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Numerical simulations are used to determine the influence of the nonlocal and local interactions on
the intermittency corrections in the scaling properties of three-dimensional turbulence. We show
that neglect of local interactions leads to an enhanced small-scale energy spectrum and to a
significantly larger number of very intense vortices~‘‘tornadoes’’! and stronger intermittency~e.g.,
wider tails in the probability distribution functions of velocity increments and greater anomalous
corrections!. On the other hand, neglect of the nonlocal interactions results in even stronger
small-scale spectrum but significantly weaker intermittency. Thus, the amount of intermittency is
not determined just by the mean intensity of the small scales, but it is nontrivially shaped by the
nature of the scale interactions. Namely, the role of the nonlocal interactions is to generate intense
vortices responsible for intermittency and the role of the local interactions is to dissipate them.
Based on these observations, a new model of turbulence is proposed, in which nonlocal~rapid
distortion theory-like! interactions couple large and small scale via a multiplicative process with
additive noise and a turbulent viscosity models the local interactions. This model is used to derive
a simple version of the Langevin equations for small-scale velocity increments. A Gaussian
approximation for the large scale fields yields the Fokker–Planck equation for the probability
distribution function of the velocity increments. Steady state solutions of this equation allows one
to qualitatively explain the anomalous corrections and the skewness generation along scale. A
crucial role is played by the correlation between the additive and the multiplicative~large-scale!
process, featuring the correlation between the stretching and the vorticity. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1373686#

I. INTRODUCTION

A puzzling feature of three-dimensional turbulence is the
large deviations from Gaussianity observed as one probes
smaller and smaller scales. These deviations are usually be-
lieved to be associated with the spatial intermittency of
small-scale structures, organized into very thin and elongated
intense vortices~‘‘tornadoes’’!.1–3 They are responsible for
anomalous corrections to the normal scaling behavior of
structure functions associated with the Kolmogorov 19414

~K41! picture of turbulence. In this picture, energy-
containing structures~the so-called ‘‘eddies’’! at a given
scale interact with other eddies of smaller but comparable
size to transfer energy at a constant rate down to the dissi-
pative scale. A simple prediction of this local picture of tur-
bulence is the famousk25/3 energy spectrum, which has been
observed in numerous high Reynolds number experimental
data and numerical simulations. The local theory of turbu-
lence further leads to the prediction that thenth moment of a
velocity incrementdul 5u(x1l )2u(x) over a distancel
should scale likel n/3. This behavior has never been ob-
served in turbulent flows, and it is now widely admitted that
anomalous corrections exist at any finite Reynolds number.

Various scenarios have so far been proposed to explain and
compute the anomalous corrections. To mention but a few:
spatial intermittency of the energy dissipation,5 multifractal
scaling,6 large deviations of multiplicative cascades,7 extre-
mum principle,8 zero modes of differential operators,9 scale
covariance. These approaches all try to model the breakdown
of the exact local scale invariance underlying the Kolmog-
orov 1941 picture. In a recent study of finite size effects,
Dubrulle10 showed that some properties of the structure func-
tions ~nonpower law behavior, nonlinear exponents, etc.!
could be explained within a framework in which finite size
cutoff plays a central role, and are felt throughout the so-
called ‘‘inertial range.’’ Such finding is in clear contradiction
with the ‘‘local’’ K41 theory, in which eddies in the inertial
range are insensitive to the UV and IR end of the energy
spectrum, and only interact with their neighbors~in the scale
space! via ‘‘local’’ interactions ~involving triads of compa-
rable size!. This observation motivated us to consider a new
scenario for turbulence, in which anomalous corrections and
deviations from Gaussianity are the results ofnonlocal inter-
actions between energy-containing structures. By nonlocal
interactions, we mean interactions between well-separated
scales~or highly elongated wave number triads!. A numeri-
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cal analysis on the role of the different triadic interactions in
the energy cascade have previously been done by Brasseur
et al.11 and Domaradzkiet al.12 We have recently demon-
strated via high-resolution numerical simulations that in two-
dimensional~2-D! turbulence, the small-scale dynamics is
essentially governed by their nonlocal interactions with the
large scales.13,14 This feature seems natural in view of the
large-scale condensation of vortices.15 As a result, the weak
small scales are more influenced by the strong large-scale
advection and shearing than by mutual interactions between
themselves. This makes nonlocal interactions the dominant
process at small scales.

2-D turbulence is very special, because there is no vortex
stretching. As a result, there is no increase of vorticity to-
ward smaller scales as is observed in 3-D turbulence. A
quantitative feature underlying this difference is the shape of
the energy spectra at small scales: it isk23 in 2-D turbu-
lence, much steeper thank25/3 3-D energy spectra. In fact, a
simple estimate shows that the borderline between local and
nonlocal behaviors is precisely thisk23 spectrum: only for
energy spectra steeper thank23 can one prove rigorously
than the dominant interactions are nonlocal. It is therefore
not our intention to claim that 3-D turbulence is nonlocal,
and in fact we do believe that local interactions are respon-
sible for thek25/3 energy spectra. However, it is not unrea-
sonable to think that evolution of the higher cumulants~re-
sponsible for deviations from Gaussianity at large
deviations! is more nonlocal than it is for the energy spec-
trum. Indeed, calculation of higher cumulants in Fourier
space involves integration over larger sets of wave numbers
which ~even if close in values pairwise! cover a larger range
of scales than in the case of lower order cumulants.

A natural tool to study the role of the nonlocal interac-
tions is the numerical simulation, because it allows a direct
check of their influence by artificial switching-off of the
elongated wave number triads in the Navier–Stokes equa-
tions or, on the contrary, retaining only such triads. A limi-
tation of this approach lies in the restricted range of Rey-
nolds number we are able to simulate. However, a recent
comparison16 showed that anomalous corrections and inter-
mittency effects are quite insensitive to the Reynolds num-
ber. This shows the relevance of a low Reynolds number
numerical study of intermittency. This approach is detailed
in Sec. II, where we examine the dynamical role of the local
interactions at the small scales using a simulation in which
these interactions have been removed. We show that, as
compared with a full simulation of the Navier–Stokes equa-
tions, such ‘‘nonlocal’’ simulation exhibits a flatter spectrum
at small scales and stronger intermittency. As a qualitative
indicator of intermittency we use plots of the vortex struc-
tures whose intensity greatly exceeds the rms vorticity value
~‘‘tornadoes’’! and probability distribution function~PDF!
plots, whereas to quantify intermittency we measure the
structure function scaling exponents. We show that the main
effect of the local interactions can be approximately de-
scribed by a turbulent viscosity, while the nonlocal interac-
tions are responsible for the development of the localized
intense vortices and the deviations of Gaussianity. To vali-
date that the enhanced intermittency is not merely a result of

the increased mean small-scale intensity~which could also
be caused by some reason other than the nonlocality! we
perform another numerical experiment in with the elongated
triads were removed. Such ‘‘local’’ experiment resulted in
even stronger small-scale intensity but the intermittency be-
came clearly weaker. In Sec. III, we show how our findings
can be used to provide both a qualitative estimate of the
intermittency exponents, and a derivation of the Langevin
equations for the velocity increments.

