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A study is made of some numerical calculations of two-dimensional and geostrophic 
turbulent flows. The primary result is that, under a broad range of circumstances, 
the flow structure has its vorticity concentrated in a small fraction of the spatial 
domain, and these concentrations typically have lifetimes long compared with the 
characteristic time for nonlinear interactions in turbulent flow (i.e. an eddy 
turnaround time). When such vorticity concentrations occur, they tend to assume 
an axisymmetric shape and persist under passive advection by the large-scale flow, 
except for relatively rare encounters with other centres of concentration. These 
structures can arise from random initial conditions without vorticity concentration, 
evolving in the midst of what has been traditionally characterized as the ‘cascade’ 
of isotropic, homogeneous, large-Reynolds-number turbulence: the systematic 
elongation of isolines of vorticity associated with the transfer of vorticity to  smaller 
scales, eventually to dissipation scales, and the transfer of energy to larger scales. 
When the vorticity concentrations are a sufficiently dominant component of the total 
vorticity field, the cascade processes are suppressed. The demonstration of persistent 
vorticity concentrations on intermediate scales - smaller than the scale of the peak 
of the energy spectrum and larger than the dissipation scales - does not invalidate 
many of the traditional characterizations of two-dimensional and geostrophic 
turbulence, but I believe it shows them to be substantially incomplete with respect 
to a fundamental phenomenon in such flows. 

1. Introduction 
The dynamics of large-scale, extratropical, planetary fluid motions are usually 

approximately geostrophic, and hence nearly horizontally non-divergent and ap- 
proximately two-dimensional in this sense, as well as only weakly non-conserva- 
tive. I n  these circumstances most phenomena can be interpreted as hybrids of 
several dynamical regimes, a t  least away from boundaries : dispersive Rossby waves, 
geostrophic or two-dimensional turbulence, and isolated, coherent vortices. Usually 
the regime boundaries can be identified by simple scale arguments. If phase speeds 
are greater than fluid-particle speeds, then wave processes are likely to be dominant. 
Isolated, coherent (i.e. long-lived) vortices, with the appropriate structure to  be a 
self-consistent solution in an otherwise quiescent fluid, are likely to persist if their 
particle speeds are larger than those of any disorderly flow structures in their 
neighbourhood (McWilliams et al. 1981 ; Malanotte-Rizzoli 1982). If these conditions 
are not met, then a turbulent interpretation is usually made, a t  least for the transient 
component of the flow. Turbulence, of course, has many, not wholly consistent, 
definitions, but short persistence times for any particular flow configuration (of the 
order of a particle recirculation time or ‘eddy turnaround time’) and limited 
predictability from imperfectly known initial or boundary conditions are often 
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22 J .  C. Mc Williams 

essential characteristics. The term ‘cascade’ is often used to indicate the strong 
nonlinear interactions between quite disparate scales of motion which can account 
for these characteristics. 

This paper is a report of numerical solutions which demonstrate that isolated 
coherent vortices can coexist with and evolve out of actively cascading turbulence, 
even when there are no gross scale differences between the two components of the 
flow. Parts of this demonstration have been made previously in the numerical studies 
of Fornberg (1977) and Basdevant et al. (1981). Most attention here will be directed 
to the simplest and most extensively studied example of geostrophic turbulence - the 
slow frictional decay of isotropic, homogeneous, two-dimensional turbulence. This 
latter problem, of course, also has an extensive history of investigation outside of 
the context of planetary fluid dynamics (e.g. Batchelor 1953; Kraichnan & Mont- 
gomery 1980). However, the occurrence of isolated vortices is much more general than 
just in decaying two-dimensional turbulence. In  support of this, several examples of 
more general geostrophic-turbulence solutions will also be described. 

2. Themodel 
A set of model equations which is sufficiently general to encompass all calculations 

to be reported here is the non-dimensional, equivalent-barotropic, quasigeostrophic, 
P-plane, potential-vorticity balance with forcing and various types of damping : 

x, y and t are East, North and time coordinates, q% is the stream function, u and v 
are the East and North velocities and 5 is the vorticity. y is the inverse of the radius 
of deformation, /3 is the northward gradient of the Coriolis frequency, f is the forcing 
function, and the vi are damping coefficients - referred to as Rayleigh friction, 
Newtonian viscosity and hyperviscosity for i = 0 , 2  and 4. J is the Jacobian operator 
in 2 and y .  

We shall examine a simple special case of ( 1 )  in particular detail; viz decaying 
two-dimensional flow : 

y = p =  f = vo = v2 = O,] 
I 

%+ J(q%, 5) = -v4V4C. 1 
at 

The choice of hyperviscosity is dictated by a desire to confine the effects of damping 
to the smallest resolved scales of the model, leaving the more energetic scales nearly 
inviscid. The traditional formulation of decaying two-dimensional flow includes 
Newtonian viscosity in place of hyperviscosity in (2). Solutions of the two differently 
formulated problems do not differ in any important manner in thc properties 
discussed in $53-5 below. However, for a fixed numerical resolution a higher effective 
Reynolds number is achievable with hyperviscosity, and for this reason (2) is given 
the great attention, while its Newtonian viscosity counterpart is more briefly reported 
in $6. 

