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Numerical simulations are used to determine the influence of the nonlocal and local interactions on
the intermittency corrections in the scaling properties of three-dimensional turbulence. We show
that neglect of local interactions leads to an enhanced small-scale energy spectrum and to a
significantly larger number of very intense vortigérnadoes”) and stronger intermittendg.g.,

wider tails in the probability distribution functions of velocity increments and greater anomalous
correctiong. On the other hand, neglect of the nonlocal interactions results in even stronger
small-scale spectrum but significantly weaker intermittency. Thus, the amount of intermittency is
not determined just by the mean intensity of the small scales, but it is nontrivially shaped by the
nature of the scale interactions. Namely, the role of the nonlocal interactions is to generate intense
vortices responsible for intermittency and the role of the local interactions is to dissipate them.
Based on these observations, a new model of turbulence is proposed, in which néradpial
distortion theory-like interactions couple large and small scale via a multiplicative process with
additive noise and a turbulent viscosity models the local interactions. This model is used to derive
a simple version of the Langevin equations for small-scale velocity increments. A Gaussian
approximation for the large scale fields yields the Fokker—Planck equation for the probability
distribution function of the velocity increments. Steady state solutions of this equation allows one
to qualitatively explain the anomalous corrections and the skewness generation along scale. A
crucial role is played by the correlation between the additive and the multiplicasinge-scalg
process, featuring the correlation between the stretching and the vorticity200@ American
Institute of Physics.[DOI: 10.1063/1.1373686

I. INTRODUCTION Various scenarios have so far been proposed to explain and
compute the anomalous corrections. To mention but a few:
A puzzling feature of three-dimensional turbulence is thespatial intermittency of the energy dissipatbmultifractal
large deviations from Gaussianity observed as one probesaling® large deviations of multiplicative cascadeextre-
smaller and smaller scales. These deviations are usually berum principle® zero modes of differential operatotscale
lieved to be associated with the spatial intermittency ofcovariance. These approaches all try to model the breakdown
small-scale structures, organized into very thin and elongatedf the exact local scale invariance underlying the Kolmog-
intense vorticeg“tornadoes™).>3 They are responsible for orov 1941 picture. In a recent study of finite size effects,
anomalous corrections to the normal scaling behavior obubrulle’® showed that some properties of the structure func-
structure functions associated with the Kolmogorov 1941 tions (nonpower law behavior, nonlinear exponents, )etc.
(K41) picture of turbulence. In this picture, energy- could be explained within a framework in which finite size
containing structuresgthe so-called “eddies) at a given cutoff plays a central role, and are felt throughout the so-
scale interact with other eddies of smaller but comparablealled “inertial range.” Such finding is in clear contradiction
size to transfer energy at a constant rate down to the disswith the “local” K41 theory, in which eddies in the inertial
pative scale. A simple prediction of this local picture of tur- range are insensitive to the UV and IR end of the energy
bulence is the famous™ > energy spectrum, which has been spectrum, and only interact with their neighb@rsthe scale
observed in numerous high Reynolds number experimentalpace via “local” interactions (involving triads of compa-
data and numerical simulations. The local theory of turburable size. This observation motivated us to consider a new
lence further leads to the prediction that tite moment of a  scenario for turbulence, in which anomalous corrections and
velocity incrementsu,=u(x+/)—u(x) over a distance”  deviations from Gaussianity are the resultsiohlocal inter-
should scale like#™3. This behavior has never been ob- actions between energy-containing structures. By nonlocal
served in turbulent flows, and it is now widely admitted thatinteractions, we mean interactions between well-separated
anomalous corrections exist at any finite Reynolds numbeiscales(or highly elongated wave number triadé. numeri-
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cal analysis on the role of the different triadic interactions inthe increased mean small-scale intengitich could also
the energy cascade have previously been done by Brasseie caused by some reason other than the nonloraliy
et al!! and Domaradzket all? We have recently demon- perform another numerical experiment in with the elongated
strated via high-resolution numerical simulations that in two-triads were removed. Such “local” experiment resulted in
dimensional(2-D) turbulence, the small-scale dynamics is even stronger small-scale intensity but the intermittency be-
essentially governed by their nonlocal interactions with thecame clearly weaker. In Sec. Ill, we show how our findings
large scaled®!* This feature seems natural in view of the can be used to provide both a qualitative estimate of the
large-scale condensation of vortic8sAs a result, the weak intermittency exponents, and a derivation of the Langevin
small scales are more influenced by the strong large-scakquations for the velocity increments.
advection and shearing than by mutual interactions between
themselves. This makes nonlocal interactions the dominant \onLOCAL INTERACTIONS IN 3-D TURBULENCE
process at small scales.

2-D turbulence is very special, because there is no vorteR- The problematics
stretching. As a result, there is no increase of vorticity to- e consider the Navier—Stokes equations:
ward smaller scales as is observed in 3-D turbulence. A
quantitative feature underlying this difference is the shape of Ut u-Vu=—Vp+vAu+f, )

the energy spectra at small scales: itkis* in 2-D turbu-  whereu is the velocity,p is the pressurey is the molecular
lence, much steeper thén °* 3-D energy spectra. In fact, a viscosity, and is the forcing. In a typical situation, the forc-
simple estimate shows that the borderline between local anigg is provided by some boundary conditiofexperiments
nonlocal behaviors is precisely this 3 spectrum: only for o externally fixed, e.g., by keeping a fixed low-wave-
energy spectra steeper than® can one prove rigorously number Fourier mode at a constant amplitdemerical
than the dominant interactions are nonlocal. It is thereforgimulation. This situation typically gives rise to quasi-
not our intention to claim that 3-D turbulence is nonlocal, Gaussian large-scale velocity fields, while smaller-scale ve-
and in fact we do believe that local interactions are responipcities d|sp|ay increasing|y non-Gaussian statistics. The
sible for thek > energy spectra. However, it is not unrea- presence of the forcing guarantees the existence of a station-
sonable to think that evolution of the higher cumula@ites  ary steady state in which the total energy is constant. In the
sponsible for deviations from Gaussianity at largeapsence of forcing, the turbulence energy decays steadily,
deviationg is more nonlocal than it is for the energy spec- due to losses through viscous effects. However, starting from
trum. Indeed, calculation of higher cumulants in Fouriera quasi-Gaussian large-scale field, one can still observe the
space involves integration over larger sets of wave numbergevelopment of increasingly non-Gaussian small scales in
which (even if close in values pairwiseover a larger range the early stage of the decay. We will study the effect of the
of scales than in the case of lower order cumulants. nonlocal interactions on the statistics of such non-Gaussian
A natural tool to study the role of the nonlocal interac- small scales. For this, we introduce a filter functi®(x) in
tions is the numerical simulation, because it allows a direrrder to separate the |arge and small scales of the flow. In
check of their influence by artificial SWitChing-Oﬁ of the our numerical procedure' the filt& will be taken as a cut-
elongated wave number triads in the Navier—Stokes equasff. We have checked that the results are insensitive to the
tions or, on the contrary, retaining only such triads. A limi- choice of the filter, provided the latter decays fast enough at
tation of this approach lies in the restricted range of Reyinfinity. Using the filter, we decompose the velocity field into
nolds number we are able to simulate. However, a recengrge scale and small scale components:
comparisoff showed that anomalous corrections and inter-
mittency effects are quite insensitive to the Reynolds num-
ber. This shows the relevance of a low Reynolds number
numerical study of intermittency. This approach is detailed U(x,t)zu_:f G(x=x")u(x’,t)dx’.
in Sec. Il, where we examine the dynamical role of the local
interactions at the small scales using a simulation in which ~ Equations for the large scales of motion are obtained by
these interactions have been removed. We show that, @Pplication of the spatial filtef2) to the individual terms of
compared with a full simulation of the Navier—Stokes equa-the basic equationdl). They are
tions, such “nonlocal” simulation exhibits a flatter spectrum d;U;=0,
at small scales and stronger intermittency. As a qualitative o 3)
indicator of intermittency we use plots of the vortex struc-d;U;+d;U;U;+d;U;u;+ Uju; + d;u;u;
tures whose intensity greatly exceeds the rms vorticity value ~ _ G P+ AU +F.
(“tornadoes”) and probability distribution functiofPDF) ! e
plots, whereas to quantify intermittency we measure thdn these equations, we have dropped primes on subfilter
structure function scaling exponents. We show that the maicomponents for simplicity; this means that from now on, any
effect of the local interactions can be approximately dedarge-scale quantities are denoted by a capital letter, while
scribed by a turbulent viscosity, while the nonlocal interac-the small-scale quantities are denoted by a lower case letter.
tions are responsible for the development of the localized’he equation for the small-scale component is obtained by
intense vortices and the deviations of Gaussianity. To valisubtracting the large-scale equation from the basic equations
date that the enhanced intermittency is not merely a result afl); this gives

