
sharp phase transition between regimes. The  correlation length for vorticity fluctu- 
ations is N kc-l. As /3 goes from + CO to zero and then to its most negative value 
- 2akmin'/p, this correlation length goes smoothly from N kmax-1 to N kmin-1, 
expressing the fact that more complete segregation of positive and negative vorticity 
regions corresponds to higher energy. 
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Now suppose that we take kmin = KO, the gravest mode of the cyclic box (excluding 
k=O). The discreteness of the low-lying modes now is important in the negative 
/3 states. As (k, - ko)/ko-+O, the kinetic energy condenses into the (degenerate) 
mode KO (the exponential in (3.16) is relatively very large for this mode) so that in 
the limit it carries all the energy. The  condensation involves only the gravest mode. 
For k= 2ko the denominator of (3.18(a)) is insignificantly different from its value 
at p=O. The gravest mode consists of a single pair of counter-rotating vortices in 
the cyclic box. The gravest mode with rigid boundary conditions is a single vortex 
if J # 0, a pair of opposed vortices if J = 0. 

The  inviscid flow system before truncation has an infinite number of constants 
of motion, including the vorticity of each fluid element. Truncation alters these 
constants (while preserving energy and enstrophy as constants) but cannot do away 
with them all; the number remaining must be the order of the number of degrees of 
freedom. The  canonical distribution discussed above represents an ensemble or 
else a long-time average over a single system so coupled to a fixed-a-and-p reservoir 
that the extra constants do not disrupt the equilibrium. Two important questions 
now arise: (i) to what extent are averages over the canonical distribution close to 
averages over the microcanonical (sharp E and Q) ensemble; (ii) to what extent does 
the system exhibit mixing and ergodic properties which imply that the microcanonical 
averages represent long-time averages for an isolated single system. 

These questions have been investigated numerically and analytically by Seyler 
et a1 (1975), Basdevant and Sadourny (1975), Fornberg (1977) and Kells and Orszag 
(1978). Computer simulations of (3.4) described in these papers indicate that, with 
kmin= ko and Amax large enough to give the order of at least twenty or so modes 
altogether, the time-averaged spectra in individual realisations do indeed evolve to the 
canonical form (3.18) for k, in any of the three regimes. Figures 1 and 2 illustrate this 
equilibration for two runs by Seyler et al, one with kc corresponding to condensation 
with 70% of the energy in the gravest mode and one with k, corresponding to the 
borderline spectrum k-2. The time averaging is over about the final 10% of the 
evolution time. The  authors point out that fluctuations are large when there is 
substantial concentration of energy in only a few low-lying modes. Figures 3 and 4 
show streamline plots of these runs and illustrate the formation of large-scale vortices 
in the condensed equilibrium. 

Basdevant and Sadourny (1975) construct analytical expressions for the mode 
excitation as a function of k in the microcanonical ensemble, assuming a cyclic box, 
and compare the results with both the canonical spectra (3.18) and long-time averages 
of simulations. For systems with at least 16 x 16 modes, they find close agreement 
between canonical and microcanonical averages, with kmin = 1, Amax = 8.71 and 
1.57 < k, < 7.34. They find ergodic behaviour for as few as 8 x 8 modes. However, 
the simulations are carried for so many time steps and so few details are given, so the 
level of numerical error is difficult to assess. 

Kells and Orszag (1978) have checked the mixing property by examining time- 
correlation functions and have compared moments of mode amplitudes through 
eighth order obtained from simulations, microcanonical ensemble, and canonical 
ensemble. A model with ten complex modes (twenty real modes) shows excellent 
agreement among all three sets of moments and decaying time correlations consistent 
with mixing. Smaller models showed significant differences among the three sets of 
moments. One of the smaller models yielded forever-oscillating time correlations, 
a clear indication that mixing fails. Hald (1976) has shown analytically that the latter 
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Figure 1. Normalised modal energies, averaged over 100 time steps, from the numerical 
solution to equation (3.4) (from Seyler et al 1975). Full curve is the theoretical 
prediction, equation (3.18). Different values of k corresponding to the same k2 have 
been averaged over. This run corresponds to a negative p regime with 70% of 
the energy in the fundamental kmin. 

Figure 2. Normalised modal energies, averaged over 200 time steps, from the numerical 
solution to equation (3.4) (from Seyler et a2 1975). Full curve is the theoretical 
prediction, equation (3.18). Different values of k corresponding to the same k2 
have been averaged over. This run corresponds to the transition regime ,B = 0. 
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model and other sufficiently small truncations have isolating integrals in addition to 
energy and enstrophy. 

If the truncation involves only a few Fourier modes, the system may not be 
ergodic and mixing, but even if it is ergodic and mixing, low-order truncations may 
lead to differing predictions from the canonical and microcanonical ensembles (Kells 
and Orszag 1978). The  differences become significant for the higher moments, 
though insignificant differences were observed in the spectra. The  minimum number 
of modes required to obtain ergodic or mixing behaviour is not known precisely 
though the results of Basdevant and Sadourny (1975) and Kells and Orszag (1978) 
suggest that 16 x 16 modes are 'many'. 

Figure 3. Contours of constant stream function corresponding to the situation shown in 
figure 1. The times corresponding to the three (instantaneous) sets of streamlines 
are the initial time, a time halfway through the run, and a time a t  the end of the run 
(from left to right). 

Figure 4. Contours of constant stream function corresponding to the situation shown in 
figure 2. The times corresponding to the three (instantaneous) sets of streamlines 
are the initial time, a time halfway through the run, and a time at the end of the run 
(from left to right). 

All the ensembles considered above have zero mean vorticity J (2.44(b)).  In  this 
case the equilibria are extensive in the following sense. Let the area A of the domain 
increase without limit. Then, given any finite positive values of the energy density 
E'/A and enstrophy density n/A,  these values are realised by a canonical ensemble 
(3.16) such that /3 tends to a finite positive limit. We assume that K,,, (more generally 
A,,,) is kept constant so that the number of degrees of freedom is K A  as A-tw. 
The  negatiye /3 states, on the other hand, are intrinsically non-extensive. They exist 
only for systems with finite A and involve a vorticity correlation length the order of 
the system size. The  transition between /3 < 0 and /3 > 0 at fixed A is smooth. 

If J#O, the total energy increases logarithmically as A+w with constant J /A ,  
so that in this case there is not extensive behaviour even for positive p. 



568 R H Kraichnan and D Montgomery 

3.3. Equilibrium states for discrete vortices 

The Liouville theorem and conservation properties for a system of discrete 
vortices again permit the construction of standard equilibrium distributions : the 
microcanonical, canonical and grand canonical distributions. The statistical mechanics 
of the discrete-vortex system was first treated by Onsager (1949). Since then there 
have been a large number of papers in the contexts of classical hydrodynamics and 
the homologous problem of the guiding-centre plasma (Montgomery et a1 1972, 
Montgomery and Tappert 1972, Joyce and Montgomery 1973, Mongomery 1975a,b). 
The statistical mechanics of discrete vortices also play a central role in recent theories 
of superfluidity in thin films. In  the present subsection we wish to give some simple 
qualitative and analytical discussion of the discrete-vortex system, emphasising the 
similarities and differences with respect to the truncated continuum. Then we shall des- 
cribe the formal analytical approaches to the statistical mechanics, and computer experi- 
ments which test the theories. The application to superfluidity will be discussed in $8. 

The canonical distribution describes a fixed number of vortices interacting with 
the potential-flow field and in contact with a reservoir in thermal equilibrium, with 
which it is free to exchange energy. The partition function, to be compared with 
(3.17), is 

N 

i = l  
z N =  .f exP [-p(E,+E~)l I7 (Pdxi dYi) (3.22) 

where N is the number of vortices, E, is given by (2.29(6)) and E,  is given by (3.8). 
The  factor pN in (3.22) does not affect averages at constant p and is included, as will 
be explained later (§3.4), to give correctly the pressure associated with the vortices. 
Note that the total energy E,+Ep is what appears in (3.22), not the pseudo-Hamil- 
tonian (3.14(c)). I t  is E,+E, that is conserved. 

I n  the case of a multiply connected domain, where Ep does not vanish trivially, 
its presence in (3.22) restricts ,f3 to positive values, as with the continuum equilibria. 
But in a singly connected domain enclosed by a rigid boundary, or in a fully cyclic 
domain or a uniform channel with cyclic ends, the potential flow either vanishes or is 
unaffected by the vortex motion, and can be excluded from the system. Then both 
/3 > 0 and ,B < 0 are possible. The integration over dxi dyi in (3.22) is confined to the 
finite domain and E, is finite whatever the configuration, provided that the core 
diameters are finite and defined by (2.30). If ,B > 0 so that the equilibrium is extensive, 
(3.22) can be derived from the microcanonical ensemble for a very large system 
of interacting vortices of which the system of interest forms a small part. This 
derivation can be extended to the non-extensive /3 < 0 equilibria by forming a super- 
system of many flow systems, each with N interacting vortices in an area A, such 
that the vortices within a system interact with each other according to (2.29(b)) and 
distinct systems are weakly coupled (Montgomery and Joyce 1974). 

If there is a mechanism for creation and destruction of vortices the appropriate 
ensemble is the grand canonical ensemble, a weighted average over canonical en- 
sembles with different N (Tolman 1938, Fowler 1936). Creation and destruction 
is important in the superfluidity problem ($8). Provided that iv is large, averages 
over the grand canonical ensemble that do not involve fluctuations in N will be 
closely approximated by averages over the canonical ensemble with N = N.  

Suppose there are equal numbers of plus and minus vortices and all have equal 
strengths and $, vanishes. The p= 0 (infinite temperature) state is immediately 
soluble: (3.22) weights all configurations equally and any position of a vortex is 
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independently equally probable. If the vortices are arbitrarily assigned to plus-minus 
pairs, each pair sees the zero mean field of the others, because of plus-minus symmetry. 
Then by (2.29(b)) and (2.30) the mean energy is a sum over independent pairs: 

Ew(P= 0) = ("PS2 Cf(L)(AXn2)-1 11 -A{+n(r)l2I (3.23) 

where N/2 is the number of pairs, B is the domain area, { } denotes spatial average 
over the domain, and we have used the orthonormality property A{dn2(r)}= 1. 
Equation (3 .23) can be evaluated once the boundary conditions are specified and the 
eigenfunctions determined. With rectangular fully cyclic boundary conditions, 
{Cn(r>}2= 0 except A{+o(r)}2= 1. The  surviving part of (3.23) represents the self- 
energy of the individual vortices plus the interaction energy of each vortex with its 
own images. The latter interaction energy has been evaluated and discussed in the 
limit of vanishing core diameter a by a number of authors: Taylor (1972), Joyce and 
Montgomery (1973), Seyler (1974, 1976) and Pointin and Lundgren (1976). Seyler's 
treatment perhaps is the clearest. 

If the cutoff inf(hn) is at Amax the mode dependence of the continuum equi- 
librium (3.18(a)) is the same X,-2 dependence that occurs in (3.23). More generally, 
it is plausible that for some range of /3 on both sides of /3=0 the gas of discrete 
vortices should act like a continuum and exhibit similar equilibria. But in general 
it is plausible that A,,, should be taken to approximate the reciprocal of the mean 
spacing between vortices rather than the reciprocal of the core diameter. This would 
make the number of degrees of freedom the same in continuum and discretum; the 
possibility of the correspondence of Amax and the cutoff inf(Xn) is then a peculiarity 
of p = 0 without real significance. Further discussion of the discretum-continuum 
relation is given by Kraichnan (1975). 

The  similarity of continuum and discretum equilibria can be expected to break 
down when close encounters, defined as encounters at much less than the mean 
vortex spacing, become of importance. When is this to be expected? As /3 increases 
to positive values the mean energy decreases, and this implies increasing proximity 
between plus and minus vortices. As /~+co we then expect the vortex gas to de- 
generate into closely bound plus-minus pairs. On the other hand, as j3 becomes 
increasingly negative the mean energy increases, corresponding to proximity of 
vortices of the same sign. As /3+- CO we expect the finite-volume gas to separate 
into a cluster of all the positive vortices, with their cores very close together and a 
similar cluster of all the negative vortices, since this gives the maximum energy. 
We may term these clusters supervortices. 

Analysis indicates that both the pair collapse (Salzberg and Prager 1963, May 
1967, Knorr 1968, Hauge and Hemmer 1971, Gonzalez and Hemmer 1972, Deutsch 
and Lavaud 1972, Edwards and Taylor 1974) and the collapse into supervortices 
(Kraichnan 1975) occur already at finite values of 1 /3 1 .  Consider first the pair collapse 
and start by supposing that there is only a single plus-minus pair in the domain, 
separated by a distance r which satisfies a < r < L, where a is the core size and L is a 
typical dimension of the domain ( A  N L2). The  a priori probability that the separation 
lies between r and r + d r  is W Y  dr/L2. By (2.35(a)) the Boltzmann factor has the 
r dependence exp ( - PE,) cc (r/L)-pz, where x = pq2/2n. Therefore in the canonical 
distribution the equilibrium probability that the vortices have a separation between 
r and r + dr is Q ( r )  dr where 

Q(r)cc L-l(r/L)1-@. (3 .24) 
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It follows immediately that the critical temperature for collapse of the pair is given 
by 

ppqy2r = 2. (3.25) 

If /3x < 2, jf Q ( Y )  dr is dominated by contributions from Y N L. But if pz > 2, the 
integral is dominated by contributions from Y N a. 

Next suppose that many pairs are present. If the mean spacing between pairs 
d satisfies a < d 4 L, simple estimates based on (2.35 (a) )  indicate that the interactions 
between pairs have only a small effect on the pair distribution function Q(Y)  provided 
that /3x> 2 (pair collapse region) and Y <d. If a+O with fixed q, d and L,  the pair 
collapse becomes a sharp phase transition at fix= 2 which is first order in the sense 
that there is a discontinuous change in the mean energy per vortex. The transition 
temperature is independent of d (that is, independent of the number density of 
vortices) (Salzberg and Prager 1963, Knorr 1968, Hauge and Hemmer 1971, Deutsch 
and Lavaud 1972). However, an important characteristic of a phase change is 
missing: if a is kept finite and L-tcx, with fixed d the transition does not become 
perfectly sharp in the limit; the energy per vortex varies continuously with p. 

A further peculiarity of the pair-collapse transition is that the transition tempera- 
ture depends on what quantity is being measured. In  the condensed state the polar- 
isability of the gas of vortex pairs is cc(r2). It follows from (3.24) that ( r2)  is 
dominated by contributions from Y < a if px > 4. Rut if fiz < 4, ( r z )  is dominated by 
contributions from r N L in the case of a single pair or Y & d if there are many pairs. 
If a<d, (+) increases abruptly if px  decreases through the transition value of 4 
(Kosterlitz and Thouless 1973, Kosterlitz 1974). Thus the transition temperature 
for ( Y " )  depends on n. The transition in (r2) is of special physical importance and 
will be treated further in $8, In  the case of a gas of many pairs, Nelson (1978) finds 
that px = 4 represents a transition in the behaviour of Q ( r )  itself for r 2 d. If /3z > 4, 
Nelson finds that (3.24) is modified only by In factors for Y $ d, while for Pz < 4 there 
is an exponential fall-off in Q(Y)  for Y $ d  due to shielding effects in the effective 
medium of polarised pairs. A consistent definition of Q(r)  for all Y (plus-minus pairs 
are not uniquely defined for Y 2 d )  is given by Q (Y) ccr(w (x) w (n + r)) with 
SF Q(Y) d r =  1 and with the average over all n as well as over ensemble. 

The transition in the pressure of the vortex gas is discussed in 93.4, together with 
the relation between the vortex gas and a gas of massive particles with two-dimensional 
Coulomb interaction. 

We consider next the possibility of the formation of a pair of supervortices, each 
containing all the vortices of one sign, at sufficiently negative /3. If there are N/2 
vortices in each cluster, their cores contained within a circle of size r ,  the a priori 
probability of the configuration is - ( r / L ) 2 N .  The energy is approximately that of a 
single pair of vortices, each of strength Nq/2. By (2.35(b)) the energy is then 
E N  (p/2r) (Nq/2)2 In (L/r),  where Y is the effective core size of the supervortex and we 
assume that the separation of the supervortices is -L.  The Boltzmann factor 
exp ( - P E )  favours high energies for p < 0. The product of Boltzmann factor and 
a priori probability is - (r/L) where p = 2 N  + PNzpq2/8n. If /3 < pa, where 

- 167~/Npq2 (3.26) 

the product increases without limit as r+O. We interpret this as meaning that the 
supervortices do form and that their (collective) core size collapses to r N a if /3 < Ps. 
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If the domain is bounded by a rigid boundary, there will be maximum-energy 
positions for the centres of the supervortices (the locations of plus and minus vortices 
are interchangeable) (Pointin and Lundgren 1976). If the boundary conditions are 
cyclic, there will be only a maximum-energy separation vector. I n  the canonical 
distribution there will be a statistical fluctuation in the positions of the centres. 
If the supervortices are treated as macro degrees of freedom, an elementary calculation 
gives (cr/L)2 N L2/N at ,8 N pS, or cr N d, where cr is the dispersion of a centre position 
and d2 is the mean domain area per vortex. As p-+- 00, a+O. 