These equations are solved as an initial-value problem in a doubly periodic square 
domain of width 2n. The numerical model is a dealiased, pseudospectral (Fourier 
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Isolated coherent vortices in turbulent $ow 23 

expansion) one with approximately circular truncation in the horizontal wavenumber 
plane. It conserves area averages of both energy and potential enstrophy, 

E = --j{dxdy(uz+"2), 1 1  
2 (27c)Z 

(3) 

when the forcing and damping terms are zero. Properties of the model are more fully 
described in Haidvogel (1983); it is an extension of an earlier model described in 
Davey (1980). 

3. Decaying two-dimensional flow 
The initial conditions for (2) are a Gaussian random realization for each Fourier 

component of $, where a t  each vector wavenumber the ensemble variance is 
proportional to the prescribed scalar wavenumber function 

t'[l+(;)l]', k > 0, (4) 

where k is the wavenumber-vector magnitude. This function is broadband and peaked 
near wavenumber k,. The amplitude factor is chosen such that E = 0.5 initially. The 
resulting kinetic-energy spectrum is shown in figure 2, for k, = 6, where E(k)  is defined 
as the sum of the kinetic-energy density for all model wavenumber vectors whose 
magnitude lies within a band of width Ak = 1 centred on integer k-values. (Because 
the domain size is 27c, each component of the wavenumber vector assumes all integer 
values with magnitudes bounded by the truncation level N.) This definition implies 

N 

k-1 
E =  E(lc). 

The value selected for N is approximately 128, corresponding to NG = 256 spatial 
grid points in each direction. The value selected for the hyperviscosity is 3.125 x lop8, 
which, because of the domain size and E-value, can be interpreted as an inverse 
Reynolds number for the largest scales (it is not, of course, isomorphic to a Reynolds 
number constructed from Newtonian viscosity). This implies a very slow rate of 
energy decay, as is shown in figure 1 a. 

Time series for E ,  V and the energy centroid wavenumber 

Er E-l Z kE(k)  
k 

are plotted in figure 1 .  The energy decay rate is indeed small, with less than a 3 yo 
decrease over a time of 40 units, where a unit is approximately a recirculation time 
for eddies of the most energetic scale. More precisely, we define an eddy turnaround 
time r E  as either 27c V-i or 27c(2E)-$ i-l; the former has values that increase from 0.5 
to 2.0 as the solution evolves, and the latter has values about 50% larger. The 
enstrophy-decay rate, however, is initially quite substantial - in contrast with the 
energyrate, it  isexpected toremain finite as the hyperviscosity tends to zero - although 
it slows considerably after a few rE .  The centroid wavenumber decreases monotonically 
with time - energy is transferred to larger scales - although its rate also slows with 
time. Figure 2 shows that the energy spectra change rapidly in the first few r E ,  
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FIGURE 1. Time series of E,  V and E. 
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FIGURE 2.  E ( k )  at t = 0, 2, 5 ,  10, 20 and 40. 

primarily by steepening a t  large k from the initial shape of K 3 .  Subsequently E ( k )  
undergoes little change in shape, except for weak fluctuations in the small-k 
components and a slow decrease in all components which is somewhat greater a t  
larger k. Plots of @ (figure 3)  also exhibit a systematic cvolution towards larger scales. 
All of these properties are familiar ones from previous investigations of decaying 
two-dimensional turbulence. 

A much less familiar property is illustrated in figure 4. The vorticity field evolves 
from an initially fairly uniform distribution in space to a collection of discrete and 
usually isolated vorticity extrema. These isolated vortices occur with a variety of 
amplitudes and sizes, although all of them are substantially smaller in size than the 
dominant stream-function patterns. Most of them are approximately axisymmetric, 
but there are obvious exceptions when two or more of them are close enough to 
interact strongly. The interactions are of several types, all of which are represented 
in figure 4 :  a weaker vortex can be engulfed (if of the same sign) or sheared out if 
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Isolated coherent vortices i n  turbulent flow 25 

X 

FIGURE 3. Stream function at  t = 0 and 16.5. The contour intervals are 0.1 and 0.2 respectively. 
Positive contours are solid and negative dashed; the zero contour has been deleted. 

it approaches a stronger vortex too closely; in other cases a close approach leads to 
strong deformations of vorticity contours followed by relaxation towards axisymmetry 
after separating ; vortices of comparable strength but opposite sign can become 
attached to each other, much like a modon, and consequently undergo rapid 
movement through the fluid, until some other close encounter tears them apart. The 
enormous qualitative difference between the distributions of @ and 6 is expressed by 
the kurtosis calculated in an average over all spatial grid-point values at fixed t (figure 
5) : stream function remains close to the Gaussian value of 3, while vorticity departs 
from it  monotonically owing to the disappearance of vorticity in the space between 
and the persistence of vorticity within the isolated vortices. The high kurtosis reflects 
a particular kind of spatial and temporal intermittency. Intermittency in general is 
an explanation of spectrum shapes steeper than the inertial-range form E3 (Basdevant 
et al. 1981), such as those in figure 2, although, even without intermittency, spectra 
can be steeper than kK3 owing to finite resolution and dissipation. 

A geometric interpretation of large kurtosis is the following. If a two-dimensional 
field consists of elemental structures of compact support, which are non-zero only 
within squares of breadth a separated by a distance b ,  then the kurtosis is 
proportional to (b/a)2.  The kurtosis is large whenever the separation distance is large 
compared with the breadth of the structures. This condition holds approximately 
in figures 4 ( c ,  d ) .  