u(x,t)=U(x,t)+u’(x,t),
(2
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= 1.0000F '
d;u;=0, :

(4)

i+ (U u) (U ) = (U u) (U ) 01000

:_(9|p+ VAUi+fi .

Several terms contribute to the interaction of scalesl- = 1,00l
local terms, involving the product of a large scale and a ™ ;
small scale component, and lacal term, involving two [
small-scale components. One way to study the dynamica o.0010k
effect of these contributions at small scales is to integrate g
numerically a set of two coupled equations, in which the
local small scale interactions have been switched off at the
small scales(We do not switch off the local interactions at k
the large scales: this would hm.der the Cas.ca.“?'e meChanlsmG. 1. Comparison of energy spectratat0.48 obtained via the DNS and
and prevent small scale generation from an initial large scalge rRpT simulation.
field.) This corresponds to the following set of equations:

0.0001 ;

B. The numerical procedure

+vAU;+ 1, (5) 1. The numerical code
AU+ 3;(Uiu) + 9;(uUj) = — a;p+ vAu; + oy, Both the Navier—Stokes equati¢h) and the set of RDT
(6)  equationg6) were integrated with a pseudospectral ctate
dUj=0;u;=0, Ref. 2 for more details on the codén the RDT case, a sharp
where cutoff in Fourier space was used to split the velocity field
- - into large- and small-scale components in Fourier space and
o= d;(UjU;—UjUj+uUi+ Ujuy). (7)  all nonlinear terms were computed separately in the physical

The latter describes a forcing of the small scales by the larggPace- The aliasing was removed by keeping only the 2/3
scales via the energy cascade mechanism. This term is df"9est modes corresponding to the 85 first modes in our

ways finite even when the external forcihgvhich is always case. The calculationg presented he[es were done _Witﬁ 256
at large scalesis absent. The small scale equation is linear™0urier modes and a viscosity of X80~ corresponding to

and it resembles the equations of the rapid distortior Reynolds number S7R, <80 (whereR, is the Reynolds
theory!” We shall therefore refer to this new model as theMumber based on the Taylor microscale

RDT model. The corresponding solution was then compared

with a reference simulation performed at the same resolutiorg- The simulations

with the same initial condition. Note that this comparison is  The test was performed in a situation of decaying turbu-
rather expensive numerically: Splitting the equations of mo4ence where the forcing tertfy is set to zero. We performed
tion between resolved and subfilter component leads to adseveral different simulations: a direct numerical simulation
ditional Fourier transforms, and increases the computationgbNs), a RDT simulation[Eq. (6)], and a “local” experi-
time by a factor of 3. This sets a practical limitation to the ment (see the end of this sectipnin all cases, the initial
tests we could perform on our workstation. Also, an addi-condition was chosen as the output of a preliminary simula-
tional limitation came from the need of scale separation betjon of an initially Gaussian velocity field over several turn-
tween the “large” and the “small” scales. This scale sepa-gyer times. In order to allow enough energy at the large
ration is mandatory in order to define “nonlocal” scales, the sharp cutoff filter was taken at the wave number
interactions. Their influence on anomalous scaling can b@=24 corresponding to approximately five Kolmogorov
checked only if the typical small scale lies within the inertial scales. Because of the very low speed of the RDT simulation
range. For this reason, we were led to consider a situation qthree times more expensive than the DNige two simula-

decaying(unforced 3-D turbulence, with a flat energy spec- tions were performed betweer 0 andt=0.48 correspond-
trum at large scale, and an “inertial range™ mostly concen-jng to approximately 2.5 turnover times.

trated at small to medium scalékd< k< 40 for a 256 simu-

lation). Indeed, at the resolution we could achieve, forcedc. Comparison of the RDT and DNS experiments
turbulence developed an inertial range of scale arokind
=8, too small for the scale separation to be effecfisee
Ref. 18 for a study and discussion of this case and its rel- The comparison of spectra is shown in Fig. 1. In the
evance to large eddy simulatiofkES)]. Decaying turbu- DNS case, one observes a classical evolution, in which the
lence does not, by definition, achieve a statistically stationaryarge scale energy decays while the inertiaP® range tends
state, with mathematically well-defined stationary probabil-to move toward smaller scales. It can be seen that the inertial
ity distribution functions(PDF9. Therefore, all the PDFs range(characterized by the-5/3 slopg only marginally ex-
were computed at a fixed time which we have chosen to be asts. In the RDT case, one observes a similar evolution at
the end of each simulatiofat t=0.48). large scale, while a tendency toward a flatter spectrum is

1. Spectra
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FIG. 2. Comparison of vortex structurésoplot of vorticity | w| = 3.50,,,e= 0. att=0.48 for (a) DNS, (b) RDT, (c) RDT+constant turbulent viscosityg)
RDT+the RNG-type turbulent viscosity. The number of “tornadoes” estimated byjf,c PDF(w|)dw are, respectively, 824&), 21 669(b), 10 226(c),
and 10 779d).

observed near and beyond the separating sdadyond trum follows ak ! law, but we clearly see the tendency to a

which local interactions are ignoredWe checked that this flatter than—5/3 slope. The RDT case is reminiscent of the

behavior is not sensitive to the resolution. boundary layer in which &~ * spectra have been obsen/&d.
The range of computed scales is insufficient to find aThis is not surprising because the presence of the mean shear

reliable value of the spectral slope in the RDT case. Howdincreases the nonlocality of the scale interactions corre-

ever, this slope can be predicted by a simple dimensionaponding to RDT. In fact, an exact RDT analysis of the shear

argument. This argument was presented for the 2-D case fitow does predict formation of thie™* spectrun?