A correspondence between the continuum equilibrium of regime (ii) ($3.2) and 
the discrete-vortex equilibrium between the temperatures of pair collapse and super- 
vortex formation is obtained by taking kmaxw l /d  and aNd2/qz (Kraichnan 1975). 
Then it is found that the pair collapse /3 corresponds to pP-c1kmax2; that is, to 
temperatures high enough to give approximate energy equipartition at K N kmax in the 
continuum equilibrium. All of regime (iii) then is unattainable by the discretum, which 
instead exhibits pair collapse. The  supervortex formation temperature corresponds 
approximately to the minimum temperature limit p p  = - 2akmin2 of the continuum 
(with kminw l /L) .  The continuum can reach indefinitely high energies if c1 is suffi- 
ciently close to this negative limit, but the discretum has a maximum possible energy 
if N and a are finite. 

The  statistical mechanics of the discrete vortex system appears to be exactly 
soluble only for cy= 0 and /3= -t 00. (We shall see in $3.4 that the exact equation of 
state obtained by Salzberg and Prager (1963) for the two-dimensional Coulomb gas 
for p outside the pair-collapse regime and with a+O does not apply to the vortex 
gas.) However, a number of formal analytical approximation procedures have been 
brought to bear. The treatment of the pair-collapse regime for /3pq2/2n>4 by 
renormalisation group and related approaches (Kosterlitz and Thouless 1972, 
Kosterlitz 1974, Nelson and Kosterlitz 1977, Young 1975, JosC et al 1977, Huberman 
et a1 1979, Myerson 1975, and others) will be noted in $5. 

If p> 0 and there is not pair collapse, the behaviour may be approximated by 
Debye-Huclrel theory, which is strictly applicable for p p q 2  4 1. I n  this method the 
hierarchy of n-body spatial distribution functions is calculable as a perturbation 
series in powers of the reciprocal of the number of particles inside a Debye square 
(e.g. Montgomery 1975a). These well-known solutions appear to be valid to /I= 0 
and to yield extensive thermodynamic behaviour for p > 0. 

Given the n-body functions, various statistics of w(x), as given by (2.27), may 
be calculated. In  particular the two-body distribution yields values for the (wn2),  
which may be compared with the continuum results (3.15). The Debye-Huckel 
results support our anticipation that the discrete vortex gas behaves like the continuum 
for 0 < /3pq2/2n < 2. A similar result for this regime is obtained by a cumulant-discard 
method (Pointin and Lundgren 1976). 

The /3 < 0 regime has been studied by random-phase approximations applied 
to the wn. as collective coordinates (Taylor 1972, Edwards and Taylor 1974, Lundgren 
and Pointin 1977a) ; by discarding pair correlation functions (Montgomery and Joyce 
1974, Pointin and Lundgren 1976, Lundgren and Pointin 1977b); and by seeking 
most probable states under the assumptions of stationarity and slow variation of 
vortex number density with position (Joyce and Montgomery 1973). 

The  random-phase approximation can logically be applied only if the set of wn 
is truncated at Amax (or kmax)N lid, where d is the mean vortex spacing. This is 
because the higher modes have strongly correlated phases that express the localisation 
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of vorticity into the cores of size a. But once the truncation is made, one is no longer 
really analysing discrete vortices; it is perhaps as satisfactory simply to truncate and 
make the approximation of identification with the truncated continuum, as already 
discussed. The truncated random-phase analysis (Taylor 1972) gives a relation be- 
tween /I and E which is consistent with the continuum approximation (Kraichnan 1975). 

Both the most-probable-state analysis and the discard of the two-body pair 
correlations lead to the same final differential equation for the /3 < 0 mean stationary- 
state stream function. I n  the case of equal numbers of plus and minus vortices, all 
of the same strength, this equation can be written 

V2$ + y2 sinh ( I p' I pq$) = 0 (3.27) 

(Joyce and Montgomery 1973, Montgomery and Joyce 1974) where y and p' are 
constants and 8' has the dimensions of p. 

Equation (3.27) results from the substitution of the most probable vorticity 
expression into (2.18) and assumes the limit of point vortices. /3 must be less than 0 
in the derivation. As /I passes through zero, we pass from a state with a spatially 
uniform one-body distribution (with the interaction energy residing in the Debye- 
Huckel pair correlation) to a spatially non-uniform state (with the interaction energy 
residing in the Vlasov limit mean-field solution to (3.27)). If I /3'pq$max I < 1, (3 .27) 
may be linearised to V2$+ A2$= 0, which is just the equation obeyed by the stationary 
eigenfunctions &(x) of the continuum. 

The non-linear solutions to (3.27) have been studied numerically (McDonald 
1974, 1978 private communication, Book et al 1975, Pointin and Lundgren 1976, 
Kriegsmann and Reiss 1978, Montgomery et al 1980). They are not unique in the 
sense that there is a family of non-linear eigenvalues y for each energy and total 
vorticity: the solutions are distinguished by the number of local maxima and minima 
in $, However, only one of these actually maximises the original probability func- 
tional from which (3.27) is derived: the one with a single maximum and a single 
minimum in 4. 

The relationship of (3.27) to the exact canonical distributions for the discrete 
vortex system and the continuum is not fully illuminated in the literature. Moreover, 
the present authors do not fully agree with each other. One of us (RHK) believes 
that, within the domain of validity of (3.27), some subclass of its solutions bear the 
same relation to the discretum canonical distribution as the eigenfunctions 4% (x) 
of V24, + h,2+, = 0 do to the continuum canonical distribution. A typical realisation 
of the absolute equilibrium (3.16) for the truncated continuum is instantaneously 
a random superposition of the &(x) and, by (2.14), 9 fluctuates with time in this 
realisation. Similarly, an individual solution of (3 .27) represents a fluid state in which 
there is no statistical fluctuation on scales large compared to the vortex spacing; 
the large-spatial-scale fluctuations in the canonical distribution can be represented 
by time-varying superposition of such solutions. A similar view has been expressed 
by Pointin and Lundgren (1976) and Lundgren and Pointin (1977a,b). 

What then is the physical meaning of the non-linearity of (3.27) by which, in this 
interpretation, the continuum and discretum distributions differ at scales large 
compared to the discretum intervortex spacing? I n  the continuum states the 4% 
may appear with arbitrarily large amplitude. But in the discrete case the amplitude 
of a large-spatial-scale variation in $ is limited to a maximum value associated with 
the complete separation of the plus and minus vortices, whose number and strengths 
are fixed. 
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If the scale of variation of $ is N L, the domain size, then $-Nq, if there is 
substantially complete separation of plus and minus vortices, so that the total mean 
vortex strength on the scale L is - Nq. In  this case the condition for linearisability is 

IP’I 4 I P S 1  (3.28) 
where Ps is the supervortex condensation temperature (3.26). 

An obvious qualitative feature of (3.27) is that the spatial dependence of -Vz$ 
(the vorticity) is less smooth than that of $. The smoothness assumptions on spatial 
variation used in deriving (3.27) preclude this equation from describing the ultimate 
limit of this bunchedness of vorticity: the supercondensation collapse. Seyler (1974, 
1976) finds that the random phase approximation with zero core diameter gives 
infinite energy at P- Ps, which suggests that f ls  may be a limit for the validity of the 
derivations of (3.27). 

The  second author (DCM) wants to register views which depart slightly from 
those just presented. First, no direct relevance of equation (3 -27) to the case of 
finite-core vortices is conceded. The derivation of (3.27) (Joyce and Montgomery 
1973, Montgomery and Joyce 1974) makes use of Poisson’s equation (2.18) in a 
fundamental way, and modification of the two-body interaction potential from the 
Coulomb law will significantly modify (3.27) itself. As it stands, PS has no meaning 
for (3.27) directly. Secondly, it is believed that $V of Montgomery and Joyce (1974) 
does indeed illuminate the relation between (3.27) and the exact canonical distribution 
for line vortices, in terms which are familiar from the theory of the BBGKY hierarchy 
(Bogolyubov 1946, Montgomery 1971). 

A number of numerical experiments have been carried out in which a set of point 
vortices in a given geometry move according to the equations of motion. Joyce and 
Montgomery (1972, 1973) and Montgomery and Joyce (1974) have followed sets of 
typically 4000 vortices (equal strengths and equal numbers of positive and negative) 
in a rectangular domain with rigid boundaries with initial conditions corresponding 
to both positive and negative interaction energies of the vortices. Representative 
results for high and low energies are shown in figures 5 and 6. Similar calculations 
have been reported by Edwards and Taylor (1974). Pointin and Lundgren (1976) 
have simulated sets of 40 vortices in a circular domain. These experiments confirm 
the general predictions of equilibrium theory. The vortices tend to evolve to con- 
figurations which are spatially uniform in the mean, with small-scale spatial fluc- 
tuations in locally averaged vorticity, if the interaction energy is negative, corre- 
sponding to f l  > 0 equilibria. If the interaction energy is positive, corresponding 
to /3 < 0 equilibria, there is evolution into large-scale aggregations of like-signed 
vortices. The experiments have not been on a large enough scale, or carried out for long 
enough times of evolution, to shed light on the delicate questions of deviation between 
continuum and discretum behaviour at large negative ,B which we have raised above. 

Seyler (1976) has used Monte Carlo calculations with a set of 256 vortices to 
compute the phase-space volume associated with various ranges of system energy. 
He finds good agreement with equilibrium random phase theory for positive inter- 
action energies (P c 0) but finds that the random phase approximation underestimates 
the available phase volume for /3 > 0. 

3.4. Pressure and entropy 
The pressure associated with a distribution of vorticity in an incompressible fluid 

can be defined by introducing a tiny compressibility. I n  order not to become involved 
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with sound waves and related complications, we may assume that compression is 
carried out slowly and that the only compressive mode excited is the one in which 
every fluid element experiences the same change in density. If 5 is the change of 
linear scale associated with the uniform compression, the area of the domain A' and 
density pf after compression are related to initial values by A' = (ZA, p' = 5-2p. 
Kelvin's circulation theorem holds under the compression (Lamb 1945) and the 
motion is unaffected except for the scale changes 

w f  (x) = 5-2w (I- lx)  u'(x) = 5-lu((-1x) 

which express conservation of circulation and angular momentum. Here x is measured 
from the centre of mass of the domain, which is fixed. If there are discrete vortices, 
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Figure 5. Fluid velocity field initially, and after considerable evolution of the flow, for 4008 
point vortices (Montgomery and Joyce 1974). The energy for this case is above 
the negative temperature threshold. Boundaries are rigid and frictionless. (a) 
Time=0*0, nmax=2*7845. (b) Time=160*0, vmax=1*8794. 

the cores compress as well as the rest of the fluid and scale according to a' = (a. 
It follows from these relations that the scaling of the total kinetic energy is E' = 5-2E 
or E'A'=EA. Thus the kinetic energy increases as the fluid is compressed (in 
analogy to the spin-up one experiences upon drawing the arms inward whilst rotating 
on a piano stool). The  two-dimensional pressure$ (averaged over the boundary) is 

$ - BE/8A =z E/A .  (3.29) 

The  standard formula for the pressure associated with a slow (adiabatic) change 

(3.30) 

of volume in the canonical ensemble is (Landau and Lifshitz 1958) 

j = p-1( BZ/ 8A)B 
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where the partial derivative is at constant 8. Underlying (3.30) is the fact that the 
adiabatic compression is isentropic. This is an automatic consequence of the 
Hamiltonian dynamics for the systems ordinarily considered. But for our non- 
Hamiltonian flow system the constancy of entropy under compression, and hence 
a correct result from (3.30), is obtained only if the partition function 2 is written 
in terms of properly chosen variables. Let us confine the discussion now to a singly 
connected domain with rigid boundary (extension to the general case is not difficult). 
Then (2.25 (b)) can be written 

E,= qp un2 (3.31) 

where un= Xn-lwn. We have seen above that E and p have the same scaling under 
compression, and it then follows from the similarity of w(x) and w ' ( x )  that the un are 
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Figure 6. Fluid velocity field initially, and after considerable evolution of the flow, for 4008 
point vortices (Montgomery and Joyce 1974). The energy for this case is below 
the negative temperature threshold. Boundaries are rigid and frictionless, (a) 
Time = 0.0, vmax = 0.8307, (b) Time = 375, vmax =0*7540. 

invariant under the adiabatic compression. They are the desired variables ; the 
invariance of the un is analogous to the invariance of quantum-mechanical eigenstate 
amplitudes under adiabatic processes (Landau and Lifshitz 1958). 

If we now write (3.17), with no potential flow variables a and with N=O, in the 
form 

(3.32) 

with E, given by (3.31), (3.30) gives immediately the correct result (3.29). I n  order 
for the result to remain correct for afO (a generalisation not usually contemplated 

Z =  J exp ( -  /3E,)IT du 
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in writing (3.30)) it is necessary to write as1 as &a, where 0 = O/p is independent 
of 5. 

Since E in (3.29) is solely kinetic energy, the pressure is always positive. 
The pseudo-Hamiltonian relations (3.14) are a guide in choosing correct variables 

for the discrete vortex system. In writing (3.22) we have therefore taken pxg and 
yz as a canonical pair (the factor qe is invariant under compression and we have 
ignored it) rather than xg and yi. Again, (3.30) applied to (3.22) gives the correct 
result (3.29). 

I t  is essential at this point to distinguish carefully between the vortex system, the 
two-dimensional Coulomb gas, and the guiding centre plasma; their homology does 
not extend to pressure. The potential energy of the Coulomb gas is what has the 
same form as the Kinetic energy of the vortex system. In  addition, the Coulomb gas 
has kinetic energy of the particles. The contribution of this kinetic energy to the 
pressure is recovered from (3.22) by omitting the p factors in the area elements. This 
is correct for the Coulomb gas because the canonical pairs there are (xi, pix)  and 
(yi, pgy); the momentum p does not enter the vortex gas problem. 

The difference in behaviour of the pressure for the vortex gas and the Coulomb 
gas is especially sharp at and below the pair-collapse temperature (3.25). If a is small 
enough, the energy of the vortex gas in the pair collapse regime is a small fraction 
of its value just above transition so that, by (3.29), there is a corresponding collapse 
of pressure. In the case of the Coulomb gas, an exact equation of state can be obtained 
above transition for a-tco (Salzberg and Prager 1963). In  the pair-collapse regime, 
there remains the perfect-gas pressure contribution from the bound pairs (Hauge 
and Hemmer 1971, Gonzalez and Hemmer 1972), one-half that of free particles. 

4. Spectral transport of energy and enstrophy 

4.1. Relaxation toward equilibrium 

The turbulent flows which are generated in nature, in the laboratory, or in com- 
puter simulations usually are out of statistical equilibrium in two respects. First, 
the very existence of hydrodynamic modes with macroscopically significant excitation 
is a departure from the absolute equilibrium of the fluid considered as a molecular 
system. Second, the hydrodynamic modes are in disequilibrium among themselves 
and do not have the equilibrium properties described in $3. In  this situation we can 
expect that the equations of motion mediate a two-fold relaxation toward equilibrium : 
the hydrodynamic modes dissipate their energy into heat energy of the fluid via the 
viscosity term, while the non-linear terms give an exchange of energy among the 
hydrodynamic modes tending to bring the state of motion closer in some way to the 
equilibrium states of $3. If processes are acting continuously to regenerate the 
turbulence, the competition between forcing and relaxation may result in a non- 
equilibrium steady state. 

The relaxation toward equilibrium of a non-linear system with many degrees of 
freedom (or even just several degrees of freedom) can result in a complex interplay 
of order and disorder. In  turbulent shear flow, such as flow in a pipe, the generation 
of turbulent excitation near the walls involves non-linear instabilities and the creation 
of characteristic three-dimensional vortex structures. As these structures move away 
from the wall they become more random in appearance and more isotropic. The 
eventual breakdown of the turbulence into small-scale structures that are dissipated 
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by viscosity involves the formation of thin sheets of vorticity which are coherent over 
distances large compared to their thickness, but which are chaotically oriented and 
distributed. A review of mechanisms and structures in turbulent shear flow is given 
by Roshko (1976). 

The basic mechanism for the formation of sheets of vorticity operates even when 
no boundaries are present and the turbulence is statistically isotropic and homo- 
geneous. It has been clearly described by Batchelor (1952). Random motion tends 
on the average to separate points which move with the fluid; the points execute a 
random walk constrained by incompressibility. This tends to elongate initially 
compact fluid elements. In  two dimensions the vorticity at each point of the fluid 
is constant (neglecting viscosity) and the result is that an initial blob of vorticity is 
drawn out into a filament (or sheet, adding the z dimension). I n  three dimensions, 
the enstrophy tends to be enhanced by this process (Batchelor 1952). If viscosity is 
now included, the effect is to diffuse vorticity thus blurring the edges of the vorticity 
filaments. 

