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By GREG HOLLOWAYT 
AND MYRL C. HENDERSHOTT 

Scripps Institution of Oceanography, La Jolla, California 92037 

(Received 7 January 1976 and in revised form 14 April 1977) 

An extension of the turbulence ‘test-field model’ (Kraichnan 1971 a)  is given for two- 
dimensional flow with Rossby-wave propagation. Such a unified treatment of waves 
and turbulence is necessary for flows in which the relative strength of nonlinear terms 
depends upon the length scale considered. We treat the geophysically interesting 
case in which long, fast Rossby waves propagate substantially without interaction 
while short Rossby waves are thoroughly dominated by advection. We recover the 
observations of Rhines (1975) that the tendency of two-dimensional flow to organize 
energy into larger scales of motion is inhibited by Rossby waves and that an initially 
isotropic flow develops anisotropy preferring zonal motion. The anisotropy evolves 
to an equilibrium functional dependence on the isotropic part of the flow spectrum. 
Theoretical results are found to be in quantitative agreement with numerical flow 
simulations. 

1. Introduction 
We consider statistically homogeneous, non-divergent, barotropic flow on a 8- 

plane, i.e. 

where $ is the stream function and 6 = Vz@ is the vertical component of the vorticity. 
The Jacobian term provides advection of vorticity while the p-term propagates Rossby 
waves. Some form of dissipation is required in (1) but, for the moment, we avoid 
stating our prejudices on dissipation. Now we impose that g be spatially periodic on 
a rectangular ‘cell’ and so be given by a discrete Fourier series 

g = [ k ( t )  e””. 
k 

The Fourier transform of (1) is 

where y = -/3kx/k2, Ak,* = k x p/p2 and v k  is included as an explicit, but as yet 
unspecified, dissipation function vk  = d ( k ) .  Our aim will be a statistical description of 
(2), averaging in principle over many realizations of the flow, to obtain the evolution, 
from statistically prescribed initial conditions, of ensemble-average covariances 
(ck 5-k). 

t Present address : National Center for Atmospheric Research, Advanced Study Program, 
P.O. Box 3000, Boulder, Colorado 80307. 
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748 G .  Holloway and M .  C .  Hendershott 

If nonlinearity is sufficiently weak that a wave propagates over several wave periods 
without being significantly modified by interaction with other waves then, neglecting 
dissipation, we might proceed by a resonant wave interaction calculation (Kenyon 
1964; Longuet-Higgins & Gill 1967). One supposes &(t) = +(r) exp ( -iwkt),  where 
r = s2t is the slow time scale of wave interaction, t is a fast time scale with units of the 
wave period and E is a small number proportional to the amplitude of the motion. 
By integrating (2) over the fast time scale as t + 03 while supposing that E + 0 such 
that s2t remains finite, one obtains contributions to the slow rate of change of 
from resonant wave triads satisfying 

p + q = k  

and u p  + w~ = wk. (3) 

Such a result is obtained only asymptotically for E -+ 0. A problem is that the dispersion 
relation wk = -Pkz/k2 provides very long periods for very short waves, so that no 
matter how weak the flow (i.e. how long the interaction time) the very short waves 
will interact significantly in times short compared with their periods. More trouble- 
some yet are the components of zonal flow with k, = 0 and hence indefinite periods. 
All interaction with the zonal flow is essentially strong regardless of its amplitude. 
Thus, for a continuous spectrum of Rossby waves, we may not consider E to be small. 

If, on the other hand, we take P negligibly small then (2) is the equation of ‘two- 
dimensional turbulence’. The significant feature of this flow is that vorticity is ad- 
vected without stretching in contrast with the tendency in three-dimensional flow to 
extend vortex lines. Thus two-dimensional advection preserves both mean energy 
density B = sm and mean ‘enstrophy’ density z = “. (Overbars denote area 
averages over the periodic flow cell.) Now energy cannot cascade into ever finer scales 
since this would entail generation of enstrophy. Instead one speaks of a cascade of 
enstrophy into finer scales together with an ‘inverse cascade’ of energy into larger 
scales of motion (Kraichnan 1967). A problem arises when we attempt to relax 
periodicity by letting the period length become arbitrarily large. No matter how small 
/3 is, we shall admit long waves with periods small compared with any interaction time. 
In  other words, on an unbounded P-plane we may not consider E to be large. 