The properties shown in figures 4 and 5 are surprising, certainly to  me, and I suspect 
to others as well. The distributions in figure 4 can be contrasted with one or more 
‘typically turbulent ’ (figure 6). It is from an equilibrium two-dimensional flow 
solution which is sufficiently strongly forced and damped so that no vorticity 
concentrations or non-Gaussian kurtosis develop (equilibrium solutions are discussed 
further in $6).  The vorticity pattern in this case has the elongated contours which 
are often taken to be the signature of cascading two-dimensional turbulence 
(Batchelor 1969). 
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( c )  r = 16 5 
211 

X 

FIGURE 4. Vorticity at t = 0, 2.5, 16.5 and 37. The contour interval is 8 for the first of these 
and 4 thereafter. The line coding is as in figure 3. 

4. A description of how isolated vortices emerge and persist 
This section contains a description of what happens to vorticity extrema in the 

preceding decay solution. The basis for it is a sequence of maps like those in figure 
4, too many to be included here in their entirety. 

Each vortex in figure 4 (M), with a magnitude of at least three contours, can be 
traced backwards in time, without interruption, to the initial conditions. That is, 
throughout its history it is an identifiable, localized vorticity concentration which 
is never distorted too far from an axisymmetric distribution. The converse is not true. 
Individual vortices can cease to be traceable through interactions with other, 
generally stronger vortices, during which they are either destroyed by being sheared 
to the point of participating in a local turbulent cascade or absorbed into the stronger 
vortex. A necessary condition for absorption, or merger, is that they both have the 
same sign of vorticity. In the initial conditions, the incipient isolated vortices are local 
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FIQURE 5. Kurtosis for stream function and vorticity. 

X 

FIQURE 6. Vorticity from an equilibrium solution of (1) with y = B = v 2  = 0, v,, = 0.1, 
v4 = 5 x andfa random forcing which is white noise in time and isotropic in space with non-zero 
amplitude only for k-values between 1 and 4. The plotting convention is as in figure 4 except that 
the contour interval is reduced to 1 owing to the somewhat smaller E and V in this solution. 
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FIGURE 7 .  Vorticity maps in a fraction of the domain, of dimension $, during a period of 
unequal-strength merger. The plotting format is as in figure 4 ( b ) .  

extrema in vorticity, which occur by chance in locations sufficiently separated from 
other extrema of comparable or greater magnitude. As the turbulent cascade begins 
around them, the incipient vortices resist straining deformations due to neighbouring 
vorticity structures and grow in circulation (i.e. area-integrated vorticity) by mergers 
with weaker, like-sign vorticity extrema. Such unequal strength mergers yield an 
end-product whose extreme vorticity is bounded by the larger of the original extrema 
(usually that of the partner with greater circulation) and whose circulation is bounded 
by the sum of the original circulations. Varying amounts of the circulations, 
particularly that of the weaker partner, can be lost to the cascade rather than 
absorbed. An increase in circulation without an increase in the extremum generally 
implies an increase in size; thus such unequal-strength mergers are a mechanism for 
growth of the stronger partner. 

An example of an unequal-strength merger is shown in the time sequence of 
vorticity maps in figure 7. Here only a small part of the circulation of the weaker 
partner is absorbed by the stronger; the rest is lost to the turbulent cascade. If we 
form a local area integral of (2) we obtain 

where the circulation is 

C =  cdxdy. SS 
If the boundary of the integration domain is chosen to lie outside the region of 
significant vorticity amplitude €or the merging vortices (e.g. approximately the edges 
of the plots in figure 7) ,  then the circulation of the merger end-product can be less 
than the initial C only if some of the vorticity is cast off, transferred to smaller scales 
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(so that the integrands on the right-hand side of (7 )  can be significant even when g 
itself is small), and advected to the boundary. Other examples of merger could be 
adduced that are either less or more conservative of C. 

After undergoing shearing deformations or mergers, a surviving vortex will relax 
towards axisymmetry and a smooth radial profile, until i t  is again disturbed by 
encountering another vortex. Since vortices can only be lost through these 
encounters, their number will decrease with time. Vortices are lost faster than the 
size of the survivors grows, which implies a decrease in the number per unit area, 
consistent with the increasing kurtosis of figure 5. As the vortex density decreases, 
the frequency of encounters becomes rarer, and the rate of kurtosis increase slows. 
Similarly, since smaller vortices are more likely to be the weaker partner - circulation 
and extreme vorticity appear to be relevant measures of strength, although this must 
be further demonstrated - they are more likely to be destroyed in an encounter than 
larger vortices. Hence, for this reason as well as the growth mechanism of mergers, 
the average size of the survivors tends to increase. These effects of a sequence of 
isolated vortex interactions are illustrated by comparing vorticity patterns a t  
different times (figure 4). 

Many of the vortex encounters are non-destructive, however. Opposite-sign 
vortices can temporarily pair as a dipole, and like-sign vortices can circle each other, 
often with large structural deformations, yet subsequently separate and recover their 
original forms. The most common condition, though, is as an isolated, axisymmetric 
monopole, and this is increasingly true with time. Away from encounters with other 
vortices, very little time change in vorticity structure occurs, except for very slow 
weakening and broadening due to the small hyperviscosity. An illustration of the 
shape of an isolated vortex is given in figure 8. 