I n  three-dimensional inviscid incompressible flow, it has been demonstrated that 
the vorticity-straining mechanism described above, and the concomitant enhance- 
ment of vorticity, can lead to singularities in a finite time of evolution (Morf et al 
1980). In  contrast, it has been proved that the two-dimensional Euler equations do 
not lead to singularities of the velocity field or its derivatives in finite time if the 
initial conditions are smooth (Wolibner 1933, Frisch and Bardos 1975, Rose and 
Sulem 1978). 

I n  what follows we shall measure the evolution of non-equilibrium initial ensembles 
of flows principally by following the evolution of spectra; that is, the values (on') 
as functions of time, or these values in the non-equilibrium steady state. This limit- 
ation excludes most of the information about the non-random aspects of the charac- 
teristic structures, such as vortex sheets, or local aggregations of like-signed vorticity, 
which can form during evolution. It is an unfortunate result of the fundamental 
difficulties that presently exist in giving a satisfactory description of part-random, 
part-coherent structures. Almost all theoretical studies of turbulence have been 
limited to spectra, or to equivalent correlation functions, because it has been found 
very difficult to do more. Fortunately some information about the actual spatial 
appearance of flow structures has emerged from computer experiments, laboratory 
experiments, and observations of natural flows. Figure 14 illustrates the evolution 
of constant vorticity contours in a computer experiment by Lilly (1971) which used 
random initial conditions on a truncated inviscid system. 

I n  order to obtain an equation for the evolution of the spectral intensities a n ,  
or equivalently En,  we may start by generalising (3 -4)  to include the viscous damping 
term that appears in (2.42) and (2.43): 

dwnldt+ VXn'wn= C AnrSWrWS. (4 .1)  
78 

Multiplying by 2wn and averaging over ensemble we obtain 

where Tnr, expresses the mean rate of transfer of excitation into mode n due to its 
interaction with modes Y and s. We omit the easy generalisation to systems with 
potential flow. The  v term acts to reduce the excitation in each mode independently. 
By (3.5) and (3.6) the transfer terms satisfy 

Tnrs + Trsn + Tsnr 0 An2 Tnrs + A,' Trsn + As' Tsnr = 0 (4 .3(% b ) )  
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which express conservation of energy and enstrophy, respectively, by the elementary 
three-mode (triad) interactions. We take Tnys = T B a y .  

Equations (4.3) imply 

Tysn/Tnrs=(AS'-An') (A,'- As')-' (4.4) 

which, with its two cyclic permutations, expresses an important qualitative charac- 
teristic of the energy transfer process (Batchelor 1953, Fj~r tof t  1953). Suppose 
that the eigenvalues have the ordering A, < A,, < A,. Then transfer of energy out of 
mode n requires that this energy be transferred into both modes Y and s. Only by 
simultaneous transfer to both higher and lower h modes can enstrophy and energy 
conservation be satisfied simultaneously. Whether this process transfers more energy 
to mode s than to mode r depends on the particular relative magnitudes of ha, An 
and A, (Merilees and Warn 1975). 

Most of the theoretical and computer-experiment work has been done for the 
square cyclic box. In  this case it is most convenient to write the equations in terms 
of the complex Fourier coefficients of the velocity or vorticity field, whose real and 
imaginary parts are the mode amplitudes we have previously considered. If we 
write ui(x, t)= zii(k, t )  exp (ik.x), where the sum is over all allowed wavevectors 
for the cyclic box, then the Navier-Stokes equation (2.42), with the pressure 
eliminated by the incompressibility condition, can be written as 

(a /a t+ vkZ)u$(k)= -ikm(&j-kikj/k2) u j ( p )  um(y )  (4.5) 
p + q = k  

where the indices are tensor indices and we have dropped the carets. If the Fourier 
modes can be considered dense (k,i,%l/L where L is the box side or negligible 
excitation in wavenumbers N l/L), then the statistics are greatly simplified by assuming 
that averages are spatially isotropic and defining continuous isotropic spectrum 
functions. Thus we define the smooth function U(k)  by U(k)  = (L/277)2( I u(k) 12) 

at each allowed k. Then if E ( k ) = n k U ( k ) ,  the total mean kinetic energy and 
enstrophy are 

E=pL2 J: E ( k )  dk = 2L2 J: k2E(k) dk. (4.6(a, b ) )  

U ( k )  =27+(p/3+2ak2)-1. (4 7 )  

The equilibrium state (3.18) gives 

Further information about the transformation from discrete to continuous represen- 
tation is given by Leith and Kraichnan (1972). In the continuous representation 
we have 

( q a t  + 2 vk2) E@) = T (  k) T ( k )  = 9 Jom SI? T ( k ,  P ,  q)  dP dq 
(4.8(a, b ) )  

where T(k,  p ,  4 )  plays the role of Tn,, in (4.2) but involves isotropic averaging, 
We have 

T(k,  P, 4 )  + T(P, 4 9 4  + T(4, A, PI = 0 

k2T(k P ,  4 )  +P2T(P, 4 ,k )  + 42%, k, P) = 0 

(P2 - 421-1 

(4.9 (4 ) 
(4.9 (b)  1 
(4.9 (c)  ) T(P, 4,  A)/ T(k ,  P, 4) = ( 4 2  - 
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with T(k ,  p ,  q) = T(k ,  q, p ) .  Equations (4.9) yield overall conservation of energy 
and enstrophy by the non-linear interaction : 

J; T ( k )  dk = 0 j”: k2T(k) dk= 0. (4.10 (a,  b ) )  
In  three-dimensional turbulence (with reflection invariance) the only quadratic 

constant of motion is energy and the equipartition of energy among all the modes is 
the only equilibrium state for the truncated system. The  two-dimensional equi- 
librium which we have examined in 93 is more complicated because there are the 

ID 100 
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Figure 7. Evolution of a 2D Navier-Stokes run with v = O  (equation (3.4)) (from Matthaeus 
and Montgomery 1980). The initial spectrum (circles) is concentrated in the 
modes k2=16,  and evolves to the crosses. The full curve is the modal energy 
corresponding to equation (3.18) for these initial conditions. 

two quadratic constants, energy and enstrophy. The  ergodic properties found by 
Seyler et aZ(1975), Basdevant and Sadourny (1975) and Kells and Orszag (1978) and 
discussed in 93 imply that any initial energy spectrum in the truncated inviscid 
system should relax to an equilibrium spectrum. In  contrast to three-dimensional 
turbulence, where the energy transfer that relaxes toward equipartition is primarily 
to higher wavenumbers, the transfer in two dimensions is importantly toward both 
higher and lower wavenumbers, as noted by Batchelor (1953) and Fjcrrtoft (1953). 
In  both three and two dimensions viscosity acts most strongly on the higher wave- 
numbers. Figures 7 and 8 show the relaxation of the spectrum to equilibrium for 
two inviscid computer-simulation cases computed by Matthaeus and Montgomery 
(1980). In  each case almost all the initial energy was concentrated in a single wave- 
number and the ratio kmax/kmin was 16. A random noise energy of the order of 
1% was distributed among the rest of the modes. Comparison of the initial and final 

37 
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spectra in figure 7 clearly shows an approach to the equilibrium spectrum involving 
transfer of energy to both higher and lower wavenumbers. Figure 8, on the other 
hand, shows a case in which both the initial and final spectra have most of the 
excitation in the gravest modes (condensed equilibrium). The conservation laws 
render this initial state essentially stable to random perturbations (see Matthaeus 
and Montgomery 1980). 

Figures 9 and 10 show the transfer function T(k)  and the enstrophy transfer 
function k2 T(k)  from computer simulations of the system with viscosity presented 
by Herring et a1 (1974). The initial spectrum was smoothly peaked about K=8. 
Note that the energy transfer is primarily to lower wavenumbers while the enstrophy 

10 100 
Wavenumber squared (log scale)  

Figure 8. Evolution of a 2D Navier-Stokes run with v = O  (equation (3.4)) (from Matthaeus 
and Montgomery 1980). The initial spectrum (circles) is concentrated in the 
modes k2= 1 and evolves to the crosses. Full curve is equation (3.18) for these 
initial conditions, which in effect lock all the excitation into the h2=1 modes for 
all time. 

transfer, because of the weighting by k2, is primarily to higher wavenumbers. Again 
because of the k2 weighting, the dissipation of enstrophy by viscosity is proportionately 
greater than that of energy, and this difference is enhanced during evolution by the 
directions of transfer. Figure 11 shows for contrast the energy transfer T(k)  found 
by Orszag and Patterson (1972) from a three-dimensional simulation with similar 
initial spectrum. 

The  absolute equilibrium states are isotropic except for the excitation at wave- 
numbers low enough that discreteness is important. Herring (1975) has investigated 
the relaxation toward isotrophy of initially anisotropic states. He finds weaker 
isotropising effects than in three dimensions. 
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Figure 9. Energy transfer function T ( k )  (points) for a 2D Navier-Stokes initial spectrum 
peaked about k = 8. Full curves are for three different closures, described elsewhere 
(- --- , two versions of TFM; . . ., DIA) (from Herring et al 1974). 
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Figure 10. Enstrophy transfer function k2T(k)  (points) for the same 2D Navier-Stokes 
simulation shown in figure 9 (from Herring et al 1974). 
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Figure 11. Energy transfer function (points) for a 3D Navier-Stokes simulation (from Orszag 
and Patterson 1972)’ with an initial spectrum similar to that for the initial spectrum 
corresponding to figure 9 for two dimensions. Note the fundamental difference 
in shape between the 2D and 3D cases. 0, A, U, t=0*2, 0 ,  I, t=0.6. 

4.2. Inertial ranges 

Kolmogorov’s (1941) theory of the inertial range has a central place in the theory 
of three-dimensional turbulence. Kolmogorov’s theory may be stated as follows. 
Suppose that most of the energy of the turbulence is at wavenumbers k -  1/L and 
that most of the dissipation of turbulent energy into heat by viscosity is at wave- 
numbers k w k s B  1/L. Then there is an inertial range of wavenumbers connecting 
these two regions through which energy is cascaded by non-linear processes to the 
wavenumbers where it is dissipated. Furthermore, the energy spectrum in the 
inertial range depends only on k and on the rate E at which energy is cascaded per 
unit mass. Therefore it has the form (Rose and Sulem 1978) 

E ( k )  = C~2/’3 j2-5/3 (4.11) 

which is the only dimensionally correct combination. Later Kolmogorov (1962) and 
others proposed corrections to the - 513 exponent because of intermittency effects. 
A discussion of the theory and its dynamical basis is given by Monin and Yaglom 
(1975) and Rose and Sulem (1978). A critical appraisal of some of the work on 
intermittency corrections is attempted by Kraichnan (1974a). 

I n  two-dimensional turbulence there are two conserved quantities, energy and 
enstrophy, which are candidates for cascades of the Kolmogorov type. The  dimen- 
sionally determined inertial-range energy spectra for these putative cascades are 
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(Kraichnan 1967, Leith 1968, Batchelor 1969) (4.11) and 

E ( k ) =  C’72/3 k-3 (4.12) 

where 7 is the rate of cascade of enstrophy per unit area. C and C’ are dimensionless 
constants. 

The inertial-range hypothesis can be formulated analytically by introducing the 
functions 

1T(k)= j; T(k’)  dk’ Z ( k ) = 2  j? (k’>zT(k’)  dk’ (4 .13 (~ ,  b ) )  

which are (in view of (4.10)) the rates at which energy and enstrophy, respectively, 
are transferred from wavenumbers < k to wavenumbers > k. By use of the detailed 
conservation relations (4.9) IT(k) and Z ( k )  can be written as 

(k) = 3 j? dk’ j; jok T(k’ ,  p ,  9) dp dq- 8 jok dk’ j? fk”  T(k’, P ,  q) dp dq 
(4 * 14 (4 1 

(4*14(b)) 
Z ( k )  = j; (k’)‘ dk’ Jt j k  T(k’ ,  p, 9) dp dq- ji (k’)’ dk‘ J’; J; T(k’,  p, 9) dp dq. 

Here II(k) and Z ( k )  are expressed as differences between the total rate of gain in 
the range k’> k due to triad interactions with p, q, < k and the total rate of gain in 
the range k’ < k due to triads with p ,  q > k. 

Now consider a hypothetical power-law similarity behaviour such that 

T(ak ,  up, aq)/T(k,  P, 4) = (4.15) 
where U is an arbitrary scaling factor such that all six wavenumbers in (4.15) lie in 
the putative inertial range. If (4.15) and (4.9) are used in (4.14) some changes of 
variable and algebraic manipulations yield the formal results 

IT (k)C€k3-r z ( q ~ k 5 - y  (4.16) 
(Kraichnan 1967). Thus an energy inertial range in which IT(k) is k-independent 
requires r = 3 and an enstrophy inertial range in which Z ( k )  is k-independent requires 
Y = 5. Moreover, and importantly, the analysis shows that if Y = 3 a coefficient vanishes 
to give Z ( k )  0. Thus there is 
zero-energy cascade in the formal enstrophy inertial range and vice versa. 

So far we have not related the transfer scaling (4.15) to the spectrum forms 
(4.11) and (4.12). This relation comes through the requirement of localness of the 
cascade in wavenumber. The  formal results for n ( k )  and Z ( k )  are meaningful only 
if the integrations over k’, p and q in (4.14) converge at very small and very large 
argument values. We are then led to ask what constitutes similarity of the local 
behaviour of T and E. If k, p, q are all the same order of magnitude such similarity 
requires that T ( k ,  p, q) exhibit the same scaling as the local quantity [E(k)]3/2k-1/2, 
which has the same dimensions. Then (4.15) implies E(ak) /E(k )  = u-@r--1)/3, from 
which we recover (4.11) and (4.12) for Y =  3 and r = 5, respectively. This linking 
of T and E scaling has the following significance in x space. Suppose the velocity 
field is band-limited by a filter which passes only wavenumbers within, say, an octave 
of k. Then the assumed relation of scalings assures that triple moments of the 
filtered field and its space derivatives are k-independent if they are non-dimensionalised 
by the needed powers of the mean square of the filtered field and the mean square 
of its gradients. 

0 while if r = 5 a coefficient vanishes to give IT (k) 
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The non-linear transfer process arises from the stretching or differential advection 
of the velocity field by itself. In  the energy inertial range, simple estimates based 
on statistical independence of different wavenumber ranges support the localness 
of cascade. These estimates show that the effective straining acting on structures of 
size - 1/k is dominated by contributions from components of wavenumbers -k if 
the spectrum is (4.11). These estimates are given a precise mathematical form (but 
not made much more compelling) by the closure approximations described in $4.3. 
On the other hand, the enstrophy inertial-range spectrum (4.12) implies equal 
contributions to the effective strain from each octave in wavenumber that lies below 
(lower wavenumber) the K of interest. The  integrations in (4.14(b)) then diverge 
logarithmically toward small wavenumbers, if the logarithmic extent of the putative 
inertial range is infinite. 

Kraichnan (1971b) and Leith and Kraichnan (1972) have proposed on the basis 
of the TFM closure approximation (see $4.3) that the enstrophy inertial range has the 
corrected form 

E(K) = C’q2i3k-3 [In (k/k1)]-1/3 (4.17) 

where kl is a wavenumber at the bottom of the range. According both to the closure 
approximation and simple estimates this correction makes the integrations in (4.14(b)) 
convergent and gives Il (K)+-O, Z(k)-tq for k/kl+oo. The strict similarity between 
T and E is now lost since E ( k )  has a logarithmic correction and Z(K) does not. 

The  directions of energy or enstrophy transfer in the putative inertial ranges 
(i.e. the signs of E and q) must now be considered. The formal analysis of (4.14) 
shows that individual triad interactions make a negative contribution to E and a 
positive contribution to q if the mean energy transfer by the triad is from the mid- 
sized wavenumber to the extreme wavenumbers. This is also the physically plausible 
case if the ranges were to arise from the relaxation toward equilibrium of excitation 
initially placed at k - k ~ .  The relaxation would then be mediated by a range (4.11) 
with E < 0 carrying energy to lower wavenumbers and a range (4.17) with 7 > 0 
carrying enstrophy to higher wavenumbers. Some further support for these signs 
of E and q is provided by an initial-value analysis with power-law U(K) and Gaussian 
initial distribution (Kraichnan 1967). It is found that the initial transfer is out of the 
middle wavenumber unless U(k)  falls between the power laws ko and K-2  corre- 
sponding to the a(= 0 and p= 0 equilibria of 93. Both (4.11) and (4.12) give U(K) 
out of those limits (note E ( k )  = .rrkU(K)) and therefore correspond to initial transfer 
out of the middle wavenumber. 