II. NONLOCAL INTERACTIONS IN 3-D TURBULENCE

A. The problematics

We consider the Navier–Stokes equations:

] tu1u"“u52“p1nDu1f, ~1!

whereu is the velocity,p is the pressure,n is the molecular
viscosity, andf is the forcing. In a typical situation, the forc-
ing is provided by some boundary conditions~experiments!
or externally fixed, e.g., by keeping a fixed low-wave-
number Fourier mode at a constant amplitude~numerical
simulation!. This situation typically gives rise to quasi-
Gaussian large-scale velocity fields, while smaller-scale ve-
locities display increasingly non-Gaussian statistics. The
presence of the forcing guarantees the existence of a station-
ary steady state in which the total energy is constant. In the
absence of forcing, the turbulence energy decays steadily,
due to losses through viscous effects. However, starting from
a quasi-Gaussian large-scale field, one can still observe the
development of increasingly non-Gaussian small scales in
the early stage of the decay. We will study the effect of the
nonlocal interactions on the statistics of such non-Gaussian
small scales. For this, we introduce a filter functionG(x) in
order to separate the large and small scales of the flow. In
our numerical procedure, the filterG will be taken as a cut-
off. We have checked that the results are insensitive to the
choice of the filter, provided the latter decays fast enough at
infinity. Using the filter, we decompose the velocity field into
large scale and small scale components:

u~x,t !5U~x,t !1u8~x,t !,
~2!

U~x,t ![ū5E G~x2x8!u~x8,t !dx8.

Equations for the large scales of motion are obtained by
application of the spatial filter~2! to the individual terms of
the basic equations~1!. They are

] jU j50,
~3!

] tUi1] jUiU j1] jUiuj1U jui1] juiuj

52] i P1nDUi1Fi .

In these equations, we have dropped primes on subfilter
components for simplicity; this means that from now on, any
large-scale quantities are denoted by a capital letter, while
the small-scale quantities are denoted by a lower case letter.
The equation for the small-scale component is obtained by
subtracting the large-scale equation from the basic equations
~1!; this gives
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] juj50,
~4!

] tui1] j~~Ui1ui !~U j1uj !2~Ui1ui !~U j1uj !!

52] i p1nDui1 f i .

Several terms contribute to the interaction of scales:non-
local terms, involving the product of a large scale and a
small scale component, and alocal term, involving two
small-scale components. One way to study the dynamical
effect of these contributions at small scales is to integrate
numerically a set of two coupled equations, in which the
local small scale interactions have been switched off at the
small scales.~We do not switch off the local interactions at
the large scales: this would hinder the cascade mechanism
and prevent small scale generation from an initial large scale
field.! This corresponds to the following set of equations:

] tUi1] jUiU j52] jUiuj2] jU jui2] juiuj2] i P

1nDUi1 f i , ~5!

] tui1] j~Uiuj !1] j~uiU j !52] i p1nDui1s i ,
~6!

] jU j5] juj50,

where

s i5] j~UiU j2UiU j1ujUi1U jui !. ~7!

The latter describes a forcing of the small scales by the large
scales via the energy cascade mechanism. This term is al-
ways finite even when the external forcingf ~which is always
at large scales! is absent. The small scale equation is linear
and it resembles the equations of the rapid distortion
theory.17 We shall therefore refer to this new model as the
RDT model. The corresponding solution was then compared
with a reference simulation performed at the same resolution,
with the same initial condition. Note that this comparison is
rather expensive numerically: Splitting the equations of mo-
tion between resolved and subfilter component leads to ad-
ditional Fourier transforms, and increases the computational
time by a factor of 3. This sets a practical limitation to the
tests we could perform on our workstation. Also, an addi-
tional limitation came from the need of scale separation be-
tween the ‘‘large’’ and the ‘‘small’’ scales. This scale sepa-
ration is mandatory in order to define ‘‘nonlocal’’
interactions. Their influence on anomalous scaling can be
checked only if the typical small scale lies within the inertial
range. For this reason, we were led to consider a situation of
decaying~unforced! 3-D turbulence, with a flat energy spec-
trum at large scale, and an ‘‘inertial range’’ mostly concen-
trated at small to medium scales~10,k,40 for a 2563 simu-
lation!. Indeed, at the resolution we could achieve, forced
turbulence developed an inertial range of scale aroundk
58, too small for the scale separation to be effective@see
Ref. 18 for a study and discussion of this case and its rel-
evance to large eddy simulations~LES!#. Decaying turbu-
lence does not, by definition, achieve a statistically stationary
state, with mathematically well-defined stationary probabil-
ity distribution functions~PDFs!. Therefore, all the PDFs
were computed at a fixed time which we have chosen to be at
the end of each simulation~at t50.48!.

B. The numerical procedure

1. The numerical code

Both the Navier–Stokes equation~1! and the set of RDT
equations~6! were integrated with a pseudospectral code~see
Ref. 2 for more details on the code!. In the RDT case, a sharp
cutoff in Fourier space was used to split the velocity field
into large- and small-scale components in Fourier space and
all nonlinear terms were computed separately in the physical
space. The aliasing was removed by keeping only the 2/3
largest modes corresponding to the 85 first modes in our
case. The calculations presented here were done with 2563

Fourier modes and a viscosity of 1.531023 corresponding to
a Reynolds number 57,Rl,80 ~whereRl is the Reynolds
number based on the Taylor microscalel!.

2. The simulations

The test was performed in a situation of decaying turbu-
lence where the forcing termf i is set to zero. We performed
several different simulations: a direct numerical simulation
~DNS!, a RDT simulation@Eq. ~6!#, and a ‘‘local’’ experi-
ment ~see the end of this section!. In all cases, the initial
condition was chosen as the output of a preliminary simula-
tion of an initially Gaussian velocity field over several turn-
over times. In order to allow enough energy at the large
scales, the sharp cutoff filter was taken at the wave number
k524 corresponding to approximately five Kolmogorov
scales. Because of the very low speed of the RDT simulation
~three times more expensive than the DNS! the two simula-
tions were performed betweent50 andt50.48 correspond-
ing to approximately 2.5 turnover times.

C. Comparison of the RDT and DNS experiments

1. Spectra

The comparison of spectra is shown in Fig. 1. In the
DNS case, one observes a classical evolution, in which the
large scale energy decays while the inertialk25/3 range tends
to move toward smaller scales. It can be seen that the inertial
range~characterized by the25/3 slope! only marginally ex-
ists. In the RDT case, one observes a similar evolution at
large scale, while a tendency toward a flatter spectrum is

FIG. 1. Comparison of energy spectra att50.48 obtained via the DNS and
the RDT simulation.

1997Phys. Fluids, Vol. 13, No. 7, July 2001 Nonlocality and intermittency in 3-D turbulence



observed near and beyond the separating scale~beyond
which local interactions are ignored!. We checked that this
behavior is not sensitive to the resolution.

The range of computed scales is insufficient to find a
reliable value of the spectral slope in the RDT case. How-
ever, this slope can be predicted by a simple dimensional
argument. This argument was presented for the 2-D case in
Ref. 19, but it is essentially the same for 3-D. Indeed, in the
RDT case the small-scale equations are linear and, therefore,
the energy spectrumE(k) must be linearly proportional to
the energy dissipation rate,e. In this case, the only extra
dimensional parameter~in comparison with the local/
Kolmogorov case! is the large-scale rate of straina. There is
the only dimensional combination ofe, a and wave number
k that has the dimension ofE(k); this gives

Ek5
Ce

a
k21, ~8!

whereC is a nondimensional constant. In our case, our reso-
lution is too low to be able to check whether the RDT spec-

trum follows ak21 law, but we clearly see the tendency to a
flatter than25/3 slope. The RDT case is reminiscent of the
boundary layer in which ak21 spectra have been observed.20

This is not surprising because the presence of the mean shear
increases the nonlocality of the scale interactions corre-
sponding to RDT. In fact, an exact RDT analysis of the shear
flow does predict formation of thek21 spectrum.21