The particular vortex selected is the one a t  the centre-right of figure 4(d). At the 
time plotted i t  has had no close encounters for 6 time units and not undergone 
significant deformations for 16 units. I ts  shape is quite close to axisymmetric and 
is smoothly and monotonically decreasing from the centre. There does not appear 
to be a unique functional form for the radial profiles of vortices; the history of 
interactions with other vortices seems to influence the profile (e.g. a merger between 
a small, intense vortex and a larger one with weaker vorticity amplitude can yield 
a ' breast-and-nipple ' profile). 

Meanwhile, an active turbulent cascade occurs in the (larger) rest of the domain 
outside of the isolated vortices. Vorticity structures are mutually sheared by their 
neighbours, and vorticity gradients increase. Energy is transferred to larger scales 
and enstrophy to smaller scales, where i t  is efficiently dissipated. Thus the vorticity 
that is accessible to turbulent interactions tends to disappear in time, while that 
which is protected in the isolated vortices persists. This yields the high kurtosis of 
vorticity : the isolated vortices are latent in the initial conditions and turbulence 
carves them out. While the turbulent component is significantly diminished with 
time - after all, 94 yo of the original enstrophy has been lost by t = 40 (figure 1 b) - it  
does not disappear entirely. This is illustrated in figure 9, which is simply a replotting 
of figure 4(c) with logarithmic contours to expose the weak vorticity structures 
between the isolated vortices. There the elongated contours have the character of the 
turbulent cascade (cf. figure 6). 

Thus the growth in vorticity kurtosis is as much due to the cascade of the turh len t  
component to dissipation scales as i t  is to the persistence of the vortex component. 
Furthermore, the reduction in the kurtosis growth rate (around t = 22 in figure 5) 
coincides with the weakening of the cascade, as measurcd by the decreases in the 
amplitudes of dV/dt and dE/dt in figure 1 ( b ,  c). 

2 2  
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FIGURE 8. z and y cross-sections of 5 (solid and dashed lines respectively) through a vorticity 
minimum at t = 40. The abscissa is distance from the centre, where the centre is chosen to give 
best bulk agreement between the two profiles. 
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FIQURE 9. Log,,(gl at t = 16.5 with contours every 0.25 between -0.5 and 1.5. 
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5. Elements of dynamical interpretation 
There is considerable challenge in interpreting the phenomena described above. In  

this section various elements of a dynamical interpretation will be discussed, although 
in each case the discussion will stop short of completeness. Further studies on each 
of these elements would be valuable. 

An important characteristic of isolated vortices is their obvious stability. Their long 
lifetimes, of course, require that even energetic perturbations not too often induce 
their break-up. Many studies have been made of the stability of particular vortex 
profiles and types of perturbations (e.g. Arnold 1980; Saffman 1980), but the full range 
of possibilities remains unexplored. Since a variety of profiles seem to occur in figure 
4, it  seems likely that many profiles are stable. A hypothesis, which I offer partly 
on the basis of a particular solution (Moore & Saffman 1971) and scaling arguments 
of F. Bretherton (personal communication), is that nearly axisymmetric vortices are 
robustly stable to perturbations whose strain rates and vorticity are small compared 
with the vorticity of the vortex. This condition is met for the flow in $3 because of 
the ' hard-core ' character of the vorticity distribution : the scale of an individual 
vorticity concentration is small compared with either the typical separation between 
concentrations or the dominant scale of the stream function pattern. 

Another dynamical process that seems to occur fairly generally is the relaxation 
towards axisymmetry of vorticity concentrations that are not initially too distorted 
from it. The only slowly evolving solutions of (2) are ones where isolines of ?,b and 
g are parallel. In  an initial configuration where this is not true one can make the 
hypothesis that a localized turbulent cascade will occur, carrying the non-parallel 
components of the vorticity to dissipation scales on a time on the order of 7E. This 
has led to an examination of vortex solutions that have minimum enstrophy for a 
given energy and angular momentum or circulation (Leith 1984), where the variational 
principle is chosen to represent the consequences of such a local cascade. To complete 
the argument for relaxation to axisymmetry, one might posit that there are few, if 
any, distributions for a localized single-signedvorticity patch, other than axisymmetric 
ones, for which the isolines are parallel and which might be the end-state of a local 
cascade. t 

Another class of dynamical questions is associated with the nature of pairwise vortex 
interactions : how many different types of interactions occur, under what conditions, 
and with what degree of simplicity and predictability Z One important type, discussed 
above and illustrated in figure 7, is the merger of like-sign vortices. A number of 
studies have been made of idealized mergers (e.g. Christiansen 1973 ; Christiansen & 
Zabusky 1973; Overman & Zabusky 1982), but I believe we still lack a general 
understanding of the process, particularly with respect to how well C is conserved 
under various circumstances (N.B. (7)). Another important type is dipole pairing. For 
this we have the modon model, and some studies have been made of the dipole 
formation interaction (McWilliams 1983a) and the interaction of two dipoles (Aref 
1980; Makino, Kamimura & Taniuiti 1981; McWilliams & Zabusky 1982; Larichev 
& Reznik 1982). 

t A particular exception is an elliptical piecewise-constant vorticity solution which, in the 
absence of friction, simply rotates without change of shape (Lamb 1932); and generalizations of 
the ellipse have been found (Deem & Zabusky 1978). For such solutions the parallel-isoline 
requirement is non-trivial only a t  the boundary between the piecewise-constant regions. These 
solutions are probably not important exceptions to the axisymmetric selection rule, both because 
they are implausible end-states of a cascade and because they are inconsistent with any diffusion, 
in the presence of which they would probably relax to axisymmetry. 
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10' 

FIGURE 10. The locations of a particular vorticity maximum (the strongest one in the upper-right 
quadrant of figure 4 ( c )  at time intervals of 0.25. Some times are labelled. 