The formal analysis and the support by simple estimates of straining and by closure 
approximations by no means assure that the inertial ranges actually occur. This is, 
in fact, a very difficult matter to settle. Computer simulations verify that there does 
occur transfer of excitation to lower and higher wavenumbers in a manner quali- 
tatively consistent with the simultaneous existence of both the energy and enstrophy 
inertial ranges. This is illustrated by the spectrum evolution curves in figure 12 
obtained by Lilly (1971) (see also Lilly 1969, Fyfe et al 1977b, figure 2). However, 
numerical experiments can include only finite wavenumber ranges and cannot deter- 
mine asymptotic behaviour, such as the precise power law of the asymptotic infinite 
k-range spectra. This difficulty is more acute in two dimensions than in three because 
estimates of the localness of interaction in k space (Kraichnan 1971b) suggest that 
triad interactions involving wavenumber ratios up to 10: 1 are important in the 
two-dimensional transfer process so that very great wavenumber ranges would be 
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needed to approximate asymptotic behaviour. The  logarithmic correction in (4.17) 
is particularly difficult to verify. Figure 13 illustrates the difficulty. Here an attempt 
is portrayed to simulate the enstrophy inertial range with several different wave- 
number cutoffs ; the results are compared with spectrum curves from integration of 
the test-field closure ($4.3) with the same cutoffs. The distorting effects of finite 
cutoffs is clearly shown. The  test-field closure is known analytically to give the 
asymptotic spectrum (4.17) yet with a finite cutoff and with the effects of viscosity 
at the included wavenumbers it appears on the plot to yield a spectrum behaviour 
closer to K-4. 

1 @ L u u , -  
1 3 

Wavenumber 

Figure 12. Energy spectrum for three 2D Navier-Stokes decay runs (from Lilly 1971), 
averaged over 200 time steps, and labelled by Reynolds number. Broken lines 
have slope - 3 I 

Suppose that energy and enstrophy are steadily fed into the system at k - kl and 
that viscosity acts but that there is no upper cutoff (kmax = CO). If (4.11) and (4.17) 
are correct asymptotic forms we expect that, as the input continues, energy is carried 
toward the gravest modes ko by down transfer in the (4.11) range while the (4.17) 
range carries enstrophy upward and extends to successively higher k as time goes on. 
The  enstrophy transport eventually is interrupted when the enstrophy inertial range 
has reached sufficiently high wavenumbers that the rate of enstrophy transfer is 
substantially balanced by the viscous dissipation (Novikov 1978a). As v+O these wave- 
numbers become infinite and, in the limit, the enstrophy dissipation approaches a 
constant rate independent of v while the energy dissipation rate becomes zero. I n  
contrast to three-dimensional turbulence, where it is supposed that the inertial range 
can develop to infinite wavenumbers in finite time if v+O, in two dimensions the 
inertial range exhibits a constant asymptotic logarithmic rate of extension in k, accord- 
ing to closure approximations (Rose and Sulem 1978). The  absolute equilibrium state 
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for K m B x =  CO is one of condensation of all the energy in the gravest modes and this 
suggests that with steady input at K 1  and v+O a singular excitation of energy in ko builds 
with time (Kraichnan 1967), or that with initial excitation at kl and no subsequent 
input all the initial energy collects eventually in K O ,  while the enstrophy not associated 
with the K O  excitation is dissipated (Bretherton and Haidvogel 1976, Matthaeus and 
Montgomery 1980). 

The enstrophy range (4.17) corresponds to a spectrum of form K - l  for the 
enstrophy spectrum 2K2E(k), apart from the log correction. This is the same as the 
spectrum for small-scale blobs of passive scalar passively advected by turbulence 

0 20 LO 60 
k 

Figure 13. Comparison of P E @ )  (bold full curve) from a 2D Navier-Stokes decay simulation 
run (Kmax = 63) with two different test field model runs with Kmax = 63 (full curve) 
and kmpx=128 (broken curve) (from Herring et aZl974). 

(Batchelor 1959, Kraichnan 197413) and corresponds to the same basic physics: the 
small blobs (in the present case blobs of vorticity) are drawn out into filaments and 
the resultant statistical distribution of filament widths gives the K-1 spectrum. The  
log correction reflects the fact that the straining comes equally from all octaves of 
the enstrophy inertial range. The  small-scale vorticity behaves essentially passively 
because it contributes little to the effective strain compared to the logarithmically 
larger contribution from lower wavenumbers. 

Saffman (1971, 1977) has suggested an alternative to the spectrum forms (4.12) 
and (4.17). He considers an initial state in which the vorticity is segregated into 
sharp-edged domains. Fourier transformation of the sharp-edged distribution 
yields E(K)cck-4 at high K .  Then, since the vorticity in each fluid element is a 
constant of motion, Saffman argues that the sharp edges will persist and so therefore 
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will the K-4 spectrum except at K so large that viscous dissipation is significant. 
However, if viscosity is neglected, (4.17) also is consistent with sharp-edged domains; 
as discussed above, it describes a statistical distribution of widths of vorticity filaments. 
If the small scales are strained like a passive scalar then, given Saffman’s initial 
condition, we would expect the log-corrected k - 3  spectrum to spread to ever-higher K 
(until viscosity interferes) overpowering the K-4 spectrum as it does so. If, instead, 
the k - 4  spectrum persists this would imply that the vorticity is not drawn out into 
filaments with statistically distributed widths. Figure 13 suggests that this question 
will not easily be settled by experiment, computer or otherwise. High-resolution 
simulations by Orszag (1976) are on the threshold of distinguishing K - 3  from K - 4 .  

Sulem and Frisch (1975) have shown that if the steady-state rate of enstrophy 
dissipation approaches a non-zero limit as v+O then the enstrophy inertial range 
cannot fall off more steeply than K-4.  A later sharpening of this bound (Pouquet 
1978) has been found to be invalid by U Frisch, A Pouquet and P-L Sulem (private 
communication from U Frisch (1979)). Saffman (1977) points out that no such 
bound can eliminate the a priori possibility that the steady-state enstrophy dissipation 
goes to zero with v. Orszag (1974) argues that if v =  0 and initial conditions are smooth 
then the enstrophy dissipation is zero for all finite time, a conclusion corroborated 
by Pouquet et a1 (1975) on the basis of the EDQNM closure (94.4). 

In  three dimensions there are theoretical and experimental grounds to believe 
that the k-513 inertial-range spectrum is modified, to a more negative exponent, by 
spatial intermittency of the small scales which increases the energy transfer E 

associated with a given spectrum level E(K) because of the non-linearity of the transfer 
process. A review of some of the relevant arguments is given by Kraichnan (1974a) 
and Rose and Sulem (1978). If the small scales of the vorticity field in two dimensions 
do behave like an advected passive scalar, then the dynamics in the enstrophy inertial 
range (4.17) are essentially linear, from which it can be argued that no intermittency 
corrections are to be expected in the spectrum law although gradients of the vorticity 
field will exhibit intermittency that increases as scale size decreases (Kraichnan 1975). 
If intermittency effects occur in the two-dimensional - 5/3 range, the associated 
increase in transfer efficiency would be expected to make the exponent less negative, 
since the transfer is to smaller wavenumbers (Kraichnan 1975). Existing computer 
experiments can hardly decide the very existence of the inertial ranges, let alone 
determine intermittency corrections. However, figure 14 does exhibit increase of 
intermittency of vorticity gradients as the flow evolves. H Aref and E D  Siggia 
(private communication) have suggested simulation by discrete vortices to explore 
intermittency effects in the energy inertial range. 

4.3. Closure approximations 
The non-linearity of the equations of motion makes it impossible to form from 

them simple closed equations that describe the evolution of given moments. Thus 
in (4.2) triple moments essentially affect the evolution of second-order moments. 
Many workers have sought (more or less) logically posed and tractable approximation 
schemes that yield closed equations useful for the extraction of qualitative features 
and semiquantitative predictions. Most of the schemes are based in some way on 
perturbation treatments of the non-linear terms in the equations of motion (e.g. (4.1) 
or (4.5)), modified or renormalised perturbation expansions for strong non-linearity, 
or related expansions of given moments as series in successively higher-order moments 
or cumulants. We shall not attempt to systematically summarise or even reference 
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this body of work both because of lack of space and because the methods used are 
not unique to two-dimensional turbulence. Some review articles and entrance points 
to the literature are Deissler (1977), Bradshaw (1976), Leslie (1973), Monin and 
Yaglom (1975), Orszag (1970), Kraichnan (1972), Kadomtsev (1965) and Rose and 
Sulem (1978). Recent efforts to apply perturbation theory to the inertial ranges via 
the renormalisation group approach are discussed by De Dominicis and Martin 
(1 979). 

A central place in the plethora of closure approximations is occupied by the direct 
interaction approximation (DIA) (Kraichnan 1959). Many other approximations 
can be obtained from it by various modifications and simplifications. This approxi- 
mation results in closed equations that involve the two-point, two-time covariance 

Figure 14. Evolution of the vorticity field for a 2D Navier-Stokes decay run (from Lilly 
1971). (a) shows the initial vorticity field and (b)  shows the vorticity field after 
100 time steps. Regions of steep vorticity gradients may indicate intermittency. 

of the velocity field, the mean response of the velocity amplitude to infinitesimal 
perturbations, and the mean velocity field if the latter is non-zero. The  DIA may be 
obtained either as the lowest truncation of a renormalised perturbation expansion 
(Kraichnan 1977a,b) or, in several ways, as the exact statistical description of 
stochastic models of the actual equations of motion (Kraichnan 1969, Leith 1971, 
Herring and Kraichnan 1972). The  model representation assures that the DIA gives 
conservation of energy and enstrophy in two dimensions and that it gives correct 
absolute statistical equilibria of the truncated flow system. It gives rather accurate 
descriptions of isotropic turbulence decay at low Reynolds numbers (Orszag and 
Patterson 1972) in three dimensions, but underestimates the efficiency of energy 
transfer in the three-dimensional inertial range because it cannot separate effects 
of convection by large scales and effects of internal distortion of small scales upon 
the rate of time-decorrelation of small scales (Leslie 1973). A modification of the 
closure that uses Lagrangian rather than Eulerian two-time functions (Kraichnan 
l966,1977a,b, Leslie 1973) gets around this difficulty, yields (4.11) in three dimensions 
and gives a value of C consistent with experiment. 

The  DIA has been worked out and evaluated for two-dimensional turbulence by 
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Seyler et a1 (1975) and Herring et a1 (1974). The Lagrangian modification (LHDIA) 
has been compared with computer decay experiments in two dimensions by Herring 
and Kraichnan (1979) who also evaluated a variant of the LHDIA approximation in 
which the symmetric rate-of-strain field rather than the velocity field is basic 
(SBLHDIA). 

The DIA and LHDIA closures, togcther with a nuniber of other closure approxi- 
mations related to (renormalised) second-order perturbation theory, lead to an 
expression of the following form for the transfer function T ( k ,  p ,  9): 

T ( k ,  P, 4, 4 -  C ( k  P ,  4)  [2ekpq(t)E(P, t )E(q ,  t ) -  e,,k(t)E(k, t ) E ( q ,  t )  
- e,k,(t)E(h t ) E ( p ,  91. (4.18) 

Here C(k,  p ,  4)  is a time-independent coefficient which is the same for all the closures 
but which depends on the dimensionality of space; it vanishes unless k ,  p and q can 
form a triangle and thus be directly coupled by (4.5). 6kpq(t)= e k Q p ( t )  is a closure- 
dependent characteristic decorrelation time for the phase coherence of modes k, p 
and q. In  the DIA closure it is an integral over past time of an integrand composed 
of average response functions and normalised two-time Eulerian correlation functions. 
In  the LHDIA closure it is a similar integral over Lagrangian functions. The structure 
of C(k,  p ,  q) ensures that T ( k ,  p ,  q) vanishes in absolute equilibrium states (detailed 
balance) and that (in two dimensions) (4.9) is satisfied identically. 

In  the test-field-model closure (TFM) O k p r r ( t )  is related to the characteristic times 
of pressure forces that maintain V . u = O  (Kraichnan 1971a,b, 1972, Leith and 
Kraichnan 1972). Its evolution is fixed by an ordinary differential equation in t with 
the result that the TFM closure is Markovian: the change of E ( k ,  t )  depends only on 
current values instead of essentially involving integrals over past history as in the 
DIA closure. Another Markovian closure is the Markovianised eddy-damped quasi- 
normal (EDQNM) approximation (Orzsag 1970, 1977, Rose and Sulem 1978) in which 
Okpn( t )  is determined by scaling arguments. In  contrast to the DIA and LHDIA 
closures, the Markovian closures involve disposable constants. 

Figures 15 and 16 compare the decay of isotropic two-dimensional turbulence 
according to computer simulations and several closure approximations. 

The  closure approximations and the perturbation expansions which underlie 
them can be used to investigate formally the dependence of cascade dynamics on 
a continuous dimensionality parameter d. Frisch et a1 (1976) and Fournier and Frisch 
(1978) have used the TFM and EDQNM closures and simple Taylor expansions in time 
to examine behaviour in the neighbourhood of d=2. They find unphysical behaviour 
for d < 2 and a k-513 energy cascade range for d > 2. If 2 6 d < dc, where d ,  - 2.05, 
the energy flow in this range is to lower wavenumbers while for d> d ,  the flow is to 
higher wavenumbers. The  enstrophy inviscid constant of motion exists only for 
d = 2. However, for 2 < d < d,' - 2-06 there exists a zero-energy-transfer inertial 
range whose exponent depends on d and which goes into the enstrophy inertial 
range at d = 2. 

Forster et a1 (1976, 1977) and De Dominicis and Martin (1979) have studied the 
d dependence of turbulence forced at all wavenumbers by white noise stirring with 
prescribed spectral forms. They again find unphysical behaviour for d<2  and 
anomalous effects at d = 2. We shall discuss the latter in 94.4. These papers employ 
interesting applications of renormalisation group techniques to turbulence theory. 
Fournier et aZ(1978) have examined the limit of infinite d. 
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Figure 15. Comparison of a 2D Navier-Stokes decay calculation of k4E(k) (dots) with two 
versions of the Lagrangian-history direct interaction approximation (from Herring 
and Kraichnan 1979). 

I I I I I 1 1 1 1  I t I 
0 20 LO 60 

k 

Figure 16. Comparison of a 2D Navier-Stokes decay calculation of ME(k) (points) with the 
results of closure calculations from the same initial spectrum for three different 
models (from Herring et  al 1974). Curves as in figure 9. 
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Not all the closure approximations that have been proposed fit naturally into the 
form (4.18). Dupree (1974) has described a theory of two-dimensional turbulence 
based on approximations to two-particle diffusion. A related treatment involving 
three-point Green functions has been given by Weinstock (1977). 

A functional formulation of the closure problem has been given by Martin et a1 
(1973) and Phythian (1975a, 1976), who work with generating functionals for the 
moments. Lundgren (1972) has proposed closures based on partial probability 
distributions rather than moments. An exact two-dimensional solution forced by 
white noise is discussed by Thompson (1972). 

1.4. Eddy viscosity and sub-grid-scale representations 

The concept of eddy viscosity has been highly useful in turbulence theory for 
visualising and parametrising the transport of turbulent energy both in space and 
between different scales of motion. More recently, eddy viscosity parameters have 
been used to represent the effects of sub-grid-scale motions in large-scale computer 
simulations of flows. 

Eddy viscosity representation of the small scales involves an analogy between the 
dynamical effects of these scales and the effects of thermal agitation. In  typical 
turbulent flows almost all the thermal agitation energy is well-separated in scale from 
the smallest hydrodynamic scales which are appreciably excited. This permits the 
accurate representation of molecular viscous and diffusive effects by local differential 
operators. 

In  three-dimensional flows the analogy between sub-grid scales and thermal 
agitation already is imperfect because the turbulent motion in fact has a continuous 
distribution of scale sizes. This means that the effects of sub-grid scales on explicitly 
computed scales cannot be accurately represented by a simple differential operator 
of the form v,dd,V2 (Corrsin 1974). In  two-dimensional flow, the eddy viscosity 
concept meets with additional and more severe difficulties associated with the reverse 
flow of kinetic energy, from small scales to large scales. Molecular viscosity does 
not exist in a strictly two-dimensional fluid (Dorfman and Cohen 1970). We are 
not interested here in two-dimensional fluids but rather in the two-dimensional 
macroscopic hydrodynamics of a three-dimensional fluid. Nevertheless we shall see 
that the non-existence of molecular viscosity in two dimensions correctly suggests 
severe difficulties for the eddy viscosity representation of sub-grid scales. 