Rhines (1975) suggests that we think of wavenumber space as divided into a wave 
regime and a turbulence regime with a ‘soft’ border between. The border can be 
defined approximately by the condition that wave phase speeds equal fluid particle 
speeds. In the turbulence regime, enstrophy will cascade towards high wavenumbers 
while energy cascades towards low wavenumbers. However, the energy cascade will 
encounter this waves-turbulence border beyond which further energy transfer can 
proceed only weakly by resonant wave interaction. The result is to accumulate energy 
near the waves-turbulence border. Rhines then argues that by inhibiting energy trans- 
fer to low wavenumbers the flow becomes limited in its enstrophy transfer to high 
wavenumbers, resulting in a high wavenumber spectrum which falls off more steeply 
than in a flow without Rossby waves. Finally, the anisotropic dispersion relation 
results in anisotropic evolution from an initially isotropic flow field. Numerical 
simulations show a marked tendency to prefer zonal (east-west) motion. Rhines 
suggests that this may be due to a stabilizing effect of P on zonal flow, possibly even 
resulting in evolution towards a state of steady zonal jets. 

Numerical simulations provide qualitative support for Rhines’ description. The 
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Xtochustic closure for nonlinear Rossby wave8 749 

energy spectrum does become peaked near a waves-turbulence border. The high 
wavenumber spectrum does fall off more steeply with ,8 present though, as we shall 
see, this may be a consequence of Rhines’ assumption of viscous-type dissipation 
vk = vk2.  Finally, simulations do become anisotropic though an end state of steady 
zonal flow remains conjectural. However, this phenomenological admixture of turbu- 
lence and waves ideas does not admit quantitative calculation. Also, the description 
is essentially local in wavenumber space: turbulence-like dynamics bring energy up 
to a border where, somehow, a transition to wave-like dynamics is effected. Indirectly 
the suppression of energy transfer comes to be felt as a limitation on enstrophy transfer 
at high wavenumbers. But are there non-local, direct interactions of waves and turbu- 
lence? Does anisotropy find an equilibrium state short of steady zonal flow? 

This paper attempts a more analytical treatment by extending a class of turbulence 
theories to include wave propagation. The derivation does not depend upon non- 
linearity being either weak or strong. In the limit where waves dominate nonlinearity 
we just recover a resonant wave interaction approximation. 

2. Markovian quasi-normal (MQN) closure 
We employ a closure in which evolution of second moments (Ck(t) c.k(t)) is expressed 

in terms of the values of the second moments (CD(t)  CPD(t)) in other modes, with all 
quantities known only at  the instant t .  This requires that the statistics have evolved 
to a state of quasi-stationarity, by which we mean that secondmoments change slowly 
during a response time of higher moments (the time in which an arbitrary small 
perturbation to any higher moment will decay). 

The label ‘quasi-normal’ here is a bit misleading. Although a formal appeal is 
sometimes made to expansion about a normal distribution, the resulting closure may 
describe statistics which are far from normally distributed. The wave interaction 
approximation (Hasselmann 1962; Benney & Saffman 1966) is a member of the MQN 
class, as are a variety of turbulence models, in particular the ‘ test-field model’ (TFM), 
which has shown agreement with numerical simulations of turbulence (Kraichnan 
1971a; Herring et al. 1974). The ‘direct-interaction approximation’ (DIA) for 
turbulence (Kraichnan 1958, 1959) is a more fundamental approach, couched in 
simultaneous equations for evolution of mode response functions Gk(t, t ‘ )  and 
time-displaced covariances (Ck(t) C J t ’ ) ) .  However, the stationary DIA may be 
abridged to an MQN form by assuming ad hoc that time-displaced covarianees 
decay exponentially as ( C k ( t )  C-k(t’)) = (Ck(t) C - k ( t ) )  exp ( - T k l t - - t ’ l )  for some qr. 
Relationships among the various MQN turbulence models and their relation to the 
DIA are reviewed by Leslie (1973, chaps. 7 and 11) and by Orszag (1974). 