Ref. 19, but it is essentially the same for 3-D. Indeed, in the

RDT case the small-scale equations are linear and, therefore,

the energy spectrur(k) must be linearly proportional to 2 Structures

the energy dissipation rate, In this case, the only extra 3-D turbulence is characterized by intense thin vortex

dimensional parametelin comparison with the local/ filaments(“tornadoes”).}>?2Their radii are of order of the

Kolmogorov casgis the large-scale rate of strain There is  dissipative(Kolmogoroy scale, which in this case is deter-

the only dimensional combination ef « and wave number mined by the balance of the large-scale straining and viscous

k that has the dimension &(k); this gives spreading. In this respect, these vortices are similar to the
Ce classical Burgers vortex solution. Figure 2 shows a compari-
E,=—k 1, (8) son of the “tornadoes” observed in the DNS and in the
o

RDT, which are visualized by plotting surfaces of strong
whereC is a nondimensional constant. In our case, our resovorticity (Jw|>3.50,m9. In both cases, thin filamentary
lution is too low to be able to check whether the RDT spec-structures are observed, but they appear to be much more
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FIG. 3. Comparison of the time evolution of total energy.

FIG. 5. Time evolution of total energy obtained via the DNS and the RDT
simulation with the two different turbulent viscosities.

numerous in the RDT case. Obviously, local interactions
tend to dissipate the “tornadoes,” which can be interpreted

as a mutual distortion and entanglement of “tornadoes,”(exponentiagl growth which has a negative effect on the in-
preventing their further stretching by the large scales. On thgarmittency. This process seems to overpower the positive
macroscopic level, this can be regarded as an additionagffect of the local interactions on the intermittency which is
“turbulent,” viscosity produced by the local interactions. related to the reconnection blow-ups. At the moment, it is

This is compatible with the flattening of the energy spectrumnot possible to say if the same is true for much higher Rey-
in the RDT case, which we interpreted previously in terms ofnolds number flows.

the turbulent viscosity effect.
It is interesting that the Burgers vortex is essentially a _ _
linear solution because of the cylindrical shape of this vor-3. Turbulent viscosity

tex, which prevents the appearance of the quadtatigor- Comparison of the DNS and RDT results for the time
ticity) terms. Such a linearity is a typical feature of all RDT eyojution of the total energy is shown in Fig. 3. One clearly
solutions. On the other hand, there is another candidatgpserves a slower decline of the total energy in the RDT
which has often been considered to be responsible for integase  as if there was a lower viscosity. This result is not
mittency: this is a vortex reconnection process which is be’surprising: It is well known that the influence of energy mo-
lieved to lead to a finite time singularity formatidat least  tjons onto well separated large scalese Refs. 23—25 for
for inviscid fluidg. Note that the vortex reconnection is an systematic expansionss through an effective eddy viscos-
essentially nonlinear process in which the local scale inter-rty’ supplied by the(uu) term. Our result suggests that, to a
actions are playing an important role and cannot be ignoredirst approximation, the difference between the RDT and the
Indeed, there is no finite time blow-up solutions in linearpNs could be removed by including an additional “turbu-
RDT. Likewise, the vorticity grows only exponentially in the jent” viscosity in the RDT simulation. For the sake of sim-
Burgers vortex and it does not blow up in a finite time. Frompjicity, we decided to choose an isotropic tensor, chosen as
this perspective, our numerical results show that the locajy conserve the total energy. We tried two simple viscosity

(vortex—vortex interactions mostly lead to destruction of the prescriptions: one in which, is constant, and ongig. 4) in
intense vortices and prevention of their further Burgers-like

1.0000E '
10_35 r
i [ -5/3
4l 0.1000 £ k™ 4
1074L 4 i
- : X 00100 4
5% 107 £ 3 " g
> N T S RDT + visc. (RNG)
r 0.0010F _...__.. _  RDT + visc. (const.)
10761 ] :
F E DNS \
[ r N A
7t 0.0001 . :
10 1 10
10 100 K

k

FIG. 4. Spectrum of the turbulent viscosity computed(8yat t=0.48.

FIG. 6. Comparison of energy spectra obtained via the DNS and the RDT
simulation with two different forms of the turbulent viscosity.



2000 Phys. Fluids, Vol. 13, No. 7, July 2001 Laval, Dubrulle, and Nazarenko

TEEEREI
T

sl

MLRRLLL B ALY

T T
BURRLLL B AL IR R LI

ool

T

T
AR RN TITT EANEE W RTINS AR
T
Lol

|

T
|

-10 -5 Q 5 10

FIG. 7. Comparison of the PDF of the longitudinal velocity increments FIG. 9. Same as Fig. 7 fof =2/4.
defined by Eq.(10) for /'=2m/256 (5x 10’ statistics att=0.48 for the
velocity field from the four simulation)s DNS (circle), RDT (crossey

RDT+constant viscositydiamonds, and RDT+viscosity computed from  The energy spectra become closer to the DNS result at low
RNG (triangles. and intermediatd, whereas at the higk they depart from
DNS indicating an overdissipation of the smallest scales. The

which the viscosity prescription follows the shape dictatedatter is an artifact of our crude choice for the turbulent vis-
by renormalization group theofRNG) (see, e.g., Ref. 26 cosity ignoring its anisotropy and possibility for it to take

negative values. The turbulent viscosity also influences the
1/2 anomalous corrections, as we will now show it.

(K)= —. 9)

+ oo
v2+Af q 2E(q)dq
K

4. PDFs and exponents

The constants were adjusted so as to obtain a correct energy We conducted a statistical study of our velocity fields
decay(Fig. 5. They arev,=0.0002 for the constant; pre-  corresponding to the end of the simulatioris=0.48). As
scription, andA=0.02 for the other one. We elaborate moreusual for the study of the anomalous properties of turbu-
on the choice of this turbulent viscosity in Sec. IlIC. Yet lence, we consider the velocity increments over a distance
another method we tried was to replace the neglected non-
linear term (interaction of small scales among themsejves Sup=u(x+1)—u(x). (10
with its mean value. Dividing this mean nonlinear termiky
for eachk one can compute the turbulent viscosity(k). As usual, we will deal with the longitudinal and transverse to
The result is interestingr, turns out to be nearly indepen- | Vvelocity increments, éu;=(éu;-1)/I and éu;, =(du,
dent ofk; this provides an extra justification for the simple X1)/I, respectively, wherd=|l|. Figures 7-9 show the
model in whichy,= const. probability distribution functiongPDF9 of the longitudinal
The energy spectra and energy decay obtained with this
new RDT simulation are shown in Figs. 6 and 5. One sees
that one now captures exactly the energy decay of the DNS '°
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FIG. 10. Comparison of the PDF of the transverse velocity increments de-
e ‘ L L FOROMA, fined by Eq.(10) for /=27/256 (5X 10’ statistics at=0.48 for the veloc-
10 5 0 5 10 ity field from the four simulations DNS (circles, RDT (crossel
RDT+constant viscositfdiamond$, and RDT+viscosity computed from
FIG. 8. Same as Fig. 7 fof =27/64. RNG (triangles.
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FIG. 11. Same as Fig. 10 fof=27/64. FIG. 13. Structure functions computed with the PDF of the longitudinal
velocity increments from DN&ircles and the RDT(diamond$ for the first
(solid line), seconddash-dotted ling and third(dash-dot-dot linemoments

) . ) (for convenience of presentation, the RDT structure functions have been
increments and Figs. 10—-12 the PDFs of transverse increnultiplied by 10.