The anomalous nature of transport coefficients in two dimensions shows up 
already in the equilibrium statistical mechanics of the truncated inviscid system. 
If the truncation wavenumber is the order of the reciprocal of the mean intermolecular 
distance, the truncated system is a model of the molecular fluid, with the hydro- 
dynamic modes representing approximate collective coordinates of the molecules. 
The absence of compressive modes in the model is unimportant here. Renormalised 
perturbation theory, and in particular the DIA, can be used to compute the effective 
damping of perturbations of the fluid. If G(k ,  t )  is the mean amplitude of a decaying 
perturbation of a mode of wavenumber k<K,,,, with G(k,  0)= 1, then the DIA gives 
the relaxation equation (Kraichnan 1975) 

aG(k, t ) /at+kz Jb ~ ( t - - ) G ( k ,  S) ds=O. (4.19) 

In  three dimensions the time-lagged damping function ~ ( t )  goes like t-3/2 at 
large t. Since G(K, t )  varies slowly with t for small K ,  the damping term in (4.19) 



5 92 R H Kraichnnn and D Montgomery 

may be replaced by v'k2G(k, t )  where v '=JF ~ ( s )  ds is the effective viscosity. But in 
two dimensions it is found that ~ ( t )  goes like t-l so that the effective viscosity diverges 
logarithmically and cannot be defined. The divergence is found to arise from low- 
wavenumber contributions to 7 (t) .  These results also come from renormalisation 
group analysis (Forster et nl 1976, 1977) and corroborate kinetic theory results for 
two-dimensional fluids. 

Closure approximations again provide a natural framework for formulating eddy 
viscosity representations of small-scale dynamics in non-equilibrium turbulent states 
where there is a cascade of energy and enstrophy. Let k, be some arbitrarily chosen 
wavenumber which may be thought of as dividing explicitly treated scales k < K ,  
from scales k>km which are to be represented by an eddy viscosity. If k < k m ,  and 
with certain conditions on the shape of the energy spectrum and the behaviour of 
the relaxation times Okpq, the contributions to (4.18) from p and/or q> km are 
dominated by the terms proportional to E(k) .  If we denote all such contributions 
to (4.8(b)) by T(kIk,) then an effective eddy viscosity at wavenumber K may be 
defined by 

v(kIkm)= - T ( k l k m )  [Zk'E(k)]-' (4.20) 

in analogy to the molecular viscosity term in (4.8 (a)). 
If k <  km, some calculation (Kraichnan 1976a) yields 

v ( k  I km) = ( 2 ~ / 1 5 )  jpm 0gqk [7U(q) + q dU(q)/dq]q2 dq (three dimensions) 

(4.21 (a)) 

Here U(q)  represents the excitation per mode ( E ( k )  = 2nk2U(K) in three dimensions 
and E ( k ) = n k U ( k )  in two). With k < q  the TFM, DIA or LHDIA closures give %,,I, 

independent of k so that both (4.21(a)) and (4.21 ( b ) )  give &independent results 
for v (k  I A,) if k k,. 

If (4.21 (a)) is evaluated in the inertial range (4.11) it gives v ( k  I k,) N &3k,-4/3. 

In  the two-dimensional energy-inertial range (4.21 ( b ) )  gives the same result, but 
with the difference that v(Klk,)  is negative. We may note that q2U(q) in (4.21(b)) 
is proportional to the enstrophy per mode and decreases with increase of q for any 
spectrum that falls below enstrophy equipartition. The  negative eddy viscosity in 
two dimensions, of course, reflects the fact that energy flow is to lower rather than 
higher wavenumbers (Starr 1968). 

A physical mechanism for the negative viscosity has been proposed by Kraichnan 
(1976a). The  large scales (wavenumber k) strain the small scales (wavenumber q), 
drawing them into elongated shapes with constant enstrophy and decreased energy. 
At the same time a secondary flow associated with the small scales grows on scales 
N 1/k and gives destructive interference with the excitation at wavenumber k, thereby 
maintaining energy balance. The net result of this process, with stochastic variation 
of the straining in time taken into account, is the negative viscosity (see Starr 1953, 
1968, Krause and Rudiger 1974). 

If k~k,, the validity of the eddy viscosity concept is weakened by non-local 
effects in both space and time. The time effects are illustrated by the lag in (4.19). 
Similar structure in (4.18) is hidden in the 0 factors which in the DIA and LHDIA 
closures involve integrations over past time. The non-local space effects show up, 
at the least, as K dependence of v ( k  I k,). If v ( k  I Km) is evaluated in the enstrophy 
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inertial range, the fact of zero-energy cascade implies that the negative values of 
u(klk , )  for k4k, must be suitably balanced by positive contributions at k ~ k ,  
(we have k < k, always). This means that a simple approximation of positive eddy 
viscosity (all k) designed to simulate the cascade of enstrophy to higher wavenumbers 
does intrinsic violence to the dynamics. This point is developed by Leith (19'71), 
Kraichnan (1976a) and Basdevant et al(l978). 

If only the enstrophy cascade is considered, a simple positive eddy viscosity 
coefficient may be appealed to. If k, is in the enstrophy inertial range, dimensional 
analysis or an idealised diffusion model implies that this coefficient has the form 

Veddy y1/2k,-2 (4.22) 

where y is the cascade rate in (4.12) or (4.17) (Leith 1968). A form more appropriate 
to sub-grid-scale representation in actual computations is 

veddy 1 V W  I b n - 3  (4.23) 

(Leith 1968) where w is the local vorticity associated with the explicit scales (see also 
Smagorinsky 1963). 

Basdevant et a l  (1978) give detailed proposals for sub-grid-scale representations 
that are based on the k-dependent results of the closure approximations and so 
maintain both energy and enstrophy conservation. It is important to note that even 
in full detail the closure approximations are at the level of second-order moments 
and ignore phase coherence effects that may be very important. The  closures can be 
formulated for inhomogeneous flows (e.g. Kraichnan 1972); in this form they would 
appear to be more suited for simulations of individual realisations than the homo- 
geneous isotropic forms which we have discussed and which are used by Basdevant 
et a l  (1978). However, inhomogeneity implies very much greater computational 
difficulty. 

In  principle the sub-grid scales can be eliminated entirely from the equations of 
motion if they are unexcited initially. But it is not clear to what extent the extra 
non-linearity thereby introduced in the equations of motion of the explicit scales 
can be approximated by a generalised eddy viscosity, or even the full structure of 
(4.18). The  stochastic model representations of the DIA or TFM closures (Kraichnan 
1970c, Leith 1971) are equations for amplitudes rather than covariances, although 
much information is lost by averaging and implicit simple approximation of statistical 
distributions. These amplitude equations provide, in addition to the effective 
k-dependent eddy viscosity terms, a random driving term of the explicit scales by 
the sub-grid scales, a feature that may be more faithful to the actual dynamics. The  
effects of this driving on ensemble-averaged energy transfer show up in the first 
term on the right-hand side of (4.18). Rose (1977) has examined such random 
driving effects in the context of renormalisation group analysis (see also Forster et a1 
1977). 

It is probable that the excitation of sub-grid scales by explicit. scales and the 
subsequent reaction of the sub-grid scales on the explicit scales also involves coherent, 
phase-locked phenomena that are intrinsically unsuited to any statistical treatment. 

4.5. Error growth and predictability 

Instability is one of the general characteristics of turbulence : the velocity field is 
sensitive to perturbations even though the averages over an ensemble of realisations 
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of the velocity may be insensitive. Thus, if two realisations differ initially by a small 
amount, the difference may grow with time and eventually become the order of the 
velocity field itself. An alternative statement is that initial error or incompleteness 
in the specification of the velocity field may grow with time. The importance of this 
effect in the prediction of meteorological flows was pointed out by Robinson (1967, 
1971) and Lorenz (1969). Since then the subject has attracted increasing interest. 
We shall limit the discussion here to theoretical studies of error growth in homo- 
geneous isotropic turbulence that fall into the general framework of the closure 
approximations described in $4.3 and to computer simulations of error growth that 
serve to test the theories. 

Let us call the difference between the velocity fields of two realisations the 
difference or error velocity field. The error dynamics at the statistical level of second- 
order moments is then described by the covariance or spectrum function of the 
difference velocity and by the covariance of the velocity of one realisation with that 
of the other. All the closures described in $4.3 may be used to obtain equations for 
the evolution of the spectrum function of the error energy (kinetic energy of the 
error field) (Lorenz 1969, Leith 1971, Leith and Kraichnan 1972, Kraichnan 1970b). 
The  results obtained by the DIA closure have been compared with computer simu- 
lations of low-Reynolds-number three-dimensional isotropic turbulence by Herring 
et aZ(l973). Figures 17 and 18 show the evolution of the total error energy and the 
error-vorticity spectrum for one of the cases. At higher Reynolds numbers the DIA 
closure is expected to underestimate the error energy growth because of the lack of 
discrimination between convection and distortion effects on the small scales, mentioned 
in 54.3. 

Lilly (1972a,b) has studied numerically the growth of error in computer simu- 
lations of two-dimensional turbulence. Leith (1971) and Leith and Kraichnan 
(1972) have used the EDQNM and TFM closures to examine error energy and error 
enstrophy growth in the energy inertial ranges for both two- and three-dimensional 
turbulence and for the enstrophy inertial range in two dimensions. In  the energy 
inertial ranges it was found that the time for error energy initially confined to and 
dominating wavenumbers k > kz to spread down to and dominate wavenumbers 
k3&kz is NE-113k3-213,  independent of kz.  This is the eddy circulation time for 
scales with wavenumber k3. The error propagation time is independent of kz because 
the characteristic dynamical times decrease as k increases. Down propagation of 
error was again found in the enstrophy inertial range (4.17), the time of propagation 
from kz to k3< kp being -71-113 {[ln (kz /k1 ) ]2 /3 -  [In ( k 3 / k 1 ) ] ~ / 3 ) .  An application was 
made to propagation of errors to larger scales in the atmosphere, in refinement of 
earlier work by Lorenz (1969). 

Simulations to test these results for the asymptotic inertial ranges could be 
computed only if the range of wavenumbers were limited by some sub-grid-scale 
parametrisation, which would greatly complicate the test. However, there are some 
difficulties in principle with using the Eulerian error energy to measure error growth 
(Leith and Kraichnan 1972). With this measure the random displacement of a 
small-scale structure by its own size represents a large error, while the dynamical 
significance may be small. Effects of this kind may result in overestimates of error 
growth in the inertial ranges by the Eulerian closure approximations. 

The instability of individual turbulent realisations to perturbations is in contrast 
to the expected stability to perturbation of an aptly chosen ensemble of realisations. 
Leith (1975) has made the interesting suggestion that the stability of the ensemble 
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Figure 17. Three-dimensional error vorticity spectrum (points) and its evolution in time, 
compared with the predictions of the DIA (full curves) at three different times for 
a typical case (from Herring et  al 1973). 
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Figure 18. Three-dimensional error transfer spectrum TA(k,  t )  and its evolution (points), 
compared with the predictions of the DIA at two different times, for the same case 
shown in figure 17 (taken from Herring et al 1973). 
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can profitably be investigated in terms of the fluctuation-dissipation theorem which 
(for equilibrium ensembles) relates mean response to perturbation and the fluctu- 
ations of the unperturbed ensemble. Leith derives this theorem for two-dimen- 
sional or geostrophic turbulence, makes an application to climate response, and 
discusses the implications of the deviation of the actual ensemble from absolute 
equilibrium. 

5. Turbulence on the surface of a rotating sphere 

A principal reason for interest in two-dimensional turbulence is the possibility 
of applying the theory to planetary boundary layers. On a global scale the Earth’s 
atmosphere and oceans are a very thin layer so that it is reasonable to expect two- 
dimensional motion on scales large (over, say, 100 km) compared to the layer thick- 
ness. Observation suggests a degree of randomness in the mesoscale motions which 
are smaller than the size of the planet but still large compared to the layer thickness. 

There are many complicating factors. Winds and currents vary with altitude 
and depth so that the tangential motion in the mesoscales is x-dependent and not 
strictly two-dimensional in the sense we have been assuming. Moreover, there are 
fully three-dimensional motion (e.g. cumulus systems) at small scales, molecular 
and eddy friction at the surface of land and sea, effects of topographic surface 
variations, radiant energy inputs which vary diurnally and with cloud cover and 
surface character, heat of vaporisation and condensation of water, density and salinity 
variations in the oceans, wave effects at the air-sea interface, temperature and density 
variations with altitude in the atmosphere, and many others. 

The rotation of the Earth plays a crucial role. Uniform rotation of a plane layer 
of fluid about an axis perpendicular to the plane (x axis) tends to lock the fluid into 
two-dimensional motion independent of x (Taylor-Proudman theorem) (Proudman 
1916, Taylor 1923, Greenspan 1968, Inglis 1975). Perturbations that produce x 
variation in U (vertical shear) result in inertial waves which represent a balance of 
acceleration, Coriolis force and pressure and which, even in the linear regime, can 
give spectral transfer by reflection from the boundaries (Phillips 1963). The Coriolis 
force in a uniform fluid layer on the surface of a sphere varies with latitude. In  the 
,8 plane or tangent plane approximation the variation is linear. The variation of 
Coriolis force gives rise to another set of waves, the Rossby waves, whose wavevectors 
lie in the surface. A comprehensive treatment of the dynamics of rotating fluids is 
given by Greenspan (1968). 

The  non-linear dynamics of a rotating fluid layer with stochastic excitation 
involves the interplay of these wave processes with the turbulent transfer and 
distortion processes that occur without rotation, together with whatever internal and 
boundary damping processes act. The rotation also produces characteristic boundary- 
layer structures (Ekman spirals) associated with viscous (or eddy viscous) drag. 

In  what follows we shall describe some studies of idealised turbulence in a rotating 
fluid layer. With regard to atmospheric and oceanographic applications, the ideal- 
isations all fall within the quasi-geostrophic approximation, based upon a local near 
balance among Coriolis force, centrifugal force, pressure and gravity. A current 
review of geostrophic turbulence, with emphasis on the relation of theory and obser- 
vation, is given by Rhines (1979). Our interest here is in the way the basic equi- 
librium and non-equilibrium analysis of two-dimensional turbulence in $$3 and 4 
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is altered by rotation, topography and x-dependent flow phenomena. The essential 
feature of the quasi-geostrophic approximation is that the inviscid equation of motion 
is of the type (2.14)) but with w = - V2$ replaced by a more general scalar functional 
of the stream function, the potential vorticity, containing additional terms involving 
rotation, buoyancy and topographic variation. 

Consider first a uniform, thin spherical fluid layer without surface friction and 
without rotation. Equation (2.14) holds for the flow over the surface and all the 
general analysis of §§3 and 4 carries over to this geometry, which is topologically 
equivalent to the cyclic square. The stationary eigenmodes for the stream function 
are spherical surface harmonics (Platzman 1960, Wiin-Nielsen 1972). Tang and 
Orszag (1978) have performed numerical simulations of isotropic turbulence decay 
in this geometry analogous to those of Herring et al (1974) for the cyclic square. 
The results show weaker transfer to high mode numbers in the spherical geometry, 
a phenomenon which the authors associate with a transfer mechanism (i.e. the 
coefficients in (3.4)) that is more local than in the plane geometry. 

In  the spherical layer with rotation (2.14) is replaced by 

( q a t +  U. V)5 = 0 (5.1) 
where 

5=w+!2*  cos 4 
is the potential vorticity. Here !2* is the angular rate of rotation of the spherical 
surface about an axis and 4 is the latitude. In  the /3-plane approximation (5.2) is 
replaced by 

5=w+p*y (5.3) 

where y is the local North-South coordinate and /3* is the y derivative of the local 
normal component of the rotation vector. I t  can be verified by partial integrations, 
using (2.17)) that (5.1) has the constants of motion J 1.2 I d2x and J 52 d2x. 

The term in Q* or /3" gives rise to the Rossby waves which are linear at low 
amplitude and are modified by and exchange energy with the previously studied 
turbulent excitations at higher amplitudes. The Rossby waves are dispersive, with 
frequency inversely proportional to wavenumber. Thus the ratio of eddy circulation 
frequency ku' (where U' is a typical value of U) to Rossby wave frequency decreases 
with k. This ratio is a measure of the effective degree of non-linearity. Thus, with 
suitable excitation, the system can exhibit turbulence almost unaffected by rotation 
at large k and Rossby waves almost unaffected by turbulence at low k. The qualitative 
effect of the wave oscillations on the turbulence is inhibition of turbulent transfer, 
as the random walks of fluid elements are changed to oscillations (Rhines 1975, 1979). 
The non-linear interactions of the waves with themselves is of a resonant type. 
Stable soliton waves may be important (Stern 1975, Redekopp 1977, Rhines 1979). 

Numerical computer simulations showing the evolution of random waves and 
turbulence in the /3 plane have been carried out by Rhines (1975) and Williams 
(1978). Tang and Orszag (1978) present computer studies of the exact spherical 
equation (5.1)-(5.2). The simulations are consistent with the qualitative picture 
stated above. 