Different approaches may be employed in deriving or justifying a closure model. 
Here we give a heuristic sketch which differs somewhat in style from other accounts, 
e.g. Orszag (1974), but is equivalent in its consequences. 

Ensemble averaging (2) and deleting for the moment all subscripts, coefficients and 
summations, we have an unclosed set of equations 

(4a) 
(4b) 
( 4 4  

d(CC)Idt = (CO + (CCC), 
d(CCOldt = (CCC) + ( 5 0  KO + (CcCC)c, 

d<CCCOCldt = <CCCC)C + <CC) ( C m  + acc!Y, 
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750 G.  Holloway and M .  C .  Hendershott 

etc. A superscript C denotes a cumulant, i.e. the remainder of a moment, say of the 
fourth moment (ccco, after any contributions from non-vanishing lower moments 
(here products of second moments (flo (co) have been removed. Terms appear on the 
right sides of ( 4 )  owing to the linear and nonlinear terms in (2). In each of (4u-c), 
nonlinearity introduces the next higher cumulant; hence the closure problem. 

What is appropriately termed a ‘ quasi-normal ’ or fourth-cumulant discard hypo- 
thesis closes ( 4 )  by taking (c&Qc = 0 for all time. However, direct integration of (4a, b )  
then produces quite unrealistic results for turbulence, evidenced in part by unrealiz- 
able, negative values for ( /&I2) (Ogura 1962). The wave interaction approximation is 
different: based on distinction of fast and slow time scales t and T ,  integration of ( 4 b )  
is considered only in the limit of large t and leads, without dissipation, to indefinitely 
large values of (cco on a vanishingly small (in continuous wavenumber space 
measure) resonant interaction set (3). Substitution of these resonant members of (4b) 
into ( 4 a )  gives the wave interaction approximation and assures that 0. Given 
plausible initial conditions, the evolution of (cccoc turns out not to matter in the limit 
of vanishingly weak nonlinearity. On the other hand, Ogura’s calculations clearly 
indicate the significant role of fourth cumulants in turbulence. 

A plausible turbulence model, without waves, is obtained by observing that in 
( 4 b )  products (co (go cause (cco to build up until checked at  some level by a dissi- 
pation term - v(LJJJ obtained from (2).  If dissipation is weak, (cco will become quite 
large unless it is being relaxed statistically by (cccoc, which we therefore assume to 
be simply of the form ([[cot = - p ( [ c o ,  where p is some coefficient. Observe that ,u 
is not a usual eddy viscosity since we have not altered (4a). Now, by quasi-stationarity, 
we integrate ( 4 b )  over a time large compared with (v +,u)-l and substitute the result 
into ( 4 a )  to get 

with 8 = (v +,u)-l. The object of an MQN turbulence theory is to evaluatep or, equiva- 
lently, 8. The TFM is one such evaluation. The wave interaction approximation uses 
8 to isolate resonant wave triads: 8 = n6(wp +up - wk) with 6 the Dirac delta-function. 

3. ‘Test-field model’ with waves 

to model the evolution of second moments Iz,(t)  = (ck(t) c-k(t)) by an equation 
Restoring the algebraic detail which wad deleted in the preceding section, we seek 

where 

and 

are geometric coefficients obtained from ( 2 ) .  a k p g  and bkp, depend only on the lengths 
k, p and q. Sums over wave vectors k, p or q range over some finite set of modes, usually 
defined by requiring that the wave vector’s length be less than some k,,,. It is this 
Fourier truncation of (1) in passing to (2) which has caused us to admit the explicit 
dissipation vk. However, the form of vk still need not concern us. 
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Stochastic closure for nonlinear Rossby waves 751 

e , , ,  is the unknown array which becomes the focus of our attention. If O-k,9,q is 
constrained to be invariant to permutations of its indices, then the sum of the right- 
hand side of ( 5 )  over k vanishes. Likewise the weighted sum of Ilk2 times the right-hand 
side of ( 5 )  vanishes. Thus the constraint to a fully symmetric O-k,9,, assures that non- 
linear interaction preserves both mean enstrophy and mean energy density. 