2. Structures

3-D turbulence is characterized by intense thin vortex
filaments~‘‘tornadoes’’!.1–3,22Their radii are of order of the
dissipative~Kolmogorov! scale, which in this case is deter-
mined by the balance of the large-scale straining and viscous
spreading. In this respect, these vortices are similar to the
classical Burgers vortex solution. Figure 2 shows a compari-
son of the ‘‘tornadoes’’ observed in the DNS and in the
RDT, which are visualized by plotting surfaces of strong
vorticity (uvu.3.5v rms). In both cases, thin filamentary
structures are observed, but they appear to be much more

FIG. 2. Comparison of vortex structures~isoplot of vorticity uvu53.5v rms5vc at t50.48! for ~a! DNS, ~b! RDT, ~c! RDT1constant turbulent viscosity,~d!
RDT1the RNG-type turbulent viscosity. The number of ‘‘tornadoes’’ estimated byN5*vc

` PDF(uvu)dv are, respectively, 8245~a!, 21 669~b!, 10 226~c!,
and 10 779~d!.
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numerous in the RDT case. Obviously, local interactions
tend to dissipate the ‘‘tornadoes,’’ which can be interpreted
as a mutual distortion and entanglement of ‘‘tornadoes,’’
preventing their further stretching by the large scales. On the
macroscopic level, this can be regarded as an additional,
‘‘turbulent,’’ viscosity produced by the local interactions.
This is compatible with the flattening of the energy spectrum
in the RDT case, which we interpreted previously in terms of
the turbulent viscosity effect.

It is interesting that the Burgers vortex is essentially a
linear solution because of the cylindrical shape of this vor-
tex, which prevents the appearance of the quadratic~in vor-
ticity! terms. Such a linearity is a typical feature of all RDT
solutions. On the other hand, there is another candidate
which has often been considered to be responsible for inter-
mittency: this is a vortex reconnection process which is be-
lieved to lead to a finite time singularity formation~at least
for inviscid fluids!. Note that the vortex reconnection is an
essentially nonlinear process in which the local scale inter-
actions are playing an important role and cannot be ignored.
Indeed, there is no finite time blow-up solutions in linear
RDT. Likewise, the vorticity grows only exponentially in the
Burgers vortex and it does not blow up in a finite time. From
this perspective, our numerical results show that the local
~vortex–vortex! interactions mostly lead to destruction of the
intense vortices and prevention of their further Burgers-like

~exponential! growth which has a negative effect on the in-
termittency. This process seems to overpower the positive
effect of the local interactions on the intermittency which is
related to the reconnection blow-ups. At the moment, it is
not possible to say if the same is true for much higher Rey-
nolds number flows.

3. Turbulent viscosity

Comparison of the DNS and RDT results for the time
evolution of the total energy is shown in Fig. 3. One clearly
observes a slower decline of the total energy in the RDT
case, as if there was a lower viscosity. This result is not
surprising: It is well known that the influence of energy mo-
tions onto well separated large scales~see Refs. 23–25 for
systematic expansions! is through an effective eddy viscos-
ity, supplied by thê uu& term. Our result suggests that, to a
first approximation, the difference between the RDT and the
DNS could be removed by including an additional ‘‘turbu-
lent’’ viscosity in the RDT simulation. For the sake of sim-
plicity, we decided to choose an isotropic tensor, chosen as
to conserve the total energy. We tried two simple viscosity
prescriptions: one in whichn t is constant, and one~Fig. 4! in

FIG. 3. Comparison of the time evolution of total energy.

FIG. 4. Spectrum of the turbulent viscosity computed by~9! at t50.48.

FIG. 5. Time evolution of total energy obtained via the DNS and the RDT
simulation with the two different turbulent viscosities.

FIG. 6. Comparison of energy spectra obtained via the DNS and the RDT
simulation with two different forms of the turbulent viscosity.
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which the viscosity prescription follows the shape dictated
by renormalization group theory~RNG! ~see, e.g., Ref. 26!:

n t~k!5S n21AE
k

1`

q22E~q!dqD 1/2

2n. ~9!

The constants were adjusted so as to obtain a correct energy
decay~Fig. 5!. They aren t50.0002 for the constantn t pre-
scription, andA50.02 for the other one. We elaborate more
on the choice of this turbulent viscosity in Sec. III C. Yet
another method we tried was to replace the neglected non-
linear term~interaction of small scales among themselves!
with its mean value. Dividing this mean nonlinear term byk2

for eachk one can compute the turbulent viscosityn t(k).
The result is interesting:n t turns out to be nearly indepen-
dent of k; this provides an extra justification for the simple
model in whichn t5const.

The energy spectra and energy decay obtained with this
new RDT simulation are shown in Figs. 6 and 5. One sees
that one now captures exactly the energy decay of the DNS.

The energy spectra become closer to the DNS result at low
and intermediatek, whereas at the highk they depart from
DNS indicating an overdissipation of the smallest scales. The
latter is an artifact of our crude choice for the turbulent vis-
cosity ignoring its anisotropy and possibility for it to take
negative values. The turbulent viscosity also influences the
anomalous corrections, as we will now show it.

4. PDFs and exponents

We conducted a statistical study of our velocity fields
corresponding to the end of the simulations (t50.48). As
usual for the study of the anomalous properties of turbu-
lence, we consider the velocity increments over a distancel,

du15u~x1 l!2u~x!. ~10!

As usual, we will deal with the longitudinal and transverse to
l velocity increments, dul i5(du1• l)/ l and dul'5(dul
3 l)/ l, respectively, wherel 5u lu. Figures 7–9 show the
probability distribution functions~PDFs! of the longitudinal

FIG. 7. Comparison of the PDF of the longitudinal velocity increments
defined by Eq.~10! for l 52p/256 ~53107 statistics att50.48 for the
velocity field from the four simulations!: DNS ~circle!, RDT ~crosses!,
RDT1constant viscosity~diamonds!, and RDT1viscosity computed from
RNG ~triangles!.

FIG. 8. Same as Fig. 7 forl 52p/64.

FIG. 9. Same as Fig. 7 forl 52p/4.

FIG. 10. Comparison of the PDF of the transverse velocity increments de-
fined by Eq.~10! for l 52p/256 ~53107 statistics att50.48 for the veloc-
ity field from the four simulations!: DNS ~circles!, RDT ~crosses!,
RDT1constant viscosity~diamonds!, and RDT1viscosity computed from
RNG ~triangles!.
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increments and Figs. 10–12 the PDFs of transverse incre-
ments, for three values ofl, obtained by the DNS, and our
different RDT simulation~with and without turbulent viscos-
ity!. At large scale, one observes a quasi-Gaussian behavior,
with the development of wider tails as one goes toward
smaller, inertial scales. This widening of the PDFs is a clas-
sical signature of the anomalous scaling observed in turbu-
lence. It can be measured by studying the scaling properties
of the velocity structure functions,

Sp~ l !5^dul
p&. ~11!