Holloway and Hendershott (1977) have extended the TFM closure to the system 
(5.1)-(5.3). They use forms for the relaxation times 8 in (4.18) which take into 
account both the decorrelating effects of wave oscillation on triple correlations and 
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the resonant interactions of nearly linear waves. A wealth of detailed predictions 
about the behaviour of transfer functions comes from this analysis. 

Variations in the layer thickness (topographical or orographical variations) modify 
the stationary eigenmodes and their couplings. In  a channel of uniform width such 
variations can couple the vortex motion to the potential flow. In  a rotating spherical 
layer, or the P-plane approximation to it, the dominant effect of slight variations in 
layer thickness is a coupling of the vortex motion to the uniform part of the Coriolis 
force. The  potential vorticity is 

C=w+h(x ,y )  (5.4) 

(5.5) 

where 
h(x, Y )  = P"Y + f 0 4 %  Y)/D. 

fo is the normal component of the planetary rotation vector at y=O, d ( x ,  y )  is the 
variation in layer thickness and D is the mean layer thickness (Holloway and 
Hendershott 1974, Salmon et aE 1976). 

The  system (5.1) and (5.4)-(5 .5) has been investigated by computer simulation 
(Holloway and Hendershott 1974, Bretherton and Haidvogel 1976, Holloway 1978), 
equilibrium statistical theory (Salmon et al 1976, Herring 1977) and closure approxi- 
mations (Herring 1977, Holloway 1978). The results of these approaches are happily 
consistent. An equilibrium analysis like that of $3 can be carried out by expanding 
h ( x )  in the eigenfunctions $,(x). Then the equilibrium canonical ensemble based 
on the constants of motion E and J 52 dzx (Salmon et aZl976) yields 

( 2 1 % )  = 2mhn(P+ 2~~h%~/p) - lhn  ( 5  * 6  ( 4 )  
E%= i ( ~ m 2 )  L-_ k ( /3+2c~A,~ /p ) - l+  ~ C U ~ A , ~ ( P +  2a:X9z2/p)4h,2 ( 5  I 6(h)) 

where wn= Xnun and h, is the mode amplitude of h(x) .  
The most noteworthy contrast with the results of $3 is the non-zero mean value 

(U,), correlated with the topography. I n  states with strong condensation in the 
lowest modes, this correlation emphasises the largest topographic features. In  
physical space the correlation expresses conservation of the angular momentum of 
the fluid as it experiences horizontal divergence or convergence. Anticyclonic flow 
(clockwise in the Northern hemisphere) is favoured where the layer is thin. Qualita- 
tively similar equilibrium states are predicted by Bretherton and Haidvogel (1976) 
who use the concept of energy-conserving enstrophy cascade to dissipative large-n 
modes to support a criterion of minimum enstrophy at given energy. 

Both the absolute equilibrium states and cascade transfer phenomena are treated 
by Herring (1977) who uses the DIA and an extension of the TFM closures and by 
Holloway (1978) who uses a modified TFM closure. The  DIA closure predicts via 
fluctuation-dissipation relations that the equilibrium states can consist of both a 
static and a dynamic excitation. In  non-equilibrium, transfer processes can maintain 
static large-scale circulations against frictional forces by means of energy supplied 
from fluctuating small scales. Zinimerman (1978) infers the latter process by simple 
perturbation analysis. The cited computer simulations seem to support fairly well 
the predictions of the absolute equilibrium theory and the closure approximations. 

In  all the cases considered so far the motion has been purely horizontal with no 
vertical variation of velocity within the fluid. Charney and Stern (1962) have developed 
an analogy between purely two-dimensional incompressible flow and three- 
dimensional quasi-geostrophic flow in which effects of buoyancy due to temperature 
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differences are taken into account. Under a suitable set of approximations (see, for 
example, Rhines 1979) and under the assumption that contributions from the 
boundaries at top and bottom may be neglected, this theory leads to a potential 
vorticity of the form (Charney and Stern 1962, Charney 1966, 1971) 

where 

x is the vertical coordinate, fo is the local vertical component of the planetary rotation 
vector, and N,, the Brunt-Vaisala frequency, is a characteristic frequency for the 
vertical oscillation of air parcels under the action of gravity and buoyancy (with a 
temperature that varies with x in such a way that the atmosphere is stable to adiabatic 
displacements). The  equation of motion is still (5.1) and V is the horizontal gradient 
operator. The quadratic constants are J’” 52 d3x (note that the integration is now three- 
dimensional) and (in the absence of boundary-term contributions) the energy 

E=$p  J [ lQ+12+(a$/a~n)2]  d 3 ~  (5 * 8) 
where the final term represents buoyant potential energy and p is a mean value for 
the layer. 

Charney (1971) proposes that the system (5.1)-(5.7) can exhibit statistically 
isotropic turbulent solutions in the x, y, 2% coordinate system and that the similarity 
arguments that hold in ordinary two-dimensional turbulence carry over to the extent 
that there is a (log-corrected) A-3 spectrum in an inertial range. Moreover, the 
equilibrium statistical-mechanical analysis of $3 continues to apply, leading to 
equilibria of the form (3,18(a)) but with the three-dimensional wavenumber playing 
the role of A,. 

This proposal has been investigated in detail by Herring (1980) who uses a simpli- 
fied TFM closure. Herring assumes an initial state that is homogeneous in three 
dimensions but with vertical-horizontal anisotropy. He finds that high wavenumbers 
have a weak tendency to isotropy and have asymptotically a log-modified h-3 spectrum. 
Low wavenumbers (large scales) tend instead to a x-independent (barotropic) two- 
dimensional spectrum. The  methods used are an extension of earlier treatments 
(Herring 1974, 1975) of three- and two-dimensional anisotropic turbulence. Herring 
notes that the assumed vertically homogeneous initial state is unrealistic in the sense 
that the motion (5.1) is strictly two-dimensional so that there is no mechanism for 
homogenising and thus no way to reach such an initial state from more general states. 

The Charney-Stern quasi-geostrophic equations embody continuous variation 
with x (continuous baroclinicity). Models with a finite number of barotropic horizontal 
layers that can be considered a discrete version of these equations have also been 
investigated. Rhines (1977) has studied the exchange of energy among modes in a 
two-layer model by computer simulation. The equilibrium statistical mechanics 
of the two-layer model has been treated by Salmon et al (1976) and a modified 
EDQNM closure has been formulated for this model by Salmon (1978). The  properties 
of the two-layer model are summarised by Rhines (1979). A prominent feature, 
consistent with Herring’s results for continuous baroclinicity, is that large-scale 
baroclinic modes tend to pass energy to smaller-scale barotropic modes which in 
turn pass energy to larger-scale barotropic modes. 

It is unclear to what extent the predictions of the Charney-Stern equations are 
modified by boundary effects at the surface of earth or sea. Blumen (1978a,b) finds 
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strong influences of the boundaries which, among other effects, modify the 
asymptotic power laws. It should be remembered that important phenomena, 
notably the formation of fronts (Hoskins 1976, Andrews and Hoskins 1978), lie 
outside any analysis that uses statistical homogeneity in the horizontal, whatever is 
assumed in the vertical. Bretherton (1966a,b) investigates a number of instability 
processes in quasi-geostrophic flow. 

Spectra with an approximate k-3 form have been observed in the atmosphere 
(e.g. Wiin-Nielsen 1972, Julian et a1 1970, Chen and Wiin-Nielsen 1978). Mercifully 
we have no space in this review to attempt to analyse the degree of relation these 
results have to the idealised enstrophy or potential-enstrophy inertial range. Great 
caution is called for in any such analysis. The  observed spectra cover a short range 
in k while the theory indicates a slow asymptotic approach to the log-corrected k-3 
behaviour. Moreover, many processes act at once in the atmosphere. 

6. Turbulent diffusion 

By analogy with molecular diffusion it is plausible that a particle which moves 
with a turbulent fluid should execute a random walk on scales large compared to the 
eddy size 1 and eddy circulation time r=Z/v, where v is a typical velocity value. 
The effective diffusivity should be K - l v  and if the particle is started at a random 
position in a statistically isotropic velocity field at time t==0 then any component, 
say yl, of the particle displacement y ( t )  should satisfy ( y 1 2 ) ~ 2 ~ t .  The largest 
spatial scales of the turbulence usually dominate zi and therefore K. Thus the condition 
of a random walk on scales large compared to turbulent scales may be difficult to 
satisfy since the energy-containing turbulent scales may be the size of the system, 
particularly in two dimensions. 

Taylor (1921) has derived for statistically stationary turbulence the exact result 

where ~ ( t )  is a time-dependent diffusivity and UL(t)= (j(t).j(O)) is the Lagrangian 
velocity correlation. D is the space dimensionality. The  preceding discussion 
suggests K ( t )  approaches a limit - Zv as t+co. 

Computer simulations of particle dispersion in a normally distributed velocity 
field with a compact wavenumber spectrum (Kraichnan 1970a) support Taylor’s 
analysis including the behaviour of K ( W )  for D = 3 .  For D = 2  there are anomalies 
if the velocity field is frozen in time. In  that case a finite fraction of the particles is 
trapped, since the streamlines must form closed loops in the neighbourhoods of local 
maxima and minima of the stream function. These anomalies disappear if the normally 
distributed velocity field decorrelates in time with correlation time N Z/v. They also 
do not show up in computer simulations of dispersion in truncated D = 2 Stokes flow 
with a spectrum corresponding to an absolute equilibrium state of $3 (Salu and 
Montgomery 1977). 

Relative dispersion or diffusion, the statistics of the separation v( t )  of a pair of 
particles that move with the fluid and are randomly placed with separation YO -- ~ ( 0 )  
initially, differs importantly from one-particle diffusion. Relative dispersion is 
effected by the shear that acts over the separation r(t) ,  rather than the magnitude of 
the velocity field. If r is smaller than the scale size of the eddies that carry most of 
the shear then the rate of separation is in proportion to r and ([r(t)]2) increases 
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exponentially in stationary turbulence (Cocke 1969, Kraichnan 1974b). If r is larger 
than the energy-range scale 1, then the two particles should diffuse independently 
so that ( Y ~ ~ ) N ~ K ( W ) ~ .  

Richardson (1926) was the first to study relative dispersion. He proposed that 
at intermediate scales of separation ( ~ 1 2 )  should grow as if the diffusivity that acted 
upon it were r-dependent. On the basis of a variety of empirical data ranging from 
molecular diffusion to diffusion by cyclonic storm systems he proposed that this 
diffusivity have the form p(r)ccr4/3.  In  the -5/3 energy inertial range, Obukhov 
(1941) used dimensional arguments to obtain the same law, which leads to 

(r12) N Et3 (6.2) 
where E is the rate of energy cascade through the inertial range per unit mass and 
l / r  is an inertial-range wavenumber. Richardson came very close to deducing the 
Kolmogorov spectrum fifteen years in advance. The  data base was later significantly 
enlarged when Richardson and Stommel (1948) published a definitive study of the 
separation of parsnip-pairs in the sea. 

The assumption in (6.2) that the effective shear acting across Y arises from eddies 
of size N Y is as plausible in the D = 2 energy inertial range as it is for D = 3 (we must 
replace E by I E I for D = 2). But in the asymptotic enstrophy inertial range most of 
the shear at separation r comes from eddies of size %Y. This approximates the 
situation of spatially uniform random shear so that approximately exponential growth 
of ( ~ 1 2 )  is to be expected. Neglecting the logarithmic corrections in the enstrophy 
inertial range, Lin (1972) obtains 

In ( [ r l ( t ) / r l (O)]~)~ 111’3t (6.3) 
where 11 is the enstrophy cascade rate per unit volume. Peskin (1973) argues however 
that ( r 1 2 ) ~ t 3  in this range also. Balloon measurements in the atmosphere (Morel 
1970, Morel and Larcheveque 1974) perhaps give some support to (6.3)) but they 
do not describe an asymptotic situation. 

The  relative diffusion in a spatially uniform and randomly-changing-in-time 
shearing field has an anomaly for D = 2 .  If the rate of change of the shear field is 
very rapid (Kraichnan 1974b) or the shear is piecewise constant in time (Kraichnan 
1976a), the average (r1(t)/r1(0)]-2) decreases with t for D > 2  but is constant for 
D = 2 .  This implies that the kinetic energy of a blob of vorticity subjected to such 
shearing remains constant on the average (Kraichnan 1976a). A consequence is that 
the negative eddy viscosity (4.21 ( 6 ) )  vanishes, if q2U(q) vanishes at R, so that the 
sub-grid-scale excitation is effectively composed of such blobs. 

A systematic analytical treatment of one-particle dispersion can be based on the 
function G(x, t ;  x’, t’) which is defined as the probability that a particle which starts 
at x’, t’ reaches x at time t. In  homogeneous, isotropic, stationary turbulence 
G(x, t ;  x‘) t’) = G( I x-x’ 1 ,  t-t’), with G(x, 0) = S(x). Lagrangian-history-based re- 
normalised perturbation analysis (Kraichnan 1977a) yields the infinite-series differen- 
tial equation 

M 

~ G ( x ,  t)dt- C K2qh(t) VzfiG(x, t )  (6.4) 
n= 1 

where K z ( t ) = ~ ( t )  as given by ( 6 . l ( b ) )  and the remaining Kzn( t )  depend on higher- 
order Lagrangian moments. Only the Kz(t) term affects (x12)=J x ~ ~ G ( x ,  t )  dx. 
The higher terms make G(x, t )  a non-Gaussian function of x. For x s l ,  central-limit 
arguments imply that G(x, t )  is asymptotically Gaussian (Taylor 1921) and this 
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conclusion is supported by the structure of the higher Kzn(t). The summation 
in (6.4) converges (Kraichnan 1979). 

On the other hand, Eulerian renormalised perturbation theory (Kraichnan 
1976b, 1977a) yields 

where 

with U(%, t ) = ( u ( x ,  t).u(O, 0)). This is a non-local diffusion equation, the non- 
localness expressing the fact that the mean-free-path and mean-free-time of the 
diffusion process are finite (Corrsin 1974). In  (6.4) the non-localness is expressed 
both by the Lagrangian averages (which are non-local functionals of Eulerian 
moments) and the infinite series in powers of W. Evaluation of d(x12)ldt from (6.5), 
with some partial integrations and comparison with (6. l), shows that 

aG(x, t)/at= Jk  ds J dy[( I x - - ~ I ,  t-S) V W ( y ,  S) 

[(x, t )  = 6)-1 G(x, t )  U(x ,  t )  + higher-order terms 

(6.5) 

(6 - 6) 

D-lUL(t)= J [(x, t )  dx. (6 a 7) 
A large number of proposals for approximate computation of ~ ( t )  and G(x, t )  

have appeared in the literature. Most of them can be described as truncation of 
(6.4) or (6.6) at the lowest term, followed by further approximations. Such trun- 
cation of (6.6), without further approximation, yields the DIA for G(x, t )  (Roberts 
1961a,b). This truncation in (6.7) is equivalent to a statistical independence approxi- 
mation of Corrsin (1959, 1962). Alternatively, (6.4) can be truncated and W ( t )  
approximated by a DIA method (Kraichnan 1977b) or by the LHDIA (Kraichnan 1977a). 
The  following is a partial chronological list of papers in which truncation of (6.6) 
is accompanied by simplifying approximations: Goldstein (195 l), Bourret (1960), 
Roberts (1961a,b), Saffman (1962), Weinstock (1968, 1978), Krasnoff and Peskin 
(1971), Taylor and McNamara (1971), Montgomery et al (1972), Montgomery and 
Tappert (1972), Montgomery (1975a,b), Lundgren and Pointin (1976) and Salu and 
Montgomery (1977). Alternative expansion methods and the resulting approxi- 
mations were explored by Phythian (1975b) and F'hythian and Curtis (1978). 

Saffman (1962) suggested the approximation of G(x, t )  in (6.6) by G(K, t )= 
exp [ - A 2  Jk K ( S )  ds], where e(K, t )  is the Fourier transform of G(x, t ) ,  and then 
substitution into (6.5) to determine ~ ( t )  self-consistently, This and related approxi- 
mations have been examined by several authors (see Lundgren and Pointin 1976). 
Salu and Montgomery (1977) take e(K, t)=exp [ - K ~ K ( o o ) ~ ]  and consider also the 
possibility of approximating the time dependence of U(x ,  t )  by that of G(x, t).  
The result is 

K(w)-[J U(K) k-2 dk]l/z (6.8) 
where U(K) is the modal intensity [E(h)  N kD-lU(K)]. Simple approximations of 
this kind impressively reproduce the computer simulations of K ( CO) by Kraichnan 
(1970a) for diffusion by normally distributed velocity fields. They are inferior 
to the DIA only in describing transient effects in ~ ( t ) .  Equation (6.8) also describes 
well the K ( W )  values found by Salu and Montgomery (1977) from simulations of 
D = 2 absolute equilibrium states. 