ments, for three values df obtained by the DNS, and our

different RDT simulation(with and without turbulent viscos-

ity). At large scale, one observes a quasi-Gaussian behavid@ws one to find the scaling exponents in a more unambigu-
with the development of wider tails as one goes towarddus way:’ The measured exponents in our DNS are shown
smaller, inertial scales. This widening of the PDFs is a clasin Fig. 15 and in Table I. In both the longitudinal and trans-
sical signature of the anomalous scaling observed in turbuverse cases, they are in agreement with the previously re-

lence. It can be measured by studying the scaling propertigeorted relative exponerifsand they display a clear deviation
of the velocity structure functions, from the “nonintermittent” value{,=p/3. Note that mea-

e surements in the atmospheric boundary layer seem to indi-
Sp(/)=(6uy). (1) cate that the transverse third-order scaling exponent is less
In the inertial range, the structure function vary liké. For ~ than one?® We cannot check this directly in our low Rey-
low Reynolds number turbulent flows, the scaling behavionolds number DNS, but observe that this leads to a larger
in the inertial range is very weak or undetectable because th@ifference between relative transverse and longitudinal expo-
inertial range is very short. To exemplify this point, we shownents than the difference between real exponents observed by
in Figs. 13 and 14 the structure functions as a function of théhruva et al”® and Camusset al* Corresponding quanti-
scale separation for the longitudinal and the transverse vdies for the RDT simulation are shown in Fig. 15 and Table I.
locity increments(the structure functions from the RDT One sees that the RDT statistics display larger and more
simulation were shifted by a factor of 10 for the clarity of the intermittent PDF tails for small scales, which makes the scal-
figures. Given the very weak scaling of our structure func-ing exponents take smaller values corresponding to larger
tions, we may use the extended self-similaritfS9S anomalous corrections. Again, this situation is reminiscent of

property?” which states thaSp(/)~S§”’43 even outside the the case of the boundary layer. In fact, the measured values

inertial range of scales. We use this property because it alp our simulation are remarkably similar to those reported in
9 ' property he atmospheric boundary layBtafter the correction taking
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FIG. 12. Same as Fig. 10 fof=2/4. FIG. 14. Same as Fig. 13 for the transverse velocity increments.
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2.5 7 7T R R T ] TABLE II. Scaling exponents of the velocity structure functions from: at-
o mospheric turbulence at 10 08@R, <15 000 [Dhruva et al. (Ref. 28]
o ] channel flow[Toschiet al. (Ref. 3)] near the wall (26cy™ <50) and far
2.0t * from the wall (y*>100) at Re=3000 and boundary layer &,=32 000
o & % [Zubair (Refs. 30 and 5\.
(’ 4
b o o ® Longitudinal
1.5+ * e B Transverse
. [ . Order Dhruva Zubair Toschi 20y* <50 Toschiy*>100 Dhruva
L)
1 0.366  --- 0.44 0.37 0.359
1.0 7 2 0.700 0.70 0.77 0.70 0.680
3 1.000 1.00 1.00 1.00 0.960
1 4 1.266 1.20 1.17 1.28 1.200
o5k ] 5 1493 152 1.31 1.54 1.402
[ ] 6 1.692 1.62 1.44 1.78 1.567
7 1.96 1.55 2.00
0.0¢. . L
0 2 4 6 8
P

FIG. 15. Comparison of the scaling exponents computed from the DN%/iSCOSit and the RNG turbulent viscosity provide intermit-
(diamond$ and the RDT(circles statistics. The longitudinal exponents are Y Yy P

plotted with open symbols and the transverse exponents with closed syn;-ency corrections which are of the same level as the DNS.

bols. This is quite remarkable, since they include only one adjust-
able parameter, tuned as to conserve the total energy. For the
longitudinal case, where an asymmetry is present, the two

into account the fact that we measure exponents relative tgrescriptions give noticeably different results: As one goes

{3) or in a turbulent boundary layé?. They are in between toward lower scales, and as the asymmetry becomes larger

the two different values measured by Tos@Ref. 3] inand  between the positive and the negative increments, the PDFs

above the logarithmic layer in numerical DNS of a channelcomputed with RDT and constant turbulent viscosity display

flow. A summary of these results is given in Table Il. Whentails which are very close to that of DNS, while the PDFs of

a turbulent viscosity is added to the RDT simulation, thethe RDT with turbulent RNG viscosity have a tendency to-

intermittent wings are less pronounced in the PDFs and th@yard a symmetrical shape, thereby failing to reproduce the

anomalous correction decreag@sable |), becoming similar  DNS behavior. This difference of behavior between the RNG

to those observed in the DNS. This agrees with the picture imnd constant turbulent viscosity will be further investigated

which the anomalous corrections are determined by the nonn Sec. .

local interactions, while the local interactions act to restore

the classical GaussiafKolmogorov-like behavior. Obvi- D. Comparison of the “local” experiment with DNS

ously, the shape of the j[urbulent viscosity also influences the Given the comparison of the DNS and the RDTion-

intermittency correction: For the transverse case, where there

is no asymmetry of the PDFs, both the constant turbulen ocal )_S|mula_t|0ns, one could argue that th(_a increase of the
intermittency in RDT is mostly due to the increased mean

intensity of the small scale@vhich is seen on the energy
TABLE I. Scaling exponent of the velocity structure functions measuredSPeCtrum plot A similar increase of the small-scale intensity
using the ESS property, in various simulationstaD.48. could be produced by other means which have nothing to do
with nonlocality, e.g., by reducing viscosity in DNS. Will
there be stronger intermittency in all such cases too? In order

Order K41 DNS RDT RDWVisc. 1 RDT+Visc. 2 Local

Longitudinal to prove that it is not the case, we perform a simulation
1 0333 0353 0361 0.353 0.354 0.344 where, as the opposite of the RDT one, the nonlocal interac-
g (1)'867 3'387 10'(;395 106687 106687 106678 tions at small scales were removed from the Navier—Stokes
4 1333 1295 1.273 1294 1293 1310 (NS) equation and only the local interactions were retained.
5 1667 1573 1.509 1.570 1.568 1.607 In order to keep the local interactions which involve scales
6 20 1.836 1.696 1.830 1.824 1.892 close to the cutoff scales, the velocity and the vorticity fields
7 2333 2085 1.828 2.073 2.064 2.164 were split into three parts: the large scales, the medium
8 2667 2321 1919 2301 2.281 2423 scales near the cutoff, and the small scales. This decomposi-
Transverse tion is defined in Fourier space as follows:
1 0.333 0375 0.388 0.376 0.376 0.352
2 0.667 0707 0.721 0.708 0.709 0.685
3 10 10 1.0 1.0 1.0 1.0 U(k) =u(k) +umnd k) +usd k), (12
4 1333 1258 1.223 1.255 1.253 1.297
5  1.667 1.484 1.390 1.477 1.468 1.578
7 oam lemw 1se  Lezz 1 soss (0T es0Fenddted, a3
8 2667 1991 1.591 1.952 1.882 2.333

where
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FIG. 16. Comparison of energy spectra obtained via the DNS, RDT, and the
“local” simulation at t=0.48.

p

_ FIG. 17. Comparison of the scaling exponents computed from the DNS
U'S(k) u(k) for k< kC/C (diamond$, RDT (circles, and the “local” simulation(squarep statistics.