In the inertial range, the structure function vary likel zp. For
low Reynolds number turbulent flows, the scaling behavior
in the inertial range is very weak or undetectable because the
inertial range is very short. To exemplify this point, we show
in Figs. 13 and 14 the structure functions as a function of the
scale separation for the longitudinal and the transverse ve-
locity increments~the structure functions from the RDT
simulation were shifted by a factor of 10 for the clarity of the
figures!. Given the very weak scaling of our structure func-
tions, we may use the extended self-similarity~ESS!

property,27 which states thatSp(l );S
3

zp/z3 even outside the
inertial range of scales. We use this property because it al-

lows one to find the scaling exponents in a more unambigu-
ous way.27 The measured exponents in our DNS are shown
in Fig. 15 and in Table I. In both the longitudinal and trans-
verse cases, they are in agreement with the previously re-
ported relative exponents16 and they display a clear deviation
from the ‘‘nonintermittent’’ valuezp5p/3. Note that mea-
surements in the atmospheric boundary layer seem to indi-
cate that the transverse third-order scaling exponent is less
than one.28 We cannot check this directly in our low Rey-
nolds number DNS, but observe that this leads to a larger
difference between relative transverse and longitudinal expo-
nents than the difference between real exponents observed by
Dhruva et al.28 and Camussiet al.29 Corresponding quanti-
ties for the RDT simulation are shown in Fig. 15 and Table I.
One sees that the RDT statistics display larger and more
intermittent PDF tails for small scales, which makes the scal-
ing exponents take smaller values corresponding to larger
anomalous corrections. Again, this situation is reminiscent of
the case of the boundary layer. In fact, the measured values
in our simulation are remarkably similar to those reported in
the atmospheric boundary layer28 ~after the correction taking

FIG. 11. Same as Fig. 10 forl 52p/64.

FIG. 12. Same as Fig. 10 forl 52p/4.

FIG. 13. Structure functions computed with the PDF of the longitudinal
velocity increments from DNS~circles! and the RDT~diamonds! for the first
~solid line!, second~dash-dotted line!, and third~dash-dot-dot line! moments
~for convenience of presentation, the RDT structure functions have been
multiplied by 10!.

FIG. 14. Same as Fig. 13 for the transverse velocity increments.
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into account the fact that we measure exponents relative to
z3! or in a turbulent boundary layer.30 They are in between
the two different values measured by Toschi~Ref. 31! in and
above the logarithmic layer in numerical DNS of a channel
flow. A summary of these results is given in Table II. When
a turbulent viscosity is added to the RDT simulation, the
intermittent wings are less pronounced in the PDFs and the
anomalous correction decreases~Table I!, becoming similar
to those observed in the DNS. This agrees with the picture in
which the anomalous corrections are determined by the non-
local interactions, while the local interactions act to restore
the classical Gaussian~Kolmogorov-like! behavior. Obvi-
ously, the shape of the turbulent viscosity also influences the
intermittency correction: For the transverse case, where there
is no asymmetry of the PDFs, both the constant turbulent

viscosity and the RNG turbulent viscosity provide intermit-
tency corrections which are of the same level as the DNS.
This is quite remarkable, since they include only one adjust-
able parameter, tuned as to conserve the total energy. For the
longitudinal case, where an asymmetry is present, the two
prescriptions give noticeably different results: As one goes
toward lower scales, and as the asymmetry becomes larger
between the positive and the negative increments, the PDFs
computed with RDT and constant turbulent viscosity display
tails which are very close to that of DNS, while the PDFs of
the RDT with turbulent RNG viscosity have a tendency to-
ward a symmetrical shape, thereby failing to reproduce the
DNS behavior. This difference of behavior between the RNG
and constant turbulent viscosity will be further investigated
in Sec. III.

D. Comparison of the ‘‘local’’ experiment with DNS

Given the comparison of the DNS and the RDT~‘‘non-
local’’ ! simulations, one could argue that the increase of the
intermittency in RDT is mostly due to the increased mean
intensity of the small scales~which is seen on the energy
spectrum plot!. A similar increase of the small-scale intensity
could be produced by other means which have nothing to do
with nonlocality, e.g., by reducing viscosity in DNS. Will
there be stronger intermittency in all such cases too? In order
to prove that it is not the case, we perform a simulation
where, as the opposite of the RDT one, the nonlocal interac-
tions at small scales were removed from the Navier–Stokes
~NS! equation and only the local interactions were retained.
In order to keep the local interactions which involve scales
close to the cutoff scales, the velocity and the vorticity fields
were split into three parts: the large scales, the medium
scales near the cutoff, and the small scales. This decomposi-
tion is defined in Fourier space as follows:

u~k!5uls~k!1ums~k!1uss~k!, ~12!

v~k!5v ls~k!1vms~k!1vss~k!, ~13!

where

FIG. 15. Comparison of the scaling exponents computed from the DNS
~diamonds! and the RDT~circles! statistics. The longitudinal exponents are
plotted with open symbols and the transverse exponents with closed sym-
bols.

TABLE I. Scaling exponent of the velocity structure functions measured
using the ESS property, in various simulations, att50.48.

Order K41 DNS RDT RDT1Visc. 1 RDT1Visc. 2 Local

Longitudinal
1 0.333 0.353 0.361 0.353 0.354 0.344
2 0.667 0.687 0.695 0.687 0.687 0.678
3 1.0 1.0 1.0 1.0 1.0 1.0
4 1.333 1.295 1.273 1.294 1.293 1.310
5 1.667 1.573 1.509 1.570 1.568 1.607
6 2.0 1.836 1.696 1.830 1.824 1.892
7 2.333 2.085 1.828 2.073 2.064 2.164
8 2.667 2.321 1.919 2.301 2.287 2.423

Transverse
1 0.333 0.375 0.388 0.376 0.376 0.352
2 0.667 0.707 0.721 0.708 0.709 0.685
3 1.0 1.0 1.0 1.0 1.0 1.0
4 1.333 1.258 1.223 1.255 1.253 1.297
5 1.667 1.484 1.390 1.477 1.468 1.578
6 2.0 1.680 1.499 1.664 1.645 1.843
7 2.333 1.849 1.560 1.822 1.782 2.094
8 2.667 1.991 1.591 1.952 1.882 2.333

TABLE II. Scaling exponents of the velocity structure functions from: at-
mospheric turbulence at 10 000,Rl,15 000 @Dhruva et al. ~Ref. 28!#
channel flow@Toschiet al. ~Ref. 31!# near the wall (20,y1,50) and far
from the wall (y1.100) at Re53000 and boundary layer atRd532 000
@Zubair ~Refs. 30 and 51!#.

Longitudinal
Transverse

DhruvaOrder Dhruva Zubair Toschi 20,y1,50 Toschiy1.100

1 0.366 ¯ 0.44 0.37 0.359
2 0.700 0.70 0.77 0.70 0.680
3 1.000 1.00 1.00 1.00 0.960
4 1.266 1.20 1.17 1.28 1.200
5 1.493 1.52 1.31 1.54 1.402
6 1.692 1.62 1.44 1.78 1.567
7 ¯ 1.96 1.55 2.00 ¯
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uls~k!5u~k! for k,kc /C

50 for k.kc /C,

ums~k!5u~k! for kc /C,k,Ckc

50 for kc /C,k and k.Ckc , ~14!

uss~k!5u~k! for Ckc,k

50 for k.Ckc .

Using these definitions, the equation for the ‘‘local’’ simula-
tion was the following:

] tu~k!1P~u"“v!~k!2@P~uls•“vss!~k!

1P~uss•“v ls!~k!#$k.kc%5nDu~k!, ~15!

where P is the projector operator defined byPi j 5d i j

2kikj /k2. In our simulation we chooseC51.2 and the same
cutoff scalekc524. The results of this simulation are com-
pared to the equivalent results from the DNS and the RDT
simulation. The energy spectra are compared in Fig. 16. This
‘‘local’’ simulation contains more energy at small scales
than the DNS and even the RDT. The bump of energy near
the cutoff scalekc is due to the fact that the ‘‘local’’ approxi-
mation is introduced only for scales smaller thankc . Despite
the high level of energy at small scales, the solution of this
‘‘local’’ simulation is much less intermittent than the equiva-
lent field from DNS and RDT. A comparison of the scaling
exponents is shown Fig. 17 and Table I for both the longitu-
dinal and transverse velocity increments. These results con-
firm the idea that intermittency is caused by the nonlocal
interactions and not just by the mere presence of the small
scales.