After the clear emergence of the isolated vortices from the disorderly initial 
vorticity distribution, which has nearly occurred by t = 2.5 in figure 4 ( b ) ,  a simplified 
characterization of the solution is that of a $finite number of point vortices, with 
constant circulations and no internal degrees of freedom. Each of them is passively 
advected under the influence of the others. The flow is approximated as irrotational 
except a t  the points. Whenever some of the isolated vortices approach sufficiently 
closely, then a point-vortex approximation will be invalid since strong deformations 
of the vortex structures ocour (i.e. internal degrees of freedom are excited), and their 
(generally pairwise) interaction must be calculated in detail. When sufficient separation 
between vortices is subsequently restored, the flow evolution again returns to that 
of point vortices, although possibly with a different number of vortices and with 
digerent amplitudes for those that survive the close interaction. Such an idealization 
of the dynamics retains the properties of chaos, and thus is turbulence of a sort. This 
is both because the trajectories of point vortices are in general unstable to small 
perturbations (Aref 1983), hence even this type of flow is chaotic, and because 
pairwise-isolated vortex interactions are likely to be quite sensitive to antecedent 
conditions as well. On the other hand it is intuitively plausible that the number of 
independent degrees of freedom involved in such a characterization, assuming one 
could usefully define them during vortex interactions, is substantially smaller than 
the total number of Fourier components, which is the basis for both the present 
numerical model and most closure theories of turbulence. Presumably this effectively 
diminished number ofdegrees offreedom has important implications for understanding 
the nature of the chaos and the limits of predictability of two-dimensional flows. 
Figure 10 gives an indication of the irregularity (chaos) in the trajectory of a 
particular isolated vortex which lasts throughout the integration with little change 
in structure (since i t  is the strongest extremum in the solution). Occasions of sharp 
change in direction are associated with close interactions with other vortices, 
generally of the same sign. Less-sharp changes in direction are associated with passive 
advection by more distant vortices. The period of particularly rapid translation 
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FIGURE 11. Q a t  t = 16.5. Q < 0 has dashed contours at an interval of 100, and Q > 0 has solid 
contours a t  an interval of 20, with shading within the region Q > 20. 

between t = 18 and 25 is associated with a dipole pairing with an opposite-sign vortex ; 
its curvature is a consequence of the partners being of unequal strength. 

The language of $4 suggested the aptness of a decomposition of theJlow into two 
components, cascading turbulence and isolated, hard-core vortices, both of which 
manifest chaotic behaviour, but of different types. How might this decomposition be 
made explicitly ? One possibility is based upon the relative magnitudes of strain and 
vorticity (Weiss 1981). We define the two components of strain as 

Spatial differentiation of ( 2 )  and the neglect of dissipation yield 

where 
~a 
--=-+J(+, ) 
Dt - at 

is the time derivative following a fluid parcel. If an approximation is made that both 
strain and vorticity are slowly varying compared with the vorticity gradient in the 
Lagrangian frame, then (10) has solutions of the form 

v ~ . c e x p [ + @ t I ,  (12) 

where Q 8 ~ + & ~ - ~ .  (13) 
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FIGURE 12. Kurtosis of the two components of strain (9). S, is solid and S, is dotted. 

Thus the magnitude of the vorticity gradient will tend to grow in time a t  an 
exponential rate whenever Q is positive, and. when Q is negative the time evolution 
is oscillatory. If we accept as an operational definition of cascading turbulence the 
systematic growth in vorticity gradients (N.B. the elongated contours of vorticity 
in figure 6), then a region with Q > 0 is turbulent, and one with Q < 0 is neutral, 
consistent with the persistence of vorticity patterns in isolated vortices. It can easily 
be shown that Q must vanish in the area integral, and furthermore that its positive 
and negative terms have identical vector wavenumber distributions (i.e. ,!?; + 8: = p, 
where the hat denotes Fourier transform). In  spite of these identities, however, the 
domain is not equally partitioned into turbulent and neutral regions. This is because 
vorticity is more intermittently distributed than strain. This is illustrated in figure 
11,  where non-uniform contouring has been used to accommodate this difference. One 
can see that the broader Q > 0 regions tend to surround the Q < 0 regions (i.e. the 
isolated vortices; cf. figure 4c),  and the strongest maxima in Q are located near 
strongly interacting vortices. By the preceding arguments this would imply that the 
most active turbulence is in the vicinity of the isolated vortices, but i t  is excluded 
from their cores. Note also that there are large regions not enclosed by either the 
positive or negative contours, which would suggest that much of the region is not 
particularly active, neither as turbulence nor persisting vortices. This is because the 
distribution of strain is also significantly non-Gaussian (figure 12), although much 
less so than vorticity (figure 5 ) .  