— The longitudinal exponents are plotted with open symbols and the transverse

0 for k>k./C exponents with closed symbols.

undk)=u(k) for k./C<k<Ck,

=0 for k./C<k and k>Ck., (14 only interactions between distant wave numbers, by contrast
u(K)=u(k) for Cke<k with the ordinary shell mod&~3* which theoretically only

s retains local interactions. In this context, it is interesting to
=0 for k>Ck;. note that the ordinary shell model requires a certain degree of

nonlocality between modes so as to generate intermittency: It
can indeed be proven that the intermittency correction disap-
pears when the separation between two consecutive shell
du(k) +P(u-Vaw) (k) =[P(us Vs (k) tends to zerd® Another known pitfall of the shell model is

_ its incapacity to describe the observed skewnesymme-

P (Uss Vorg) (K) ]k = vAUCK), (15 try) generation along the scale of the PDF of the longitudinal
where P is the projector operator defined bp;;=g; increments. This is annoying, since this skewness is directly
—kik; /K2. In our simulation we choosg= 1.2 and the same related to the nonzero value of the third-order moment, and,
cutoff scalek,=24. The results of this simulation are com- hence, to the essence of the Kolmogorov cascade picture via

pared to the equwalent results from the DNS and the RD1the 4/5 law. Finally, the original shell model is very crude,
simulation. The energy spectra are compared in Fig. 16. Thisince there is no spatial structuverything is described by
“local” simulation contains more energy at small scalesFourier modes We now show how elaborate a cleaner
than the DNS and even the RDT. The bump of energy neamodel of turbulence using localized wave packets, leading to
the cutoff scale, is due to the fact that the “local” approxi- @ description of the small-scale statistics in term of Langevin
mation is introduced only for scales smaller than Despite ~ Processes subject to coupled multiplicative and additive
the high level of energy at small scales, the solution of thigoise.

“local” simulation is much less intermittent than the equiva-

lent field from DNS and RDT. A comparison of the scaling A- The Langevin model of turbulence

exponents is shown Fig. 17 and Table | for both the longitu-  oyr numerical simulations showed that both the energy
dinal and transverse velocity increments. These results coRpectrum(and decay and the intermittency quantities are
firm the idea that intermittency is caused by the nonlocalye| reproduced by a model in which only the nonlocal in-
interactions and not just by the mere presence of the smajbractions are left in the small-scale equations whereas the

Using these definitions, the equation for the “local” simula-
tion was the following:

scales. local interactions of small scales among themselves are re-

placed by a turbulent viscosity term. Such a model is de-
IIl. QUALITATIVE EXPLANATION OF THE scribed by Eq(6) with v replaced by the turbulent viscosity
INTERMITTENCY coefficienty, in the small-scale equations,

Our results can be used to get a qualitative understand-  d;u; +d;(U;u;) + d;(u;U;) = — dip+ v;Au; + oy,
ing of the intermittency via the scale behavior of both the o,
PDF of the velocity increments and its moments. For this, we 9i4;
are going to build a new model of turbulence, mimicking theand o; is given by(7). We are interested in the contribution
small scale nonlocal dynamics. In spirit, this amounts to arof nonlocal interactions to the statistics of the non-Gaussian
“antishell” model of turbulence, because, here, we retainsmall scales. For this, we assume that the large sStale

(16)
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quantities(U and its derivative, andr;) are fixed external 1.0 [T T

processes, with prescribed statistits be defined latey and S\ T <é‘2(1)’€”“°)>i
derive an equation for the small scadleelocity fieldu’, by 0.8 N - <fn(*)afn(f0)>‘_
taking into account the scale separati6iL = e<1. For this, i N L <o(t),0,(t,)> 1
we decompose the velocity field into localized wave packets 0.6 |- AN <O-1(1-)’O-1(-|—0)>‘_
via a Gabor transformiGT) (see Ref. 3p r \\\ 1
0.4 ‘\\\ 7]
a(xk,b) = f glex=x' e ux Hdx',  (17) : _
0.2 e ]
whereg is a function which decreases rapidly at infinity and I Bt S
1<e, <e. Note that the GT ofi is a natural quantity for the 0.0 e T e ]
description of the velocity increments because of the follow-
ing relation: -0.2¢L s . ! ‘
0.0 0.5 1.0 1.5 2.0 2.5
1 =l 0 t—to)/T
u(x+h—u(x—1)= Ef e " Ima(x,k)dk. (18) (t—to

o . _ FIG. 18. The normalized autocorrelation in time for the two force compo-
Thus, velocity increments are related to GT via the Fouri€hentso and ¢ (the turnover timer is equal to 0.18

transform, and all information about thelependence is con-

tained in the GT dependence &ri{the main contribution to

the above-mentioned integral comes frdt-2=/1). On  tions. Let us choosk to be along one of the coordinate axes
purely dimensional ground, we see tiiatk 95u, whered  (without loss of generality because of the isotrpphen the

is the dimension. Therefore, in the sequel, we shall identifycomponents of coincide (up to the sigh with the corre-

kY Im @ with the velocity increment. sponding components of the velocity derivative tensor, and
Applying GT to (6) we have(see Ref. 37 for details we will use this fact in the rest of this section. The velocity
R derivative tensor has been studied in the literature, e.g., in
Di=0-{+ &, — nk*0, (199 Refs. 38 and 39, in terms of correlations between the direc-
where¢ and o, are random processes, given by tions of the antisymmetrical part of the tengthre vorticity)
and the symmetrical pafthe strain. Over a long time, the
2=V 2£U-k—u) vorticity appears to be aligned with the direction of largest
k? ' stretching. Other studies focused on the PDF of the modulus
" (20) of one component. For example, Marcq and Ndarbserve
& =5— 5 (ked), that the derivative has a highly non-Gaussain distribution,
K but with a correlation function which decays rapidly, and can
and be approximated by a delta function at scales large compared

to the dissipative scale. In the present case, we observe dif-
D=+ %V +k-Vy, (21)  ferent features. Because of the isotropy, we can concentrate
only on two quantities, sag;, and&;,. Figure 18 shows the
equal-position, time correlatio® ;(t—tg) = ( £1;(t) £1i(to))
(220 and oy (t—to)=(0i(t)oi(to)) as a function oft—t,. Note
that these quantities are normalized to k-at, in Fig. 18.
H=U-k. (23 First, we see tha€,, approximately coincides witl,, and
a1, coincides witha,,, which is a good indicator of isotropy
(without normalization there would b€,,= —3C;,). Sec-
ond, we see that the correlati@y; and C,, decay to zero
'over a time scale which is of the order of few turnover times
7 (7=0.19). On the other hand, the correlationm®tecay
much faster, over a time of the order g®. Figure 19 dis-
plays the Fourier transforms of the equal-time two-point cor-
relation Dy;(X—Xo) = (&1i(X,Y,Z,t) 1i(Xo,Y,2,1)) and a;i(x
—Xo)=(0oi(x,t)gi(Xg,t)). One sees that all correlations are
very weak beyond R.. The correlationD 1, appears to be
the largest at large scales, but it decays more rapidly than the
In Eqg. (19), the noisef ando, appears as the projector other correlations. We have also investigated the cross cor-
of two quantities, one related to the velocity derivative ten-relations between the noises. The equal position cross corre-
sor, and another related to the Gabor transform of the enerdgtions are displayed in Fig. 20. The correlation is rather
transfer from large to small scales. In the sequel, we presemteak, but there is a tendency for to be correlated withg;
a statistical study of these two noises in physical sgaee  over a time scale of the order af while it is anticorrelated
after inverse Gabor transformirdg, ). We will also consider with the other component of the tensor, over such a time
the Fourier spectra of the corresponding two-point correlascale. The equal time correlations are shown in Fig. 21. No-

5(=U=VkH,

k=—V(k-U)=—VH,

Because the large-scale dynamics is locakispace, it is
only weakly affected by the small scales and the quantities
ando in Eq. (19) can be considered as a given noise. Also
because the equation is linearlin we immediately see that
k90 will also satisfy an equation similar td.9) subject to a
straightforward modification of the force definitions. Before
elaborating more 01119), it is convenient to study in closer
detail the physical parameters of this equation.