III. QUALITATIVE EXPLANATION OF THE
INTERMITTENCY

Our results can be used to get a qualitative understand-
ing of the intermittency via the scale behavior of both the
PDF of the velocity increments and its moments. For this, we
are going to build a new model of turbulence, mimicking the
small scale nonlocal dynamics. In spirit, this amounts to an
‘‘antishell’’ model of turbulence, because, here, we retain

only interactions between distant wave numbers, by contrast
with the ordinary shell model32–34 which theoretically only
retains local interactions. In this context, it is interesting to
note that the ordinary shell model requires a certain degree of
nonlocality between modes so as to generate intermittency: It
can indeed be proven that the intermittency correction disap-
pears when the separation between two consecutive shell
tends to zero.35 Another known pitfall of the shell model is
its incapacity to describe the observed skewness~asymme-
try! generation along the scale of the PDF of the longitudinal
increments. This is annoying, since this skewness is directly
related to the nonzero value of the third-order moment, and,
hence, to the essence of the Kolmogorov cascade picture via
the 4/5 law. Finally, the original shell model is very crude,
since there is no spatial structure~everything is described by
Fourier modes!. We now show how elaborate a cleaner
model of turbulence using localized wave packets, leading to
a description of the small-scale statistics in term of Langevin
processes subject to coupled multiplicative and additive
noise.

A. The Langevin model of turbulence

Our numerical simulations showed that both the energy
spectrum~and decay! and the intermittency quantities are
well reproduced by a model in which only the nonlocal in-
teractions are left in the small-scale equations whereas the
local interactions of small scales among themselves are re-
placed by a turbulent viscosity term. Such a model is de-
scribed by Eq.~6! with n replaced by the turbulent viscosity
coefficientn t in the small-scale equations,

] tui1] j~Uiuj !1] j~uiU j !52] i p1n tDui1s i ,
~16!

] juj50,

ands i is given by~7!. We are interested in the contribution
of nonlocal interactions to the statistics of the non-Gaussian
small scales. For this, we assume that the large scale~L!

FIG. 16. Comparison of energy spectra obtained via the DNS, RDT, and the
‘‘local’’ simulation at t50.48.

FIG. 17. Comparison of the scaling exponents computed from the DNS
~diamonds!, RDT ~circles!, and the ‘‘local’’ simulation~squares! statistics.
The longitudinal exponents are plotted with open symbols and the transverse
exponents with closed symbols.
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quantities~U and its derivative, ands i! are fixed external
processes, with prescribed statistics~to be defined later!, and
derive an equation for the small scalel velocity field u8, by
taking into account the scale separationl /L5e!1. For this,
we decompose the velocity field into localized wave packets
via a Gabor transform~GT! ~see Ref. 36!

û~x,k,t !5E g~e* ux2x8u!eik"~x2x8!u~x8,t !dx8, ~17!

whereg is a function which decreases rapidly at infinity and
1!e* !e. Note that the GT ofu is a natural quantity for the
description of the velocity increments because of the follow-
ing relation:

u~x1 l!2u~x2 l!5
1

2i E e2 l"k Im û~x,k!dk. ~18!

Thus, velocity increments are related to GT via the Fourier
transform, and all information about thel dependence is con-
tained in the GT dependence onk ~the main contribution to
the above-mentioned integral comes fromk;2p/ l !. On
purely dimensional ground, we see thatû;k2ddu, whered
is the dimension. Therefore, in the sequel, we shall identify
kd Im û with the velocity increment.

Applying GT to ~6! we have~see Ref. 37 for details!

Dtû5û"ĵ1ŝ'2n tk
2û, ~19!

wherej ands' are random processes, given by

ĵ5“S 2
k

k2 U"k2UD ,

~20!

ŝ'5ŝ2
k

k2 ~k"ŝ !,

and

Dt5] t1 ẋ"“1 k̇"“k , ~21!

ẋ5U5“kH,
~22!

k̇52“~k"U!52“H,

H5U"k. ~23!

Because the large-scale dynamics is local ink space, it is
only weakly affected by the small scales and the quantitiesj
ands in Eq. ~19! can be considered as a given noise. Also,
because the equation is linear inû, we immediately see that
kdû will also satisfy an equation similar to~19! subject to a
straightforward modification of the force definitions. Before
elaborating more on~19!, it is convenient to study in closer
detail the physical parameters of this equation.

B. The noises

In Eq. ~19!, the noisej ands' appears as the projector
of two quantities, one related to the velocity derivative ten-
sor, and another related to the Gabor transform of the energy
transfer from large to small scales. In the sequel, we present
a statistical study of these two noises in physical space~i.e.,
after inverse Gabor transformingŝ'!. We will also consider
the Fourier spectra of the corresponding two-point correla-

tions. Let us choosek to be along one of the coordinate axes
~without loss of generality because of the isotropy!. Then the
components ofj coincide ~up to the sign! with the corre-
sponding components of the velocity derivative tensor, and
we will use this fact in the rest of this section. The velocity
derivative tensor has been studied in the literature, e.g., in
Refs. 38 and 39, in terms of correlations between the direc-
tions of the antisymmetrical part of the tensor~the vorticity!
and the symmetrical part~the strain!. Over a long time, the
vorticity appears to be aligned with the direction of largest
stretching. Other studies focused on the PDF of the modulus
of one component. For example, Marcq and Naert40 observe
that the derivative has a highly non-Gaussain distribution,
but with a correlation function which decays rapidly, and can
be approximated by a delta function at scales large compared
to the dissipative scale. In the present case, we observe dif-
ferent features. Because of the isotropy, we can concentrate
only on two quantities, sayj11 andj12. Figure 18 shows the
equal-position, time correlationC1i(t2t0)5^j1i(t)j1i(t0)&
and a i i (t2t0)5^s i(t)s i(t0)& as a function oft2t0 . Note
that these quantities are normalized to 1 att5t0 in Fig. 18.
First, we see thatC11 approximately coincides withC12 and
a11 coincides witha22, which is a good indicator of isotropy
~without normalization there would beC12523C11!. Sec-
ond, we see that the correlationC11 and C12 decay to zero
over a time scale which is of the order of few turnover times
t (t50.19). On the other hand, the correlation ofs decay
much faster, over a time of the order oft/2. Figure 19 dis-
plays the Fourier transforms of the equal-time two-point cor-
relation D1i(x2x0)5^j1i(x,y,z,t)j1i(x0 ,y,z,t)& and a i i (x
2x0)5^s i(x,t)s i(x0 ,t)&. One sees that all correlations are
very weak beyond 2kc . The correlationD12 appears to be
the largest at large scales, but it decays more rapidly than the
other correlations. We have also investigated the cross cor-
relations between the noises. The equal position cross corre-
lations are displayed in Fig. 20. The correlation is rather
weak, but there is a tendency fors i to be correlated withj1i

over a time scale of the order oft, while it is anticorrelated
with the other component of the tensor, over such a time
scale. The equal time correlations are shown in Fig. 21. No-

FIG. 18. The normalized autocorrelation in time for the two force compo-
nentss andj ~the turnover timet is equal to 0.19!.
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tice that the cross correlations are one order of magnitude
weaker than the direct correlations. The cross correlations
involving j12 are essentially zero, while the correlations in-
volving j11 display a first overall decay up tok5kc , fol-
lowed by an extra bump up to the end of the inertial range
(k540). In Sec. III D, we will show that this feature is ac-
tually related to the energy cascade.