An alternative expression for the instantaneous tendency towards a turbulent 
cascade, defined as the growth of vorticity gradient, can be derived from (10); viz 
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FIGURE 13. LoglPl a t  t = 16.5. Contours are between 4 and 8, with an interval of 1. 
Positive P has solid contours and negative P has dashed ones. 

n 

This relation will be examined without any assumptions about slowly varying 
structure. Its spatial distribution (figure 13) is complicated. Its largest magnitudes, 
with both signs, again occur in the vicinity of the isolated vortices. Several features 
can be noted by comparing figures 4(c), 11 and 13. 

(i) A vortex that has undergone strong deformation and is relaxing back towards 
axisymmetry (e.g. the negative vortex astride the top and bottom boundaries) has 
predominantly P < 0, which reflects the contracting of vorticity contours. The 
structure in Q (a negative region) is not particularly informative in the sense of 
distinguishing this particular vortex from other, more structurally inert, vortices. 

(ii) The trailing streamers of vorticity in figure 4 ( c ) ,  which represent vorticity being 
sheared out by a stronger neighbouring vortex, are sites of active cascade, as 
indicated by both P and Q positive. Examples of this are the sites just above the 
two positive vortices in the upper-right quadrant (the upper one is just finishing the 
merger shown in figure 7)  and the weak positive vortex just to the left of the strong 
positive vortex in the upper-left quadrant. 

(iii) The indications of cascade are particularly strong near the two vortices in the 
lower-right corner, which are just beginning a merger interaction. Later they will 
again separate as isolated vortices, but each will have lost a substantial fraction of 
its circulation to the cascade. 

(iv) Most of the presently non-interacting vortices, and even some that are 
interacting, have a quadrupole pattern in P. This indicates an alternation of 
stretching and contracting of vorticity contours as fluid recirculates within the 
vortex. Clearly this is consistent with the ‘neutral’ implication of Q < 0 and is a 
detailed structural tendency which appears to be lost in the slowly varying approx- 
imation. The quadrupole reflects the increase, existence, decrease, or rotation of 
ellipticity in an isolated vortex, depending upon the relative strength and orientation 
of the P-quadrupole and 5-ellipse. 
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(v) There are examples of elongated, weak-amplitude vorticity structure, where P 
is strongly negative and Q is small : in the upper-right corner of the domain and above 
the contracting negative vortex in the lower left. This indicates a tendency towards 
formation of an axisymmetric isolated vortex. Such vortices subsequently emerge in 
these locations, albeit with weak amplitude and only a small fraction of the 
circulation evident in figure 4(c). Their persistence time is short because of their 
weakness. 

(vi) I n  both P and Q there are substantial portions of the domain where the 
magnitudes are small. Together with the sparseness of the vorticity distribution, a 
considerable amount of spatial and temporal intermittency is indicated. 

6. The generality of coherent vortices in turbulent flow 
No final assessment can yet be given about how generally coherent vortices might 

arise in turbulent flow. However, a number of solutions have been calculated for ( l ) ,  
and some of the parametric influences upon the vortex component of the flow can 
be described. 

6.1. Friction and resolution 
Obviously, coherent vortices can neither emerge nor persist unless friction is weak; 
nor can turbulence. The emergence of coherent vortices does not depend qualitatively 
upon whether a Newtonian viscosity or hyperviscosity is used to provide the 
dissipation. This fact is illustrated by an alternative solution, where the hyperviscosity 
in (2) replaced by a Newtonian viscosity. A comparison of table 1 with figure 1 and 
5 shows that the two solutions evolve similarly, with the decay rates for E ,  V and 
6 slightly faster and the growth rate for Ku(C) slightly slower in the alternative 
solution. The vorticity distribution in the alternative solution is shown in figure 14 
for the same time as in figure 4(c).  The vorticity is similarly concentrated in isolated 
vortex cores in both cases. The vortices in the Newtonian-viscosity solution are 
somewhat fewer in number and slightly larger on average ; these effects are consistent 
with the smaller effective Reynolds number for this calculation (N.B. table 2 below). 
However, the qualitative character of the Newtonian-viscosity solution is the same 
as for the hyperviscosity solution in all aspects discussed in §§3-5. 

The degree to which vorticity concentrations occur is a strong function of effective 
Reynolds number and numerical resolution ; in current practice the former is usually 
chosen as large as possible, given the latter, while still small enough to avoid 
enstrophy equipartioning (Bennett & Haidvogel 1983). This dependence is indicated 
in table 2 ,  which is based upon a sequence of solutions where the resolution is doubled 
and the hyperviscosity is multiplied by a factor of 16 (N.B. it has units of length to 
the fourth power). The final member of the sequence is the one analysed above. One 
can see that the vorticity kurtosis is only slightly non-Gaussian at the coarsest 
resolution, is nearly proportional to NG for intermediate values, and seems to  be 
levelling off at the highest resolution. 

6.2. Initial conditions 
The emergence of coherent vortices does not depend upon which realization of an 
initial spectrum shape (4) is taken, although the sets of vortices that emerge are 
different in different realizations. There is, however, a dependence upon the scale of 
the initial conditions in that i t  must be small compared with the domain size (or, as 
shown below, other scales that limit the inverse cascade of energy) in order for the 
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t E V E Ku(5) 

0 0.50 138.3 8.0 3 
10 0.46 13.2 2.7 15 
20 0.45 7.8 2.1 23 

TABLE 1. A decay solution with v2 = lop4 

..-- 

@a@ 
FIGURE 14. Vorticity at t = 16.5 for the decaying two-dimensional flow with v2 = v4 = 0, and 

other parameters as in $3. The contouring conventions are the same as in figure 4(b-d) .  