B. The noises
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FIG. 19. Fourier transform of the space autocorrelation for the two compo_FIG. 21. Fourier transform of the space cross correlation between the force

nents of the forces- and ¢. Coordinates/ andz are fixed. o and the forcer. Coordinatesy andz are fixed.

tice that the cross correlations are one order of magnitudée additive noise, whereas the second one contains some
weaker than the direct correlations. The cross correlationgseful information about the time correlations via the Taylor
involving &, are essentially zero, while the correlations in- hypothesis(which is valid locally because the large-scale
volving &, display a first overall decay up to=k., fol- velocity is typically greater than the small-scale prigigure
lowed by an extra bump up to the end of the inertial range23 shows the results of the longitudinal and transverse incre-
(k=40). In Sec. Ill D, we will show that this feature is ac- ments for the first component of the additive noisg and
tually related to the energy cascade. the equivalent results for the componegni of the multipli-

One may also note that the two noises are spatially vergative noise are shown in Fig. 24. The PDFs are displayed
intermittent. In Fig. 22, we show isosurfaces of the moduludor /' =2m/256 and 2r/4. One observes wide, quasialgebraic
of the noises, corresponding to 3.5 times the rms value. Fdgils for the additive noise, similar to those observed for the
comparison, the same plot is made for the vorticity. One”DFs of the velocity derivatives. The PDFs&pf are much
observes well-defined patches@fvhich are strongly corre- closer to Gaussian statistic.
lated with areas of strong vorticity. In the case &fthe
patches are much more space filling. The longitudinal comC- The turbulent viscosity

ponentfll is characterized by smaller-scale structures than In Sec. Il C, we discussed the influence of two prescrip-

the transverse componeéi,. tions for the turbulent viscosity, one based on the RNG, one
To obtain an indication about the scale variation of thetaken S|mp|y as constant. In the Seque|’ we shall use the
PDFs of the noise spatial incrementdo;, = o(x+/)
—o(x) and 6&; = §&;(x+/)—&;(x). Note that the first of 12+ B2
wherer, andB are constants ana=k%Im @i is the velocity
increment over a distancekl(hereafter we drop’ in Su).

statistical properties of the noises, we also computed thgimple formula:
u 2\ 1/2
= E ’ (24)
these quantities is directly related to the Gabor transform of

0‘015: o ' ' ' WhenB=0, this formula provides the constant turbulent vis-
I -—-- <Uz(’r),€”(t,)>; cosity. Whenvy=0, it provides a dimensional analog of the
o.crop s <o (1), &(te) > RNG viscosity, and tends to zero ksends to infinity.
[ ——— <02(1)s€12(fo)>:
0.005 — <o,(t),&a(t)>1 D. Statistical properties of the velocity increments
L - We are now going to derive qualitative results by adopt-
0.000 ing two complementary points of view: In the first one, we
: will study the statistical properties of the velocity increments
i in the frame of reference moving together with the wave
_0’005: packets in(k, X space. This corresponds to a Lagrangian
o 010; 1 description in the scale space. In the second approach, we

: replace time with its expression in terms kfas it would
0.5 1'01_1 1.5 2.0 25 follow from the ray equatiori22). This will give as an equa-
(t-t)/7 tion at a fixedk which corresponds to an Eulerian descrip-
FIG. 20. The cross correlation in time between the foroeand £ (-  tiON. As a further simplification, we shall leave for further
=0.19). study the possible correlation between longitudinal and
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transverse velocity increments described for example in Refwhere we have taken into account the fact that, due to ho-
41 and consider a one-dimensional version18), treating mogeneity,¢£ and o have a zero mean. Here, we dropped the
the quantityu=kIm @ as a “velocity increment” over the subscript 0 ink, and the dependence of all involved quanti-
distancel = 27/K, ties on the scale is simply marked by the subsckigthe
scale dependence, D, and\ is still unspecifiedl The sta-
—Uét o — K2 _ _ .
Du=ué+o, —nko, (25 tionary solution of(28) is

k=—Kk¢. (26) o G u —pk2y—Dy+\
k(u)_ k EXP 0 Dy2_2)\y+a Y

Here, we assumed the forcing to be symmetric such that it (29

does not produce any ReThis model can also be viewed as ] o ] )
a passive scalar in a compressible one-dimensional flow. AWhereCy is a normalization constant. The integral appearing

tificial introduction of compressibility is aimed at modeling " (29 can be explicitly computed in two regimes: In the first
the RDT stretching effect which appears only in the highefo"®: foru<kwo, we have ¢;=1v,), and we simply get
number of dimensions for incompressible fluids. C

Study of the noises in Sec. Il B revealed their rich and ~ Py(u)=—— 12+ rok2i2D)
complex behavior. As a first simplifying step, we disregard (Du”=2Au+a) °
these complexities and use the Gaussian, delta correlated apne range ofi for which the PDF follows this algebraic law
proximation, as will be done in Secs. IlID1 and lID2. decreases with increasing scales. It is the lar¢ast hence
Given a rather short time correlation of our delta approxi- it is best observedat the dissipative scale, where the veloc-
mation is rather safe. The delta approximation §as8 more ity increments are equivalent to velocity derivative or to vor-
debatable, and the performance of such a model should hgity. Several remarks are in order about this expression.
further examined in future. Also, the Gaussian hypothesis igirst, notice that the distribution is regularized around0
obviously only valid at large scale, and fgy,. Therefore, by the presence of the parameterbut then displays alge-
the generalization of our results for non-Gaussian noisepraic tails. These are well-known features of random multi-
would be very interesting, and is the subject of ongoing replicative process with additive noigsee, e.g., Ref. 42The
search. In the sequel, we consider the functian®, and\  occurrence of algebraic tails in vorticity PDFs has been
as free parameters. noted before in Refs. 43 and 44 in the context of 2-D turbu-
lence. However, processes with algebraic tails are character-
ized by divergent moments. These divergences can be re-
moved by taking into account finite size effects, like physical
upper bounds on the value of the procésse, e.g., Ref. 14

In the frame of reference moving with the wave packetsfor discussion and referendashich introduce a cutoff in the
in (k, ¥ space, the left-hand side (5 becomes simply the probability distribution. This effect is automatically taken
time derivative. On the other hanli,has to be replaced in into account in our simple model, via the turbulent viscosity,
terms of its initial valuek, and time everywhere including which prevents unbounded growth of velocity fluctuations
the noisesr and¢. Such a transformation from the laboratory and introduces an exponential cutoff.
to the moving frame can obviously change the statistics of Indeed, in the regime>kv,, we see that
and¢. In the Lagrangian description we will assume that we