Renormalised perturbation expansions can also be formed for relative dispersion. 
The DIA approximation has been treated by Roberts (1961a,b) and the LHDIA by 
Kraichnan (1966). The latter yields 

a q v ,  q a t =  a[qj(r, t )  a q v ,  t ) /ar j ] /ar i  (6.9) 
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where P(v ,  t )  is the probability of a separation r for a pair initially separated by 
ro at t= 0 and p j ( v ,  t )  is an r-dependent diffusivity tensor expressed, by the approxi- 
mation, in terms of Lagrangian velocity covariances. Equation (6.9) is a slight 
generalisation of the diffusion equation proposed by Richardson (1926). The  LHDIA 
yields (6.2) in a k-513 energy inertial range. It should yield also exponential-type 
growth of ( r 2 )  in the enstrophy inertial range, but the calculation has not been 
performed. 

Turbulent diffusion in plasmas is centrally important to the confinement problem 
in controlled thermonuclear power research. Bohm (1949) proposed, without 
derivation, that the coefficient of self-diffusion for test particles in a plasma is 
inversely proportional to the uniform steady magnetic-field strength B. In  contrast, 
conventional Chapman-Enskog theory gives a R-2 dependence (e.g. Ferziger and 
Kaper 1972). Taylor and MacNamara (1971) confirmed the B-1 dependence and 
pointed out that the latter was intrinsic to two-dimensionality regardless of the shape 
of the electric-field fluctuation spectrum. The Bohm B-1- dependence was confirmed 
even for thermal equilibrium. Three-dimensional treatments which quickly followed 
(Montgomery et al 1972, Okuda and Dawson 1973, Montgomery 1975a) showed 
that the B-1 dependence was associated with excitations that had k.B=O, where 
k is the wavevector of the associated component of the velocity field or electric field, 
while the B-2 dependence for the diffusivity was associated with k.B#O. In  three 
dimensions either dependence could dominate under appropriate circumstances. 

7. Magnetohydrodynamic turbulence 

The addition of electrical conductivity to the properties of a fluid leads to a 
number of interesting electromagnetic phenomena and associated changes in the 
nature of fluid turbulence. If the conductivity is infinite the magnetic lines of force 
associated with currents within or external to the fluid are frozen in the fluid and 
move with it. The tension associated with the lines of force then adds stiffness to the 
fluid and gives rise to waves, like those in a tense string, which propagate along the 
lines of force (AlfvCn waves). If the conductivity is finite, there is in addition a 
diffusion of the lines of force through the fluid, accompanied by dissipation of energy. 
In  general, the conducting fluid exhibits exchange of kinetic energy and magnetic 
energy and dissipation by both viscosity and electrical resistance. 

A uniform magnetic field in the conducting fluid does not affect motion either 
entirely parallel or entirely perpendicular to the lines of force because in both cases 
the lines of force are not distorted. Suppose that the fluid is bounded by rigid, 
slippery, parallel horizontal surfaces and the uniform field points vertically. Purely 
vertical motion is prevented by the boundaries and purely two-dimensional hori- 
zontal motion is unaffected by the magnetic field. Motions with vertical components 
and motions which are horizontal with vertical gradients distort the lines of force 
and are broken up both by the ensuing wave radiation and by eddy-current damping 
(Joule dissipation). Thus the uniform vertical magnetic field favours the pure two- 
dimensional motion. In  this respect it is analogous to rotation about a vertical axis, 
discussed in 95. 

Lielausis (1975), Tsinober (1975) and Volisch and Kolesniliov (1976a,b,c, 1977) 
describe experiments in which uniform magnetic fields are used to induce two- 
dimensional or nearly two-dimensional motion in turbulent liquid metals. Some of 
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the measured spectra suggest the - 513 and - 3 asymptotic spectra discussed in $4. 
However, the dynamic basis is not wholly clear. illlemany et aZ(1979) point out that 
the Joule damping time is k-independent and thereby may induce a k-3 spectrum 
in three as well as in two dimensions. 

The electromagnetic effects on fluid motion are described by adding a pondero- 
motive or Lorentz-reaction term to (2.42) : 

( a / a t + u , V ) + u V ~ / p = v V 2 ~ + (  pc)-1jxB (7.1) 
where c is the velocity of light (we use CGS units) and the current density j and 
magnetic induction field B are related by Vx B = ~ T , u ~ / c  where ,U is the magnetic 
permeability. B is derivable from a vector potential according to B= V x a. We 
neglect displacement current and assume that the electric field E satisfies j =  u(E+ 
U x B/c), where U is a scalar conductivity. This implies that E= -U x B/c if U = 00. 
Maxwell's induction equation then leads to 

aB/at = V x (U x B )  + 7VzB (7.2) 
where 7 =c2/4npu is called the magnetic diffusivity (dimensions LPT-1). The 
derivation of these hydromagnetic equations is discussed, for example, by Spitzer 
(1956). A review of hydromagnetic turbulence theory in three dimensions, with 
emphasis on the generation of large-scale magnetic fields by turbulent dynamo 
action, is given by Moffatt (1978). If V.u=O (we have also V.B=O),  (7.1) and (7.2) 
determine the evolution of U and B from initial values. With j eliminated in favour 
of B, (7.1) takes the form 

( a / a t + ~ . V ) ~ + V p / p =  v V ~ U + ( ~ T , U ~ ) - ~ ( V X B ) X  B. (7.3) 
There has been little systematic study of compressible magnetohydrodynamic 
turbulence (V. U # 0). 

Fyfe and Montgomery (1976) have carried out a systematic study of two- 
dimensional magnetohydrodynamic (MHD) turbulence in which both U and B are 
confined to the x,y plane and there is no variation in the x direction. In  this case 
j ,  a and the vorticity w all reduce to their 2: components j ,  a and W .  For either 
periodic boundary conditions or fields which fall off fast enough at infinity, (7.2) 
can be 'uncurled' to give 

which is identical with the equation for advection of a passive scalar field with 
molecular diffusivity. 

In  three dimensions (7.2) can describe the transfer of energy from the velocity 
field to large scales of the magnetic field if the velocity field is turbulent with helicity 
(Moffatt 1978). But in two dimensions (7.4) gives a constraint which prevents such 
dynamo action. If the boundary conditions are cyclic and the vector potential is 
expanded as 

( q a t  4- U. 0). = yV2a (7.4) 

a ( x ,  t)=C a,(t) exp (ik,x) (7.5) 
k 

so that E, k-21Bk(t)12=Ck Ia,(t)12 decreases with time, where Bk(t) is the Fourier 
component of the magnetic field. The  vector potential must decay, and for finite 7 
and no forcing, the magnetic field must become uniform or zero. However, for a 
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finite time, the magnetic field may amplify at either the large or small scales. The 
limits q+O and t-too are subtle, and may not be interchangeable (Pouquet 1978). 

Fyfe and Montgomery (1976) have examined the equilibrium statistical mechanics 
of the system (7.2) and (7.3) along the lines of $3. An analogous treatment of three- 
dimensional magnetohydrodynamics has been reported by Frisch et al (1975). All 
the fields may be expanded in Fourier series as (7.5). There are then three quadratic 
constants of motion (v = 7 = 0) which survive truncation in wavenumber. They are 
the total energy E, the integrated square of the vector potential A, and the 'cross 
helicity' P,  given by 

E= $p (B2/D2+ U') d 2 X =  4, k-' ( Ijk12+ 1 Wkl  2, (7 * 7 (4  1 
k 

A = 4 . 0 - 2  f a2 d2X = 4 k-4 I j k  I 2 P=&D-I U.B d'X=& k-2wkj-k 
k IC 

(7.7(b, c ) )  

where wk and cjk(4n-p/p)-1/2 are the Fourier amplitudes of ~ ( x )  and j(x), and 
D z = 4 n p p  (see also Montgomery and Vahala 1978). 

A Liouville theorem for the truncated system follows easily from the Fourier 
transforms of (7.2) and (7.3), which may be written as 

( 2 / a t + v k z )  W k ( t ) =  Ml(4!, p )  [ w q ( t )  up( t ) - jq( t ) jp( t ) l  (7 *8 (a ) )  
p f q =  k 

where 

and 
p ) = M 1 ( p ,  4 ) = 4 e z . ( r l x p )  (9-2-q-2) (7 * 9 (a) 1 

(7 * 9 (b )  1 Mz(q,  p)== -M2(p ,  (I)= i ez . (q  x p )  ( p +  41 z/pzq" 
where e, is a unit vector in the z direction. 

The canonical probability density, analogous to that in (3.16), is proportional 
to exp ( -PE-  aP-yA)  where /3 again is l / k ~ T  and a and y are new temperatures 
for P and A .  This density gives the mean values 

( E )  = (1/2P) c (2 + r/k2pP) (1 + ylk"P - .2/4P2P2)-1 

( P >  = ( d 2 P P )  c ( P P  + Y/k2  - .2/4PP)-1 

(7*1O(a>> 

(7 * 10 (b) 1 
k 

k 

and the mean modal intensities 

(Ijk12)=D-'k2 ( (BkI2)=D- 'k4  ( I a k 1 2 ) = k 2 ( p p - ~ 2 / 4 P P + y / k 2 ) - 1  

(7 1 1 (a) ) 

(7 * 11 (b )  1 
( 1 wk 1 2, = k2( I Ilk 1 ') =; kz /p f i  + (~Y'/4pp~) ( p p / k 2  -k y / k 4  - E'/4k2pP)-'. 

The  requirement that ( I jk I 2, and ( I u k  I 2, both be positive for all k selects a unique 
set of values 01, /3 and y for given ( E ) ,  ( P )  and ( A )  and implies that /3 > 0, but either 
a or y may be negative. 
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Suppose, with reference to $3, that kmin and kn,,, are the lower and upper 
truncation wavenumbers and, for simplicity, consider the case a = 0, which implies 
( P )  = 0. If kmax-+co, the expectations are finite only if P+co and y+- CO in such 
a way that /?kmin’ + y = 0 (1). For k > kmin, Pk2+ y-->co. Thus, the contribution 
to (A) from the lowest mode dominates in the limit while the energy spreads out 
over the higher wavenumbers up to k,,,. This recalls the similar behaviour of 
energy and enstrophy, respectively, in the condensed hydrodynamic equilibria 
of $3. At high enough k there is approximate equipartition of magnetic and kinetic 
energy whatever the values of U ,  /? and y. This can be qualitatively understood by 
thinking of the high-k excitations as random AlfvCn waves (Kraichnan 196513). 

Fyfe et a1 (1977a) have carried out computer simulations of (7.8) using a spectral 
method of Orszag (1971) and starting from highly non-equilibrium initial conditions. 
The  non-dissipative (v = 11 = 0) runs show large temporal fluctuations in individual 

Figure 19. Evolution of a typical 2D non-dissipative vector potential spectrum in MHD (from 
Fyfe et a1 1977a). (U)  shows initial mean square vector potential at t = O ,  and 
(b) and ( c )  show time averaged at later intervals. Full curve is theoretical absolute 
equilibrium spectrum for these initial conditions. 

mode amplitudes after overall evolution seems complete. Time-averaging smooths 
the spectra considerably, and gives a quite acceptable agreement with (7. ll),  at least 
for the case (P)=O. This suggests that E, P and A are the only isolating constants 
of motion and that the system is ergodic. Temporal evolution of typical developing 
spectra are shown in figures 19 and 20. 

The analogy of (A) and ( E )  in the present hydromagnetic equilibria to ( E )  and 
(Q) in the hydrodynamic equilibria of $3 suggests the possibility of dual cascades, 
like those of 94, with now a cascade of A to low wavenumbers and E to high wave- 
numbers, as the consequence of the injection of A and E into the system at inter- 
mediate wavenumbers by forcing mechanisms. It is important to note that, because 
of the ‘antidynamo theorem’ (7.6), a downward cascade of A can take place in the 
steady state only if a forcing term representing injection of magnetic excitation is 
added to (7.2) or (7. S(6)). Moreover, if this excitation is injected only in a band of 
intermediate wavenumbers, a conservative cascade of A to lower wavenumbers 
iinplies zero asymptotic (i.e. k+O) cascade of magnetic energy, since I Bk I = k 2  I ak I ’. 
Thus there cannot be a steady-state two-dimensional turbulent dynamo which 
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transforms kinetic energy at intermediate wavenumbers into magnetic energy at 
much lower wavenumbers or even one which steadily transfers magnetic energy to 
much lower wavenumbers. However, this restriction is less limiting than might be 
supposed. Mechanical stirring of a magnetofluid by contact with a solid surface of 
finite conductivity cannot be idealised simply by adding a mechanical forcing term 
into the equation at motion. Any mathematical representation of this process also 
necessarily includes magnetic forcing of some variety. 

10 

k 

Figure 20. Results of an MHD EDQNM closure calculation for evolving magnetic energy 
spectrum at three successive times (from Pouquet 1978). Magnetic energy is being 
continuously injected at K = 1. 

In  three dimensions the situation is much different. The  three quadratic constants 
of motion which determine truncated non-dissipative equilibria (Frisch et al 1975) 
are E,  P and the magnetic helicity 

H = 3  a.Bd3x. (7.12) 

A is not a constant of motion, and transformation of the kinetic energy of helical 
motion into the energy of large-scale magnetic fields is possible (Moffatt 1978, 
Kraichnan 1979). 

A paradoxical fact in both two dimensions and three is that the constants of 
motion of the system with magnetic field do not go over into constants of motion of 
the purely hydrodynamic system as B+O. Thus neither P nor A becomes the 
enstrophy i2 as B+O and neither P nor H becomes the hydrodynamic helicity (2.11). 
The exception is E which goes into the hydrodynamic energy. Instead, as B+O, the 
constants involving B also go to zero, while the rates of chartge of the purely hydro- 
dynamic constants of motion go to zero. 
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If A (k) is the spectrum function of the a fluctuations, satisfying f: A (k) dk = A, 
similarity arguments like those that lead to (4.11) suggest that the spectrum behaviour 
in an inertial range where A is transferred to lower wavenumbers should have the 
form in two dimensions 

A (k) = constant x ~ , 2 / 3 k - 7 / 3  (7.13) 

where E A  is the rate of the conservative transfer of A. These same arguments and 
dimensional analysis imply a k-513 spectrum for both magnetic and kinetic energy 
spectra in the cascade from forcing wavenumbers to higher wavenumbers. However, 
Kraichnan (1965b) and Kraichnan and Nagarajan (1967) argue that the Kolmogorov 
similarity scaling is invalid in hydromagnetic turbulence because of decorrelation 
effects associated with radiation of AlfvCn waves which exist as small-scale per- 
turbations on the magnetic lines of force. If such effects are included, the k-513 

spectrum is replaced, in the simplest situation, by a k-312 spectrum with a coefficient 
that depends on the level of the mean square magnetic field. Dominance of the 
high-k dynamics by AlfvCn waves also implies approximate equipartition of magnetic 
and kinetic energy in the energy inertial range. 

The  cascade of A and E have been investigated both by computer simulation 
(Fyfe et a1 1977b) and by an adaptation of the EDQNM closure described in $4.3 
(Pouquet 1978). The simulations used a variety of forcing terms added to (7.8) and 
various values of the Reynolds numbers lulv, h / q ,  lB/v and ls/T, where zk is a charac- 
teristic value of U, 1 is a typical length scale and is a characteristic value of 
B(4npp)-1/2. These Reynolds numbers measure the relative size of the linear and 
non-linear terms in ( 7 . 2 )  and (7.3) and thereby the range of wavenumbers available 
for inertial-range behaviour. It is plausible, but not established, that a criterion for 
the natural or spontaneous occurrence of MHD turbulence is the size of the ‘Lundquist 
number’ ZB/q. In computing the Lundquist number, we should use only the self- 
consistently supported part of B, i.e. the part which has a curl. Externally imposed 
uniform B fields will not, in general, lead to turbulent behaviour. 

The  simulations involve total wavenumber ranges which are too small to test 
the inertial-range power laws, but do give results that seem consistent with the 
asymptotic validity of the inertial ranges. Some results of the simulations which 
seem likely to persist if much larger-scale computations were made are: (i) substantial 
back-transfer of A to the largest spatial scales; (ii) large fluctuations of the Fourier 
amplitudes about time-averaged intensity values-more so than in analogous pure 
Navier-Stokes computations ; (iii) very slow evolution of the longest wavelengths of 
the magnetic field; (iv) a strong tendency toward equipartition of kinetic and magnetic 
energy at the highest wavenumbers where dissipative effects did not dominate. These 
characteristics appear also in unforced decay simulations by Orszag and Tang (1978) 
which have kmax/kmin= 128. 