One may also note that the two noises are spatially very
intermittent. In Fig. 22, we show isosurfaces of the modulus
of the noises, corresponding to 3.5 times the rms value. For
comparison, the same plot is made for the vorticity. One
observes well-defined patches ofs which are strongly corre-
lated with areas of strong vorticity. In the case ofj, the
patches are much more space filling. The longitudinal com-
ponentj11 is characterized by smaller-scale structures than
the transverse componentj12.

To obtain an indication about the scale variation of the
statistical properties of the noises, we also computed the
PDFs of the noise spatial incrementsds i l 5s(x1l )
2s(x) anddj i j l

5j i j (x1l )2j i j (x). Note that the first of
these quantities is directly related to the Gabor transform of

the additive noise, whereas the second one contains some
useful information about the time correlations via the Taylor
hypothesis~which is valid locally because the large-scale
velocity is typically greater than the small-scale one!. Figure
23 shows the results of the longitudinal and transverse incre-
ments for the first component of the additive noises1 and
the equivalent results for the componentj11 of the multipli-
cative noise are shown in Fig. 24. The PDFs are displayed
for l 52p/256 and 2p/4. One observes wide, quasialgebraic
tails for the additive noise, similar to those observed for the
PDFs of the velocity derivatives. The PDFs ofj11 are much
closer to Gaussian statistic.

C. The turbulent viscosity

In Sec. II C, we discussed the influence of two prescrip-
tions for the turbulent viscosity, one based on the RNG, one
taken simply as constant. In the sequel, we shall use the
simple formula:

n t5S n0
21B2S u

kD 2D 1/2

, ~24!

wheren0 andB are constants andu5kd Im û is the velocity
increment over a distance 1/k ~hereafter we dropd in du!.
WhenB50, this formula provides the constant turbulent vis-
cosity. Whenn050, it provides a dimensional analog of the
RNG viscosity, and tends to zero ask tends to infinity.

D. Statistical properties of the velocity increments

We are now going to derive qualitative results by adopt-
ing two complementary points of view: In the first one, we
will study the statistical properties of the velocity increments
in the frame of reference moving together with the wave
packets in~k, x! space. This corresponds to a Lagrangian
description in the scale space. In the second approach, we
replace time with its expression in terms ofk, as it would
follow from the ray equation~22!. This will give as an equa-
tion at a fixedk which corresponds to an Eulerian descrip-
tion. As a further simplification, we shall leave for further
study the possible correlation between longitudinal and

FIG. 21. Fourier transform of the space cross correlation between the force
s and the forcej. Coordinatesy andz are fixed.

FIG. 19. Fourier transform of the space autocorrelation for the two compo-
nents of the forcess andj. Coordinatesy andz are fixed.

FIG. 20. The cross correlation in time between the forcess and j (t
50.19).
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FIG. 22. Isovalue~3.5 times the rms! at t050 of ~a! the absolute value of vorticity,~b! the corresponding additive force~usu!, ~c! j115]Ux /]x, and ~d!
j125]Ux /]y.

FIG. 23. PDFs of the incrementss1(x1l 1 ,y,z)2s1(x,y,z) for l 1

52p/256 ~circles! and l 152p/4 ~crosses! and s1(x,y1l 2 ,z)
2s1(x,y,z) for l 252p/256~triangles! andl 252p/4 ~diamonds! ~the dot-
ted line corresponds to Gaussian statistics!.

FIG. 24. PDFs of the incrementsj11(x1l 1 ,y,z)2j11(x,y,z) for l 1

52p/256 ~circles! and l 152p/4 ~crosses! and j11(x,y1l 2 ,z)
2j11(x,y,z) for l 252p/256 ~triangles! and l 252p/4 ~diamonds! ~the
dotted line corresponds to Gaussian statistics!.
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transverse velocity increments described for example in Ref.
41 and consider a one-dimensional version of~19!, treating
the quantityu5k Im û as a ‘‘velocity increment’’ over the
distancel 52p/k,

Dtu5uj1s'2n tk
2u, ~25!

k̇52kj. ~26!

Here, we assumed the forcing to be symmetric such that it
does not produce any Reû. This model can also be viewed as
a passive scalar in a compressible one-dimensional flow. Ar-
tificial introduction of compressibility is aimed at modeling
the RDT stretching effect which appears only in the higher
number of dimensions for incompressible fluids.

Study of the noises in Sec. III B revealed their rich and
complex behavior. As a first simplifying step, we disregard
these complexities and use the Gaussian, delta correlated ap-
proximation, as will be done in Secs. III D 1 and III D 2.
Given a rather short time correlation ofs, our delta approxi-
mation is rather safe. The delta approximation forj is more
debatable, and the performance of such a model should be
further examined in future. Also, the Gaussian hypothesis is
obviously only valid at large scale, and forj11. Therefore,
the generalization of our results for non-Gaussian noises
would be very interesting, and is the subject of ongoing re-
search. In the sequel, we consider the functionsa, D, andl
as free parameters.

1. The Lagrangian description

In the frame of reference moving with the wave packets
in ~k, x! space, the left-hand side of~25! becomes simply the
time derivative. On the other hand,k has to be replaced in
terms of its initial valuek0 and time everywhere including
the noisess andj. Such a transformation from the laboratory
to the moving frame can obviously change the statistics ofs
andj. In the Lagrangian description we will assume that we
deal with noises which are Gaussian in the moving frame
with correlations functions

^s'~k~ t !,t !s'~k8~ t !,t8!&52ad~ t2t8!,

^j~k~ t !,t !j~k8~ t !,t8!&52Dd~ t2t8!, ~27!

^j~k~ t !,t !s'~k8~ t !,t8!&52ld~ t2t8!,

where coefficientsa, D, andl depend on the scale viak0 .
With these noise,~25! becomes a Langevin equation for the
velocity increments, wherej is a multiplicative noise,s' is
an additive noise, andn tk

2u the ~nonlinear! friction. The
multiplicative noise is produced by the interaction of two
small scales with one large scale whereas the additive noise
is due to a merger of two large scales into one small scale
~therefore, the latter acts at the largest among the small
scales!. For Gaussian, delta correlated noises, this Langevin
equation leads to a Fokker–Planck equation for the probabil-
ity distribution Pk(u,t) of the velocity incrementu,

] tPk5]u~n tk
2uPk!1Dk]u~u]uuPk!2lk]u~u]uPk!

2lk]u
2~uPk!1ak]u

2Pk , ~28!

where we have taken into account the fact that, due to ho-
mogeneity,j ands have a zero mean. Here, we dropped the
subscript 0 ink0 and the dependence of all involved quanti-
ties on the scale is simply marked by the subscriptk ~the
scale dependencea, D, andl is still unspecified!. The sta-
tionary solution of~28! is

Pk~u!5Ck expE
0

u 2n tk
2y2Dy1l

Dy222ly1a
dy, ~29!

whereCk is a normalization constant. The integral appearing
in ~29! can be explicitly computed in two regimes: In the first
one, foru!kn0 , we have (n t5n0), and we simply get

Pk~u!5
C

~Du222lu1a!1/21n0k2/~2D !
. ~30!