(30)

1. The Lagrangian description

deal with noises which are Gaussian in the moving frame din PN —uful
; . : ~— . (31)
with correlations functions du Du“-2\u+ta
(o (k(t),t)o, (K'(t),t"))y=2ads(t—t"), This means that at largethe PDF decays like an exponen-
, , , tial, or even faster iD =0 (see the following The exponen-
(&(k(D), &K (1),t))=2Ds(t—t), 27 tial cutoff has been observed in high Reynolds number
(E(k(), Do, (K (1),t')) =2 8(t—t"), turbulence’”® In 2-D turbulence, this feature has also been
o noted by Minet al,** and here finds a detailed explanation.
where coefficients, D, and\ depend on the scale vig. Another important observation is that the PDFs have an

With these noise(25) becomes a Langevin equation for the jntinsic skewness, which can be traced back to the nonzero
velocity increments, Wherze is a multiplicative noiseg, IS y31ye of), i.e., to the correlation between the multiplicative
an additive noise, and:k“u the (nonlineay friction. The  5nq the additive noise. The physical picture associated with
multiplicative noise is produced by the interaction of tWO s correlation is related to the correlation between vorticity
small scales with one large scale whereas the additive NOiSBresent in the large scale strain tensand stretchingasso-
is due to a merger of two large scales into one small scalgjzied with the termUV U, present ino), which is the motor
(therefore, the latter acts at the largest among the smallt he energy cascad®The importance of the additive noise
scales. For Gaussian, delta correlated noises, this Langevii, the skewness generation has been stressed B&fuve.
equation leads to a Fokker—Planck equation for the probabikin here its detailed explanation. Note also that the trends
ity distribution P\(u,t) of the velocity increment, toward Gaussian large scale behavior of the velocity incre-
0P = dy(1k2UP,) + D (U uPy) — Ny (Ud,Py) ments can be easily accounted for if the multiplicative noise
5 5 tends to zero at large scal®(\—0). In such case, the
= Ny (UP) + a9 Py, (28)  process becomes purely additive, and the limiting PDF is
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1/k =32 (diamond3, 1k=42 (circles, and 1k=>52 (triangles. The fits via  longitudinal velocity incrementsm; (square m, (open diamonds m;

formula(32) are given by lines. Note the good quality of the fit. Similar fits (circles, andm, (closed diamonds The lines are the power-law fitk "

for other scale separations and in the longitudinal case were obtained.  (long-dashed ling k™% (short-dashed ling k~°3° (dotted ling, andk~*2
(dash-dot ling

Gaussian fou independent turbulent viscosity, or can also ] o
fall faster than a Gaussidfike exp(—?), for v,xu]. Sucha 2 The Eulerian description

supra Gaussian behavior has been noted bétdrebetween We now consider(25), again in the moving with the
the dissipative and the largest scale, the transition operatggave packet frame, but now we change the independent vari-
via PDFs looking like stretched exponential. able fromt to k=k(t) which satisfieg26). We get
This qualitative feature can be tested by comparison with 5
the numerical PDFs. Our model predicts thétn P/du du — —Pu+ &_ gL 33
should behave like the ratio dink & &’
whereP is a number accounting for the projection operator
dinP  —uy(mu)?+m;—muu+mg gp  Over scales smaller than the cutofkd/ This is a way to
du m,u%—2msu+ msg ' (32) mimic higher-dimensional effects in our one-dimensional

model. Equatior{33) is again a Langevin equation for veloc-

Without loss of generality, we can factorize out the paramity increments in the scale space, with multiplicative and
eterms. The fit therefore only contains four free parameters 2dditive noises which are now expressed in an Eulerian
which can be easily related to the physical parameters of the
problem. We have computed this derivative for the PDF of
longitudinal and transverse velocity increments at various g
scales, and performed the four parameters fit. Examples ar
shown in Fig. 25. Observe the good quality of the fit, but we
stress that there is a rather large uncertainty in the determiZ
nation of the parameter of the fits, which sometimes cannot$
be determined better than up to a factor of 2 by our fit pro-
cedure(a standard least-squares.fithe scale dependence of
the coefficients of the fit is shown in Figs. 26 and 27. Note
that since transverse velocity increments are symmetrical by
construction, we have set;=0 in the fit. Note that in the
longitudinal casem; is smaller than the other coefficients by
two orders of magnitude. This features the smallness of the
skewness, and the weakness of the correlation between th
multiplicative and the longitudinal noigsee Sec. Il B. The ol
parameters have a rough power law behavsme Figs. 26 1 10 100
and 27. Theoretically, one expects the ratio, /m, to be- k!
have like 1/(ok), if (24) holds. The power-law fits of Figs. . ) ) )
26 and 27 provide a dependencek8P3 for the longitudinal FIG. 27. Coefflme'nt qf the fit ofl In(P)/du with (32) as_afunctlon of K for

o5 . transverse velocity incrementsn; (squares m, (diamondg, and m,
case, ank for the transverse case, corresponding t0 ggircles. The lines are the power-law fits: 2% (long-dashed ling k%
scale dependence of, given by k% and k%€, (line): andk~145 (dotted ling.
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form. Similar Langevin processes have been proposed befofgote thatD/« is given by the parametan, in our fit, and is
to explain the scale dependence of velocity increnféft$®  such thatDk?/ « increases withk (see Figs. 26 and 27
but without additive noisé® Therefore, at small scales, the dominant balance is
Th_e noises in t_h|s I__angevm equat_|on are dlfferen_t from ki (U2 = 2n DB2K3(U2"*2). (39)
the noises appearing in the Lagrangian representation and
they would have a complicated statistics if we assumed thafhe solution is(u?")«ck 2", This is the usual “regular”
o and ¢ were Gaussian in the Lagrangian representationscaling in the dissipative zone. For larger scalb®2k?
However, we can simply assume here that the noises arg«, and if @ varies like a power law, the general solution of
Gaussian and delta correlated in the Eulerian representatidB8) is a sum of power laws:
(which is different from the assumption of the previous sec- n
tion) and redefinex, D, and\ as (U= E apan—pk—§(2p). (40)
p=0

(oL (K (k) EHK,t(k)) oy (K t(k))EH(K't(k'))) _ o .
This solution illustrates the famous mechanism of
=2ad(k—k"), “zero-mode intermittency.” Here, the zero mode is the so-
lution of the homogeneous part of E89), i.e., a power law
of exponent—¢(2n). Without the zeroth mode, responsible
(€ 1, t()) oy (KK )€ LKt (K))) = 2N S(k—K') for the firstn— 1 scaling laws, the @th moment will scale in
' LA ' ' general likea(k)" (provided one assumes that this domi-
This allows one to derive the Fokker—Planck equation Cornates the other ter)Tli.e., will be related to the turbulent

(EHkt(k)E (K t(K)))=2D 8(k—K"), (34

responding tg33), forcing. This is the standard Kolmogorov picture. When the
zeroth mode is taken into account, the moment now includes
ka,P(u,k)=d,(PuP)+ Dd,(vik?ud,[ vik?uP]) new power laws, whose exponent is independent of the ex-

ternal forcing, and which can be dominant in the inertial
range, thereby causing anomalous scaling. In the present
(35 case, the scaling exponent is quadratiajrand reflects the
log-normal statistics induced by the Gaussian multiplicative
noise, in agreement with the latest wavelet analysis of Arne-
odo et al®® Note also that the competition between the
zeroth-mode scaling and the scaling due to external forcing

—Nau(vkPudyP) — N d2(vk?uP) + ad’P.