The treatment of two-dimensional MHD turbulence by the EDQNM closure 
(Pouquet 1978) is similar in principle to the earlier treatment of three-dimensional 
MHD turbulence by Pouquet et a1 (1976). The  elementary physical arguments that 
lead to the k-713 and 12-312 inertial ranges are built into the relaxation times used by 
Pouquet in constructing the closure. Thus, as in all such closure analysis, the 
confirmation of the power laws in the final computations involves circular logic 
and serves principally to demonstrate a level of self-consistency in the physical and 
dimensional reasoning, including, most importantly, the convergence of integrals 
describing the rates of transfer. 
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Pouquet (1978) has made an interesting and significant conjecture about the 
intermittency of the small scales of the turbulence described by (7.2) and (7.3) 
,4s noted in 54.1, the two-dimensional Euler equations do lead from smooth initial 
conditions to singularities in finite time, a fact connected with the conservation of 
enstrophy. In  two-dimensional MHD flow, enstrophy no longer is conserved and 
Pouquet therefore conjectures that such flow is like three-dimensional Euler flow in 
that singularities do develop in finite time. Orszag and Tang (1978) have investigated 
this question by computer simulation. Their results (necessarily restricted to finite 
wavenumber ranges) suggest strongly that singularities do indeed develop in finite 
time in two-dimensional n m D  flow, but that the singularities are less strong than in 
three-dimensional Euler flow. The results suggest that, in contrast to three- 
dimensional Euler flow, (7.2) and (7.3) do not lead to finite dissipation rates 
independent of v and 7 as the latter go to zero. 

A picture of the small-scale behaviour of (7.2) and (7.3) with effectively very 
small v and 7 may be formulated as a two-step process. In  the first step, lines of 
force are stretched, increasing the magnetic field and its gradients. Taken to the 
extreme, this generates microscopic ‘sheet pinch’ configurations-thin current sheets 
normal to the plane of variation of the field variables-across which the tangential 
component of magnetic field changes almost discontinuously. These sheet pinches 
are likely to be unstable against roll-up into vortices which can re-initiate the process. 
This qualitative picture fails to account, however, for the large regions seen by 
Orszag and Tang which are relatively free of both magnetic and velocity fields, as if 
both fields were expelled from the interiors of the regions. A model of the possible 
singular behaviour to be expected as r p 0  has been given by Matthaeus and Mont- 
gomery (1979). The model is based upon current filamentation and concentration 
on sets of decreasing measure near a zero of the magnetic field of the so-called 
‘x-poilit’ variety (saddle points in a). 

A number of variants of two-dimensional and quasi-two-dimensional plasma 
turbulence have been described in the observational, experimental and theoretical 
literature with and without a steady perpendicular magnetic field. We have not the 
space unfortunately even to cite this literature systematically. Instead we briefly 
call attention to several of the topics. 

The electrostatic guiding-centre plasma and its analogy to two-dimensional 
Navier-Stokes turbulence (e.g. Taylor and MacNamara 1971, Montgomery 1975a,b) 
has been mentioned throughout this review. The accurate analogy does not extend 
to dissipative effects. 

A precursor of Navier-Stokes enstrophy-cascade theory appears in Chen’s 
(1965) paper on drift-wave turbulence, where a k-5 potential spectrum (k-3 energy 
spectrum) is conjectured. Hasegawa and Mima (1978) give a more elaborate theory 
of drift-wave turbulence, arriving at the equation 

(a ja t )  ( V ~ + - A ~ + ) - ( V + X  eZ).VV2+=O (7.14) 

for the electrostatic potential +. This differs only by the term in X (a parameter) from 
the Euler equation for the stream function ($2). Fyfe and Montgomery (1979) have 
further explored the direct and inverse cascade behaviour of (7.14). The  inverse 
cascade may be the basic mechanism responsible for the large potential islands that 
repeatedly occur in plasma confinement experiments. 

Fluctuating magnetic fields in the solar wind appear to constitute a quasi-two- 
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dimensional turbulence somewhat reminiscent of the quasi-geostropic turbulence 
discussed in $5, There is often an average steady magnetic field with fluctuation 
vector usually perpendicular to the steady field but with the rate of variation of the 
fluctuation vector largest parallel to the steady field. The equations of motion simplify 
considerably in this essentially passively convected regime (see Siscoe et al 1968, 
Belcher and Davis 1974, Barnes 1979). 

Kelley and Kintner (1978) argue that the high-latitude magnetosphere of the 
Earth supports fluctuations in electric field which can be interpreted as a two- 
dimensional guiding-centre plasma. They measure power spectra which appear to 
be consistent with the simultaneous existence of h-513 energy cascade and k-3 

enstrophy cascade ranges (in terms of the correspondence between guiding-centre 
plasma and Navier-Stokes flow). 

Sudan and Kesklnen (1977, 1979) and Barone (1980) examine turbulence in a 
two-component plasma which exhibits electron density fluctuations in a plane 
perpendicular to a uniform magnetic field. A two-fluid-model set of equations is 
handled by the direct interaction approximation. Application is made to fluctuations 
in the equatorial electrojet. 

Electrostatic plasma oscillations in the absence of a steady magnetic field give 
rise to a kind of turbulence which differs from the fluid turbulence usually studied 
in that the oscillations are essentially longitudinal (compressive) and rapid linear 
oscillations typically give time scales small compared to those associated with non- 
linear transfer. The  rapid linear oscillations make numerical simulation more difficult 
but perturbation-based approximations more solidly based. A large body of work 
on the weakly non-linear regime is summarised and cited by Kadomtsev (1965), 
l’sytovich (1970, 1972) and Davidson (1972). Some recent papers dealing with 
strongly non-linear electrostatic oscillations are Fyfe and Montgomery (1978), 
Zakharov (1972) and Nicholson and Goldman (1978). 

8. Two-dimensional superflow 

Onsager (1949) and Feynman (1957) have pointed out that the condition of 
single-valuedness of the phase of the macroscopic wavefunction requires that vortex 
motion of a superfluid must involve cores, where the macroscopic wavefunction 
breaks down, and circulation about these cores which is quantised in multiples 
of h/m, where h is Planck’s constant and m is the mass of a helium atom. In  three- 
dimensional flow the quantised vortices can take the form of rings or they can 
terminate on the walls of the container. If the core diameter is sufficiently small 
compared to the radius of curvature along the core axis, the vortices obey Stokes’ 
flow equations modified by a Magnus force due to interaction of the core with the 
normal fluid component. An excellent review is given by Langer and Reppy (1970). 
Donnelly and Roberts (1971) and others have constructed detailed theories of the 
creation, interaction and destruction of the quantised vortices. 

Kosterlitz and Thouless (1973) and Kosterlitz (1974) proposed a novel type of 
phase transition in two-dimensional systems in which the raising of temperature 
through a critical value Tc results in the dissociation of pairs of vortices with opposite 
sign. They suggested applications to magnetism, melting and superfluidity in two- 
dimensional systems. Such transitions were studied by JosC et al (1977) by re- 
normalisation group transformations. Nelson and Kosterlitz (1977) predicted that 
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vortex pair dissociation results in a universal jump (to zero) of the superfluid mass 
per unit area when a thin film of 4He on a substrate is raised through T,, namely 

(ps/kBT)T+Tc= 8 7 7 ( ~ / h ) ~  (8 * 1) 
where ps is the superfluid mass per unit area. 

Experimental confirmation of (8.1) has been reported by Bishop and Reppy 
(1978), Rudnick (1978) and Webster et a1 (1979). There has been an explosion of 
theoretical interest in the Kosterlitz-Thouless transition including papers by Myerson 
(1978), Nelson (1978), Young (1978) and Donnelly et al (1979). Ambegaokar et al 
(1978), Huberman et a1 (1978) and Ambegaokar and Teitel (1979) have studied 
dissipative phenomena near the transition, which are important in interpreting the 
experiments. Applications to superconductivity have been proposed by Beasley et a1 
(1979)) Doniach and Huberman (1979) and Halperin and Nelson (1979). A fascinating 
extension has been made by Halperin and Nelson (1978) and Nelson and Halperin 
(1979) who predict a two-stage melting in two-dimensional solids, each stage corre- 
sponding to pair disassociation of a particular type of excitation. Some support is 
reported by Frenkel and McTague (1979) who do computer experiments with a 
finite set of atoms. 

Our discussion will be limited to an attempt to relate the Kosterlitz-Thouless 
transition in superflowing films to the analysis of vortex dynamics and statistical 
equilibria of $52 and 3 .  There is no universal agreement about some of the basic 
theoretical questions. I t  is hoped that the treatment to follow offers a consistent 
picture within the frame of elementary methods. 

Consider then a thin fluid layer of width W and length L % W and cyclic boundary 
conditions on the ends. We start by discussing an ideal inviscid fluid with rigid, 
slippery boundaries and a perfectly uniform substrate ; then we can introduce the 
effects of interaction with the normal-fluid component, creation and destruction of 
vortices, and irregularities in the substrate. It is first of all clear from $3 that super- 
flow-that is, macroscopically excited uniform potential flow through the channel- 
does not represent absolute statistical equilibrium. In  absolute equilibrium the 
potential flow velocity v,  which is an independent dynamical coordinate in the 
formulation of $2.3, has mean square excitation (Mv2)=kBT, where M is the total 
mass of the fluid. Thus, as is well known, persistent superflow is a metastable state 
which is decaying to absolute equilibrium very slowly. The  Kosterlitz-Thouless 
theory then implies that (i) vortex pairs can mediate this decay and (ii) the rate of 
decay through interaction with vortices is enormously greater for T > Tc.  

Under the ideal boundary conditions we have assumed there is no interaction 
between vortex motion and potential flow apart from the trivial convection of the 
vortex motion along the cyclic channel by v.  As noted in $52.3 and 2.4, this is no 
longer true if there is irregularity in the edges of the channel. In  the present applica- 
tion, irregularities in the substrate contour also act to couple vortex motion and 
potential flow (in analogy to the orographic variations discussed in §S) and can be 
expected to be of greater importance. I n  either case, the stationary eigenfunctions 
of the vortex flow are distorted and a mechanism exists for transferring the momentum 
of the potential flow to the walls or substrate despite the fact that we still impose 
rigid, slippery boundaries. However, this coupling cannot relax z, to equilibrium. 
The reason is that U represents a circulation through the cyclic channel and, by 
Kelvin’s theorem, circulation cannot be altered by boundary forces on an ideal fluid. 
Relaxation of z, requires a mechanism for altering circulation within the fluid. The  

3 9 
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circulations of present interest are quantised (including that represented by v)  and 
their alteration therefore implies the creation and destruction of vortices. 

We have pointed out in $2.4 that there is no intrinsic momentum associated with 
a vortex or a vortex pair. There is momentum associated with the creation or destruc- 
tion of vortices by local disturbance of the fluid but, as noted in $2.4, this momentum 
again is not uniquely determined by the strength and position of the vortex. In  an 
ideal uniform channel the momentum imparted to the fluid by creation of a vortex 
depends on whether it is created as part of a plus-minus pair within the fluid or as 
part of a vortex image pair near the boundary. Surface irregularities provide further 
complications. In  any event the creation and destruction of selectively oriented 
vortex pairs, or selectively located isolated vortices, can change the net momentum 
of the fluid Mv. Net momentum is changed if a vortex is created at one edge and 
subsequently destroyed at the other or if a vortex pair is created in the fluid and 
destroyed one vortex at each edge. If closely spaced plus-minus pairs are created 
in the fluid, then the vortices are moved and permuted in any fashion and finally 
destroyed as closely spaced plus-minus pairs, the result is no net change in momentum 
(see (2.38) and (2.41)). 

Now consider the interaction of a gas of vortex pairs with the normal-fluid 
component, which is locked to the substrate. Without the interaction a pair aligned 
across the channel scoots along the channel. If the cores are dragged by the normal 
component the Magnus force described in $2.4 pushes the cores together. Suppose 
that in some sense this interaction is sufficiently weak that (with v=O now) the 
absolute equilibrium states of $3.3 are still relevant. Clearly, to maintain equilibrium, 
the interaction with the normal component must include, in addition to the drag, 
some kind of random force that can move cores apart (Ambegaokar et al 1978). 

If v # 0 the cores are, in addition, convected by v, which either adds to the scooting 
velocity through the normal fluid or subtracts from it. The scooting velocity is 
inversely proportional to the core separation. Thus, in the latter case there will be a 
critical core separation beyond which v overpowers the scooting velocity and makes 
the vortices move backward through the normal fluid. When that happens the 
Magnus force separates the cores. If separation continues until the vortices are 
destroyed at the walls there has been a net momentum transfer from fluid to substrate 
via the drag, which is directed against v. 

We are now finally in a position to interpret (8.1). The transition temperature 
Tc determined by (8.1) is just the transition temperature for ( r2)  in the dilute vortex 
gas pair collapse regime, as described after (3.25), namely ppq2/2x=4. As T rises 
through the transition the number of pairs in equilibrium that have separations 
greater than the critical separation just described can increase enormously and 
mediate a sharp rise in the decay rate of v. 

The Magnus force and drag dynamics we have described can be interpreted as 
mediating a quasi-equilibrium of vortex pairs which are created and destroyed in the 
presence of v. A creation process which adds momentum P to the fluid also adds 
energy, described by an interaction energy P.v ,  as described after (2.40). For pairs 
beyond a critical separation this overpowers the interaction energy between the plus 
and minus vortices, and the Boltzmann factors for the quasi-equilibrium favour 
pairs whose separation diverges to the width W of the channel (see Myerson 1978). 
If the quasi-equilibrium is reached as the result of explicitly introduced creation 
and destruction processes for pairs of all separations and orientations, then the P . v  
term biases the free energy of creation (Donnelly et a1 1979). 
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There are a number of unsettled questions. Does the Kosterlitz-Thouless 
transition survive, and in what form, when the vortex gas is not dilute so the log 
potential so important in pair collapse is substantially distorted? What are the 
effects of substrate irregularity on the transition and (Donnelly et a1 1979) on vortex 
nucleation? Dash (1978) raises interesting questions about the very existence of 
uniform helium films. 

9. Concluding remarks 

It seems appropriate to end this review by attempting to assess the status and 
future of the principal research topics which have been discussed. The  easiest 
subject to discuss is the equilibrium statistical mechanics of the inviscid truncated 
continuum. This is an exactly soluble problem, once the eigenfunctions of Laplace’s 
operator are known in the geometry at hand and, in contrast to three dimensions, 
the solutions are non-trivial and may be relevant to geophysical phenomena ($55 and 7). 

The  equilibrium statistics of the discrete vortex system is not exactly soluble. 
It differs significantly from that of the continuum by exhibiting pair collapse and 
supercondensation (if the vortices are assigned finite cores) at the respective tempera- 
ture ranges that correspond to the lowest and highest energies. T o  the extent that 
discrete vortices are regarded as a computational device for continuous flows these 
phenomena are interesting curiosities, unlikely to affect a well-posed simulation, but 
the discrete vortices are essential to the physics of superflow and related topics. 
It is currently of great interest to study further the modifications of dilute-vortex-gas 
behaviour that accompany finite core structures and, although it lies outside the 
scope of this review, to understand more solidly how vortex models are based on the 
underlying quantum dynamics. 

The  non-equilibrium statistical behaviour of the two-dimensional fluid, including 
cascade phenomena, is in a much less happy state. The  directions of cascade predicted 
by assuming approach toward equilibrium seem supported by computer simulations 
and the latter are at least consistent with the asymptotic forms of energy and enstrophy 
inertial ranges given by simple theory. The  closure approximations which are 
available for semiquantitative prediction of non-equilibrium spectra are not only 
computationally difficult but fail to provide internal error estimates. They are 
almost no help with the interesting questions of intermittency and other properties 
that involve higher statistical structure than spectra. 

The  self-organising capacities of magnetofluids, in three dimensions as well as 
in two, are even stronger than they are for Navier-Stokes flow in two dimensions. 
It appears likely that both kinds of MHD turbulence and its electrostatic kin are to 
be expected in thermonuclear plasmas. One of the most underdeveloped areas upon 
which the methods and techniques originating in two-dimensional turbulence theory 
seem likely to make an impact is that of the control and manipulation of current- 
carrying fusion plasmas. 

At present the most promising tool for progress in understanding the physical 
phenomena and for guiding theoretical development is probably computer simulation. 
This is inherently a more powerful tool in two dimensions than in three. It is now 
possible to perform simulations with effectively the order of a thousand grid points 
in each direction (Orszag 1976). No simulation calculation unaided by some theoretical 
apparatus can settle questions of asymptotic high-Reynolds-number behaviour, 
however. 
39* 
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We lack the courage to make a critical assessment of the future of two-dimensional 
turbulence theory in the considerable variety of geophysical applications for which 
it is currently being used. But it does seem proper to stress that great caution must 
be used when interpreting phenomena of the real world in terms of asymptotic 
solutions of approximate statistical treatments of idealised theory. In  some cases the 
idealised theory may be more valid in providing a language for discussion rather 
than a true explanation. 
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