NG Ku(5) at t = 10 

32 
64 

1211 
256 

TABLE 2 

3.7 
7.8 

15.0 
17.7 

vortices to emerge strongly. This is illustrated in table 3, which is based upon a 
sequence of calculations in which k, is varied in (4) (the second member of the 
sequence is the solution analysed above). When k ,  is not much larger than the unit 
domain scale, then the kurtosis is very much more slowly growing than when i t  is 
much larger. Presumably the growth of vorticity kurtosis and the emergence of 
coherent vortices can only occur if there is an active cascade outside the incipient 
vortices, and the cascade is relatively weak when k, is small to  the degree that the 
finite size of the domain constrains significantly the nonlinear interactions in the flow. 

For k ,  >> 1 the dependence upon initial scale is weakly monotonic in both the 
typical vortex scale and kurtosis a t  long times. This is illustrated by a solution whose 
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k, t =  10 t = 20 
2 5 9 
6 18 30 

18 22 30 
54 20 27 

TABLE 3 

initial conditions contain very little energy at large scales, such that, during the 
vortex-emergence phase, the finite size of the domain has little consequence. The 
initial shape and evolution of the spectrum and the post-emergence distribution of 
vorticity are shown in figure 15. The coherent vortices that emerge are significantly 
smaller than those of the standard solution (figure 4c), and the inverse cascade of 
energy to the largest available scales has been retarded (cf. figure 2). The initial growth 
of vorticity kurtosis is equally rapid in the two cases. However, the reduction in 
kurtosis growth rate associated with the arrest of the turbulent cascade occurs a t  an 
earlier time for small-scale initial conditions (at t x 7 compared with t x 22 in figure 
5). As a consequence the kurtosis at longer times is less for small-scale initial 
conditions: this property is seen (weakly) in table 2 for the k,  = 54 solution and (more 
strongly) for the solution in figure 15, where Ku(5) = 23 at t = 20. 

6.3. Decaying versus equilibrium solutions 

In  general, larger vorticity kurtosis values seem to occur in decaying or adjusting 
(i.e. with rapidly changing E(k) )  flows than in equilibrium flows, presumably because 
the turbulent component is constantly being replenished in the latter. Since only 
spatially homogeneous solutions to (1)  have been calculated so far, this distinction 
has only been demonstrated for the temporal behaviour, but it is probably correct 
for the spatial behaviour as well. If, for example, forcing were confined to a small 
fraction of the domain, then isolated vortices might preferentially develop elsewhere. 

In  homogeneous equilibrium solutions one can find various degrees of coherent- 
vortex behaviour. I n  the solution of figure 6 there is no evidence of coherent vortices, 
and the vorticity kurtosis is approximately 3. The following parameter tendencies 
have been found to increase the vorticity kurtosis of the solution : slower rates for the 
non-conservative terms (i.e. smaller f and v,), more separation between the forcing 
and energy-containing scales, and longer correlation times in the forcing. The latter 
feature is incorporated by determining f from 

where rf is a correlation time for the forcing, and F is temporally white noise and 
spatially isotropic and band-limited in k .  A particular solution, which contains all 
of these tendencies relative to the figure 6 solution, has equilibrium vorticity kurtosis 
values that vary in time between 6.5 and 10.5 and thus has a significant coherent 
vortex component. I ts  parameters are y = /3 = v 2  = 0, vo = 0.05, v p  = 5 x and 
rf = 4 (where 7E = 1 by either of the earlier definitions), and the forcing band limits 
are k = 18.5 and 21.5. 
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FIGURE 15. (a) Spectra and ( b )  vorticity for small-scale initial conditions (other parameters are as 
in $3) .  Plotting conventions are as in figures 2 and 4(M) respectively. 

6.4. y and 
When either of y and /3 parameters is non-zero, a scale is introduced beyond which 
the transfer of energy by the cascade is arrested. The approximate wavenumber of 
this arrest is either y or k,, where 

k, = (2E)-4$. (16) 
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FIGURE 16. Vorticity kurtosis for two solutions of (1)  with y = vo = v2 =f = 0, 
/3 = 5 and v4 = 3.125 x 

In  addition /3 introduces both a source of anisotropy and a wave-propagation 
mechanism, and in these aspects is representative of the influence of more general 
mean potential vorticity gradients in geostrophic turbulence (see Rhines 1979). 

For finite y the emergence of coherent vortices is about as rapid as for two- 
dimensional flows when k, + y ,  a t  least for times preceding the transfer arrest, but 
the rate of emergence is considerably slower when this is not true (recall the similar 
property relative to the domain scale ($6.2)). An example of this distinction comes 
from two calculations with p = v, = v2 =f = 0,  y = 10 and u4 = 3.125 x for 
k, = 6 the vorticity kurtosis is 4.5 a t  t = 10, whereas for k, = 54 i t  is 11.0. 