We may us€35) to derive an equation for the moments, by
multiplication by u" and integration oveu. With the shape
of the turbulent viscosity given b§24), we get

ka(u"y = — £(n)(u") +nDBkXu"2) forbids the moments to scale like a power law, thereby gen-
erating a breaking of the scale symmetry.
- unt For odd moments, we cannot perform any rigorous ex-
—An(2n—1)»°k v pansion because all the terms of the equation are of arder

For low order moments, however, the computation of
_ n+1 inly involves velocity increments close to the
tan(n—1)(u"~2), (3e (U /vy mainly invol ty
> an( " ) (39 center of the distribution, for whiclh,~v,. So, for low or-
der, it is tempting to approximate the equation for the odd-
order moments by

n+1

u
—2n%\ BZ<

whereZ(n)=nP—n?Dk*»? is the zero-mode scaling expo-

nent. Forn=1 and taking into account the constraints that
(u)=0 (homogeneity, one gets a sort of generalized  Ka(u*""H=~—¢(2n+1)(u*"*)
Karman—Horwath equation:

—2n2AB%(u?"*2)yp 1, (41)
()= A2 1 N 2N U_2 (37) This approximation is only valid in the inertial range, where
DB\ v,/ DK%\ p /" the last term 0f36) can be neglected. An immediate conse-

) , , quence of this loose approximation is tHg2n+1)={(2n
As in the Lagragg@n case, this means that skewness 5) i the inertial range. Odd momentwithout absolute
(related to nonzergu®)) is generated through nonzero val-  5jeg are very difficult to measure because of cancellation

ues ofA, i.e., through correlations of the multiplicative and ftects which introduce a lot of noise. In our case, due to our
the additive noises. However, due to the turbulent viscosityymited inertial range, we cannot compute these exponents

we cannot explicitly solve the hierarchy of equation. In manyyit 5 sufficient degree of accuracy. A careful investigation
homogeneous turbulent flows, however, the skewlie8%  orformed in a high Reynolds number boundary 13/kow-
portional to)) is quite small, and moments of orden21 o er seems to be in agreement with our prediction, as is
are generally negligible in front of moments of orden 2 ¢pqn in Fig. 28: It is striking to observe th&¢5)~ ¢(6),
+2. For evenmoments, this remark suggests that to first§(7)%§(8), etc., making the curve look as if odd and even
order in the skewness, and fon2 1, the dynamics is Simply  gcajing exponents are organized on a separate Ghirde.
given by second independent experimental 2check gf our prediction
2ny 2n 21,2/, 2n+2 (41) is that ((2n+2)—Z(2n+1)){(u?"*1/(u?"*2) should
kar{u™y=—¢(2m{u™) +2nDB%Xu ) scale, forn>3 like n?. Figure 29 <shows>tr<1at thig is indeed
+a2n(2n—1){u?""2)+ O(\?). (38  the case.
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R L L e L L L LML BB BN N to restore the correct intermittency and the energy character-
istics. Our results agree with the belief that intermittency is
related to thin vortices amplified by the external large scale
strain similar to the classical Burgers vortex solution. Local

a
25 ‘ interactions can be viewed at mutual interaction of these thin
.- intense vortices which result in their destruction, which is
= ) also in agreement with our results.
N} To prove that the enhanced intermittency is not simply

the result of the stronger small-scale observed in the RDT
simulation, we performed yet another numerical experiment
in which the nonlocal interactions were neglected and only
the local ones retained. This resulted in an even higthan
. in RDT) level of the small scales but it exhibited much less
osbam s Lol b bas b b intermittency, which confirms our view that nonlocality is
0 2 4 6 f) 10 12 14 crucial for generation of the intermittent structures.

The result that the net effect of the local interactions is to
FIG. 28. Exponents of the structure function in a high Reynolds numberdestroy the intermittent structures is at odds with a very com-
boundary layer(Ref. 28. Note the tendency fog(2n+1)={(2n+2)  mon belief that the intermittency is due to the vortex recon-
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forn>3. nection process which takes a form of a finite time vorticity
blow-up. Indeed, the latter is a strongly nonlinear process in
IV. DISCUSSION which the local vortex—vortex interactions are important.

) . . However, this process seems to be dominated by another
In this paper, we have shown that nonlocal interaction§,cq| processes the net result of which is to destroy the high-

are responsible for intermittency corrections in the statistica{,orticity structures rather than to create them. It would be
behavior of 3-D turbulence. Removal of the local '”teraCt'onpremature to claim, however, that the same is true at any

in numerical simulations leads to a substantial increase in thsrbitrarily high Reynolds number.
number of the tornado-like intense vortex filaments and to Our numerical approach sets severe limitations to the

stronger anomalous corrections in the higher cumulants ofgye of the Reynolds number we are able to explore. In this
the velocity increments. It is also accompanied by a modifigntext, it is interesting to point out that preliminary tests
cation of the energy transfer in the inertial range, tending (Gggarding the importance of nonlocal interactions have been
create a flatter energy spectrum. The intermittency correcsonqycted on a velocity field coming from a very large Rey-
tions and the spectra are close to that qbserved in high ReYio1ds number boundary lay& Even though the test is not
nolds number boundary layer, suggesting that the nonlocalympiete(the probes only permit the accurate measurement
interactions prevail in this geometry. Thl_s could be e_xplamedof special components of the velocity figldt tends to sug-

by the presence of the mean flow, which geometrically fa-yeqt that nonlocal interactions dominate the local interactions
vors nonlocal triads in the Fourier transform of the nonllnearby several orders of magnitude. Our results would also ex-
?nteractions. We s.howed that replgcing.the removed |°Ca}!)lain the findings of the Lyon teafi,who found that when
interactions by a simple turbulent viscosity term allows ON€yrohing fluid area closer and closer to a large external vorti-

ces, or to a wall boundary, one could measure energy spectra
moving from ak ~>2 law toward ak ~* spectra, while anoma-
lous corrections in scaling exponents would become more
pronounced. In light of our study, this could be simply ex-
plained by a trend toward more nonlocal dynamics via the
mean-shear effects at the wall.

Based on the conclusions of our numerical study, we
developed a new model of turbulence to study the intermit-
tency. It has the form of a Langevin equation for the velocity
increments with coupled multiplicative and additive noise.
We showed how this model could be used to understand
qualitatively certain observed features of intermittency and
anomalous scaling laws. Among other things, we showed
how the coupling between the two forces is related to the

ol A Loy skewness of the distribution, and how algebraic and stretched

. 10 100 exponential naturally arise from the competition between the
p multiplicative and the additive noise. We tested our qualita-
tive predictions with experimental and numerical data, and
Reynolds number boundary layer. Hekg is the prefactor of thénondi- Tound good general ggr.eement. To be a_ble to ,tum our model
mensional structure function of orden. The line isn?, the prediction of our  INt0 @ tool for “quantitative” study of the intermittency, sev-
model. eral developments are needed. The first one is to consider the

LI T 1 §
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FIG. 29. (¢(2n+2)—¢(2n+1))As,+1/As,4 - as a function of in a high
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