The range ofu for which the PDF follows this algebraic law
decreases with increasing scales. It is the largest~and hence
it is best observed! at the dissipative scale, where the veloc-
ity increments are equivalent to velocity derivative or to vor-
ticity. Several remarks are in order about this expression.
First, notice that the distribution is regularized aroundu50
by the presence of the parametera, but then displays alge-
braic tails. These are well-known features of random multi-
plicative process with additive noise~see, e.g., Ref. 42!. The
occurrence of algebraic tails in vorticity PDFs has been
noted before in Refs. 43 and 44 in the context of 2-D turbu-
lence. However, processes with algebraic tails are character-
ized by divergent moments. These divergences can be re-
moved by taking into account finite size effects, like physical
upper bounds on the value of the process~see, e.g., Ref. 14
for discussion and references! which introduce a cutoff in the
probability distribution. This effect is automatically taken
into account in our simple model, via the turbulent viscosity,
which prevents unbounded growth of velocity fluctuations
and introduces an exponential cutoff.

Indeed, in the regimeu@kn0 , we see that

d ln P

du
'

2uuuu
Du222lu1a

. ~31!

This means that at largeu the PDF decays like an exponen-
tial, or even faster ifD50 ~see the following!. The exponen-
tial cutoff has been observed in high Reynolds number
turbulence.45 In 2-D turbulence, this feature has also been
noted by Minet al.,44 and here finds a detailed explanation.

Another important observation is that the PDFs have an
intrinsic skewness, which can be traced back to the nonzero
value ofl, i.e., to the correlation between the multiplicative
and the additive noise. The physical picture associated with
this correlation is related to the correlation between vorticity
~present in the large scale strain tensor! and stretching~asso-
ciated with the termU“U, present ins!, which is the motor
of the energy cascade.41 The importance of the additive noise
in the skewness generation has been stressed before.46 We
find here its detailed explanation. Note also that the trends
toward Gaussian large scale behavior of the velocity incre-
ments can be easily accounted for if the multiplicative noise
tends to zero at large scale (D,l→0). In such case, the
process becomes purely additive, and the limiting PDF is
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Gaussian foru independent turbulent viscosity, or can also
fall faster than a Gaussian@like exp(2u3), for n t}u#. Such a
supra Gaussian behavior has been noted before.41 In between
the dissipative and the largest scale, the transition operates
via PDFs looking like stretched exponential.

This qualitative feature can be tested by comparison with
the numerical PDFs. Our model predicts thatd ln P/du
should behave like the ratio

d ln P

du
5

2uA~m1u!21m2
22m4u1m3

m4u222m3u1m5
. ~32!

Without loss of generality, we can factorize out the param-
eterm5 . The fit therefore only contains four free parameters,
which can be easily related to the physical parameters of the
problem. We have computed this derivative for the PDF of
longitudinal and transverse velocity increments at various
scales, and performed the four parameters fit. Examples are
shown in Fig. 25. Observe the good quality of the fit, but we
stress that there is a rather large uncertainty in the determi-
nation of the parameter of the fits, which sometimes cannot
be determined better than up to a factor of 2 by our fit pro-
cedure~a standard least-squares fit!. The scale dependence of
the coefficients of the fit is shown in Figs. 26 and 27. Note
that since transverse velocity increments are symmetrical by
construction, we have setm350 in the fit. Note that in the
longitudinal case,m3 is smaller than the other coefficients by
two orders of magnitude. This features the smallness of the
skewness, and the weakness of the correlation between the
multiplicative and the longitudinal noise~see Sec. III B!. The
parameters have a rough power law behavior~see Figs. 26
and 27!. Theoretically, one expects the ratiom1 /m2 to be-
have like 1/(n0k), if ~24! holds. The power-law fits of Figs.
26 and 27 provide a dependence ofk0.53 for the longitudinal
case, andk20.54 for the transverse case, corresponding to a
scale dependence ofn0 given byk1.53 andk0.46.

2. The Eulerian description

We now consider~25!, again in the moving with the
wave packet frame, but now we change the independent vari-
able fromt to k5k(t) which satisfies~26!. We get

du

d ln k
52Pu1

n tk
2

j
2

s'

j
, ~33!

whereP is a number accounting for the projection operator
over scales smaller than the cutoff 1/kc . This is a way to
mimic higher-dimensional effects in our one-dimensional
model. Equation~33! is again a Langevin equation for veloc-
ity increments in the scale space, with multiplicative and
additive noises which are now expressed in an Eulerian

FIG. 25. Fit ofd ln P/du for the transverse increments, at 1/k52 ~squares!,
1/k532 ~diamonds!, 1/k542 ~circles!, and 1/k552 ~triangles!. The fits via
formula ~32! are given by lines. Note the good quality of the fit. Similar fits
for other scale separations and in the longitudinal case were obtained.

FIG. 26. Coefficient of the fit ofd ln(P)/du with ~32! as a function of 1/k for
longitudinal velocity increments:m1 ~squares!, m2 ~open diamonds!, m3

~circles!, andm4 ~closed diamonds!. The lines are the power-law fits:k20.79

~long-dashed line!; k21.52 ~short-dashed line!; k20.36 ~dotted line!, andk21.2

~dash-dot line!.

FIG. 27. Coefficient of the fit ofd ln(P)/du with ~32! as a function of 1/k for
transverse velocity increments:m1 ~squares!, m2 ~diamonds!, and m4

~circles!. The lines are the power-law fits:k21.56 ~long-dashed line!; k21.04

~line!; andk21.45 ~dotted line!.
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form. Similar Langevin processes have been proposed before
to explain the scale dependence of velocity increments47,48,40

but without additive noise.49

The noises in this Langevin equation are different from
the noises appearing in the Lagrangian representation and
they would have a complicated statistics if we assumed that
s and j were Gaussian in the Lagrangian representation.
However, we can simply assume here that the noises are
Gaussian and delta correlated in the Eulerian representation
~which is different from the assumption of the previous sec-
tion! and redefinea, D, andl as

^s'~k,t~k!!j21~k,t~k!!s'~k8,t~k8!!j21~k8,t~k8!!&

52ad~k2k8!,

^j21~k,t~k!!j21~k8,t~k8!!&52Dd~k2k8!, ~34!

^j21~k,t~k!!s'~k8,t~k8!!j21~k8,t~k8!!&52ld~k2k8!.

This allows one to derive the Fokker–Planck equation cor-
responding to~33!,

k]kP~u,k!5]u~PuP!1D]u~n tk
2u]u@n tk

2uP# !

2l]u~n tk
2u]uP!2l]u

2~n tk
2uP!1a]u

2P.

~35!

We may use~35! to derive an equation for the moments, by
multiplication byun and integration overu. With the shape
of the turbulent viscosity given by~24!, we get

k]k^u
n&52z~n!^un&1nDB2k2^un12&

2ln~2n21!n2k2K un21

n t
L

22n2lB2K un11

n t
L 1an~n21!^un22&, ~36!

wherez(n)5nP2n2Dk4n2 is the zero-mode scaling expo-
nent. Forn51 and taking into account the constraints that
^u&50 ~homogeneity!, one gets a sort of generalized
Karman–Horwath equation:

^u3&5
ln2

DB2 K 1

n t
L 1

2l

Dk2 K u2

n t
L . ~37!

As in the Lagrangian case, this means that skewness
~related to nonzerôu3&! is generated through nonzero val-
ues ofl, i.e., through correlations of the multiplicative and
the additive noises. However, due to the turbulent viscosity,
we cannot explicitly solve the hierarchy of equation. In many
homogeneous turbulent flows, however, the skewness~pro-
portional tol! is quite small, and moments of order 2n11
are generally negligible in front of moments of order 2n
12. For even moments, this remark suggests that to first
order in the skewness, and for 2n.1, the dynamics is simply
given by

k]k^u
2n&52z~2n!^u2n&12nDB2k2^u2n12&

1a2n~2n21!^u2n22&1O~l2!. ~38!