The competition with coherent-vortex emergence is even more strenuous with /3. 
Whenever k, is not too large compared with kj, decaying flow evolves towards a state 
of predominantly parallel flow (i.e. u >> v) when kp is order-one or larger (Rhines 1975), 
and no axisymmetric coherent vortices form. On the other hand i t  is known that an 
isolated vortex, if sufficiently hard-core, can persist as a coherent entity with finite 
/3 (MeWilliams & Flier1 1979). This phenomena has been demonstrated in the present 
context by taking the flow field from the solution of $ 3  a t  t = 30 (when the vortices 
are well developed) and using i t  as an initial condition in a calculation with /3 = 5 
(i.e. k, = 4 5 ) :  in this case the vorticity kurtosis, after an initial drop (due to 
advection of particles in the initially irrotational region between the vortices), 
remains large and the vortices persist. I n  contrast, if the initial condition is a random 
field of the same type as for the $ 3  solution (i.e. with k, = 6),  the kurtosis approaches 
the Gaussian value at intermediate times (figure 16). At early times when the flow 
is adjusting and the cascade is active, there is a spurt in the kurtosis as vortices begin 
to emerge; however, they are not sufficiently well developed by the time of the 
transfer arrest and subsequently collapse. If the initial scales are sufficiently small, 
though, then the vortices will be strong enough at the time of the arrest to endure 
(see the k, = 54 curve in figure 16). Thus coherent vortices can emerge from random 
initial conditions when k, >> k,. 

The inhibiting effect of /3 on vortex emergence also has been discussed recently by 
Holloway (1983). 
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7. Discussion 
A variety of examples have been presented of the emergence and persistence of 

isolated concentrations of vorticity in turbulence flows. These constitute a prima facie 
case for the considerable commonness of the occurrence, though not ubiquity, of this 
phenomenon. This phenomenon also requires a substantial extension of extant 
characterizations of two-dimensional and geostrophic turbulence. I n  particular, 
higher-moment closure theories (e.g. Kraichnan 1971) have been developed without 
reference to such vorticity concentrations (nor to the extremely non-Gaussian 
distributions associated with them), and the question now arises whether they will 
be accurate in predicting the second-moment quantities for which they were 
developed, such as the spectrum, in circumstances where the vorticity is strongly 
concentrated. Herring & McWilliams (1984) have shown that, for some of the 
solutions presented in this paper, comparable closure solutions do indeed have some 
significant differences in second-moment quantities. Much of our present interpretation 
of atmospheric predictability limits is based upon such closure-theory solutions (Leith 
1971 ; Leith & Kraichnan 1972), and the possibility of long-lived vortices may alter 
the interpretation. 

There are perhaps several reasons why so little has been made of coherent vortices 
in the many previous numerical calculations of two-dimensional turbulence. Not the 
least of these reasons, I suspect, is simply the lack of an a priori concern with this 
issue by the investigators, whereas I began the present study specifically with the 
question of the survival of vortices in turbulence in mind. Other factors are the lower 
resolutions (lower Reynolds numbers) and shorter integration times of previous 
studies, both of which diminish the coherent-vortex component of the solution (36). 
I n  retrospect, however, i t  is easy to see manifestations of the vortices in some of the 
earlier solutions, some of which were noted by the investigators but not given the 
present emphasis (Fornberg 1977; Basdevant et al. 1981). 

There are several other circumstances, beside the ones discussed above, where 
isolated vortices in turbulent flow have been reported. Among these are the spatial 
concentration of vorticity in a numerical calculation of a two-dimensional shear layer 
(Aref & Siggia 1980), isolated vortices in irregularly forced flow in rotating laboratory 
tanks (McEwan 1976; Hopfinger, Browand & Gagne 1982), and long-lived axisym- 
metric ocean eddies on scales somewhat smaller than the most energetic currents 
(McWilliams et al. 1983). The laboratory vortices exhibit a strong asymmetry in 
vortex parity, where those with vorticity of the same sign as the background rotation 
are much stronger than those with opposite sign. Since both the forcing and the 
two-dimensional equations are symmetric with respect to vortex parity, the observed 
asymmetry must be due to three-dimensional ageostrophic components of the flow. 
The ocean eddies have three-dimensionally concentrated vorticity, and an interpre- 
tation of them as analogous to the present solutions requires a generalization of the 
two-dimensional vortex phenomenon to fully three-dimensional geostrophic turbu- 
lence; this analogy has been argued on general (not vortex-specific) grounds by 
Charney (1971). At present I do not feel it warranted to claim any close identification 
between the present solutions and these other phenomena, although the possibility 
obviously exists. 

If there are geophysical counterparts of the isolated vortices shown here, they 
should occur on scales not large compared with kj '  and y-l. I n  the midlatitude 
atmosphere and ocean, this implies upper bounds on horizontal scale of orders 1000 km 
and 100 km respectively. Furthermore, if they are to arise from irregular forcing (e.g. 
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flow over topography, thermal convection), the forcing scale should be small 
compared with these bounds, in order that  the vorticity concentration mechanism 
have sufficient time to  operate before an arrest of the turbulent cascade occurs. 

During the course of this investigation I have benefited from conversations with 
F .  Bretherton, D. Haidvogel (whose model I used), J. Herring, G. Holloway, R.  
Kraichnan, C. Leith and N. Zabusky. Programming support was provided by J .  Chow 
and N. Norton. The work was sponsored by the National Science Foundation through 
its support of the National Center for Atmospheric Research. A preliminary report 
of this work was presented at a conference on the Predictability of Fluid Flow 
sponsored by the La Jolla Institute, La Jolla, California (McWilliams 1983b). 
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