Note thatD/a is given by the parameterm4 in our fit, and is
such thatDk2/a increases withk ~see Figs. 26 and 27!.
Therefore, at small scales, the dominant balance is

k]k^u
2n&52nDB2k2^u2n12&. ~39!

The solution is^u2n&}k22n. This is the usual ‘‘regular’’
scaling in the dissipative zone. For larger scales,DB2k2

!a, and ifa varies like a power law, the general solution of
~38! is a sum of power laws:

^u2n&5 (
p50

n

apan2pk2z~2p!. ~40!

This solution illustrates the famous mechanism of
‘‘zero-mode intermittency.’’9 Here, the zero mode is the so-
lution of the homogeneous part of Eq.~38!, i.e., a power law
of exponent2z(2n). Without the zeroth mode, responsible
for the firstn21 scaling laws, the 2nth moment will scale in
general likea(k)n ~provided one assumes that this domi-
nates the other term!, i.e., will be related to the turbulent
forcing. This is the standard Kolmogorov picture. When the
zeroth mode is taken into account, the moment now includes
new power laws, whose exponent is independent of the ex-
ternal forcing, and which can be dominant in the inertial
range, thereby causing anomalous scaling. In the present
case, the scaling exponent is quadratic inn, and reflects the
log-normal statistics induced by the Gaussian multiplicative
noise, in agreement with the latest wavelet analysis of Arne-
odo et al.50 Note also that the competition between the
zeroth-mode scaling and the scaling due to external forcing
forbids the moments to scale like a power law, thereby gen-
erating a breaking of the scale symmetry.

For odd moments, we cannot perform any rigorous ex-
pansion because all the terms of the equation are of orderl.
For low order moments, however, the computation of
^un11/n t& mainly involves velocity increments close to the
center of the distribution, for whichn t'n0 . So, for low or-
der, it is tempting to approximate the equation for the odd-
order moments by

k]k^u
2n11&'2z~2n11!^u2n11&

22n2lB2^u2n12&n21. ~41!

This approximation is only valid in the inertial range, where
the last term of~36! can be neglected. An immediate conse-
quence of this loose approximation is thatz(2n11)5z(2n
12) in the inertial range. Odd moments~without absolute
values! are very difficult to measure because of cancellation
effects which introduce a lot of noise. In our case, due to our
limited inertial range, we cannot compute these exponents
with a sufficient degree of accuracy. A careful investigation
performed in a high Reynolds number boundary layer30 how-
ever seems to be in agreement with our prediction, as is
shown in Fig. 28: It is striking to observe thatz(5)'z(6),
z(7)'z(8), etc., making the curve look as if odd and even
scaling exponents are organized on a separate curve.51 A
second independent experimental check of our prediction
~41! is that (z(2n12)2z(2n11))^u2n11&/^u2n12& should
scale, forn.3 like n2. Figure 29 shows that this is indeed
the case.
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IV. DISCUSSION

In this paper, we have shown that nonlocal interactions
are responsible for intermittency corrections in the statistical
behavior of 3-D turbulence. Removal of the local interaction
in numerical simulations leads to a substantial increase in the
number of the tornado-like intense vortex filaments and to
stronger anomalous corrections in the higher cumulants of
the velocity increments. It is also accompanied by a modifi-
cation of the energy transfer in the inertial range, tending to
create a flatter energy spectrum. The intermittency correc-
tions and the spectra are close to that observed in high Rey-
nolds number boundary layer, suggesting that the nonlocal
interactions prevail in this geometry. This could be explained
by the presence of the mean flow, which geometrically fa-
vors nonlocal triads in the Fourier transform of the nonlinear
interactions. We showed that replacing the removed local
interactions by a simple turbulent viscosity term allows one

to restore the correct intermittency and the energy character-
istics. Our results agree with the belief that intermittency is
related to thin vortices amplified by the external large scale
strain similar to the classical Burgers vortex solution. Local
interactions can be viewed at mutual interaction of these thin
intense vortices which result in their destruction, which is
also in agreement with our results.

To prove that the enhanced intermittency is not simply
the result of the stronger small-scale observed in the RDT
simulation, we performed yet another numerical experiment
in which the nonlocal interactions were neglected and only
the local ones retained. This resulted in an even higher~than
in RDT! level of the small scales but it exhibited much less
intermittency, which confirms our view that nonlocality is
crucial for generation of the intermittent structures.

The result that the net effect of the local interactions is to
destroy the intermittent structures is at odds with a very com-
mon belief that the intermittency is due to the vortex recon-
nection process which takes a form of a finite time vorticity
blow-up. Indeed, the latter is a strongly nonlinear process in
which the local vortex–vortex interactions are important.
However, this process seems to be dominated by another
local processes the net result of which is to destroy the high-
vorticity structures rather than to create them. It would be
premature to claim, however, that the same is true at any
arbitrarily high Reynolds number.

Our numerical approach sets severe limitations to the
value of the Reynolds number we are able to explore. In this
context, it is interesting to point out that preliminary tests
regarding the importance of nonlocal interactions have been
conducted on a velocity field coming from a very large Rey-
nolds number boundary layer.52 Even though the test is not
complete~the probes only permit the accurate measurement
of special components of the velocity field!, it tends to sug-
gest that nonlocal interactions dominate the local interactions
by several orders of magnitude. Our results would also ex-
plain the findings of the Lyon team,53 who found that when
probing fluid area closer and closer to a large external vorti-
ces, or to a wall boundary, one could measure energy spectra
moving from ak25/3 law toward ak21 spectra, while anoma-
lous corrections in scaling exponents would become more
pronounced. In light of our study, this could be simply ex-
plained by a trend toward more nonlocal dynamics via the
mean-shear effects at the wall.

Based on the conclusions of our numerical study, we
developed a new model of turbulence to study the intermit-
tency. It has the form of a Langevin equation for the velocity
increments with coupled multiplicative and additive noise.
We showed how this model could be used to understand
qualitatively certain observed features of intermittency and
anomalous scaling laws. Among other things, we showed
how the coupling between the two forces is related to the
skewness of the distribution, and how algebraic and stretched
exponential naturally arise from the competition between the
multiplicative and the additive noise. We tested our qualita-
tive predictions with experimental and numerical data, and
found good general agreement. To be able to turn our model
into a tool for ‘‘quantitative’’ study of the intermittency, sev-
eral developments are needed. The first one is to consider the

FIG. 28. Exponents of the structure function in a high Reynolds number
boundary layer~Ref. 28!. Note the tendency forz(2n11)5z(2n12)
for n.3.

FIG. 29. (z(2n12)2z(2n11))A2n11 /A2n12 as a function ofn in a high
Reynolds number boundary layer. HereAn is the prefactor of the~nondi-
mensional! structure function of ordern. The line isn2, the prediction of our
model.
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multidimensional version of our model to be able to couple
longitudinal and transverse increments. The scale depen-
dence of the turbulent viscosity and of the forcing needs to
be further investigated, possibly using tools borrowed from
the renormalization group theory~see, e.g., Ref. 26!. Also,
the non-Gaussianity of the noises could be taken into ac-
count.

In 1994, Kraichnan54 proposed an analytically solvable,
new model for the passive scalar, which provided a substan-
tial increase of our understanding of the passive scalar inter-
mittency. Our model, built using the nonlocal hypothesis, is
a direct heir of this philosophy in that, as in passive scalars,
all important intermittency effects are produced via a linear
dynamics. The nonlinear~local! scale interactions are impor-
tant too because they are the main carrier of the energy cas-
cade, but it is only their mean effect and not statistical details
that are essential.
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