The ‘test-field model’ (Kraichnan 1971 a )  completes the specification of O-k,9,q up 
to a single universal empirical constant which could be evaluated, for example, in 
terms of an estimated Kolmogorov inertial range constant. We sketch the TFM, 
here appealing to a correspondence between ( 5 )  and stochastic models of Langevin 
type (Leith 1971). 

For the moment we omit waves, considering just two-dimensional turbulence. 
Equation ( 5 )  attempts to approximate the statistical evolution of (2). But (5) is also 
an exact closure for a set of linear stochastic differential equations 

where 

and ( fk( t ) f -k( t ‘ ) )  = ( e-k,9,pakpqz92g) s(t- t ’ ) -  

Equation (6) is a Langevin equation describing a random variable [k evolving under 
the influence of a linear drag vk + Tk and a random force fk. 

Physically, O-k,9,q has the role of a relaxation time of phase correlations among 
modes k, p and q, which we might estimate by some heuristic argument. However, 
the correspondence between (5) and (6) holds for any non-negative choice of O-k,Bq. 
As a linear equation, (6) is characterized by its Green’s function Gk(t, t ’ ) .  Thus, with- 
out using further physical arguments, we may already obtain a form for O-k,9,q in 
terms of the form of (6). This integral time scale for correlations among the stochastic 
model variables c-k, &, and ta is 

9+a=k 

G-k(t, t’) G9(t, t ’ )  Gq(t, t’) dt’. 
- - m  

O-k.9.a = J (7) 

Equations (5)-(7) are a closure for (2), omitting waves. Unfortunately a spurious 
effect has been introduced which becomes evident in the stochastic model representa- 
tion (6). Evolution of each stochastic variable [k depends only on the variance in 
other modes (c,, [-J while any phase information is lost. Very large scales of motion, 
approaching uniform translation, contribute to  ?& and hence to a rapid decrease of 
q t ,  t ’ )  in t - t’,  in turn resulting in a small value for O-k,9,a. In reality large-scale 
motion advects triple phase correlations nearly coherently and so, in the limit of 
uniform translation, ought to have no effect on the value of O-k,9,q. 

The TFM restoresha proper Galilean invariance by adopting O-k,9,q in the form (7) 
while estimating a modified @k( t ,  t ’ )  which suppresses the effect of large-scale advection. 
The heuristic argument (Kraichnan 1971 a)  is that O-k,9, represents the deformation 
of fluid parcels. In  a Lagrangian description of the motion, deformation is accomplished 
only by pressure and viscous forces. Accordingly we seek that part 6, of the overall 
Gk which is due to pressure effects. Pressure in incompressible Navier-Stokes flow is 
evaluated from the incompressibility condition, i.e. pressure is the agent which pre- 
vents a eolenoidal flow field from developing a longitudinal part. Thus a measure of 
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the pressure effect is had by computing the rate at which a solenoidal flow would 
generate a longitudinal flow in the absence of a pressure term. This measure of the 
pressure effect is asswned to be related to the actual triple-moment relaxation through 
an empirical constant of proportionality. 

Kraichnan's derivation of the TFM for Navier-Stokes turbulence is given in velocity- 
component notation, which is inconvenient for many problems of quasi-geostrophic 
motion, e.g. Rossby waves. We therefore rederive the TFM for two-dimensional 
turbulence in the scalar notation of stream functions and velocity potentials. Consider 
an advecting field given by a vorticity fl having the statistics of the turbulence. 
Let this field advect a passive test field given by a stream function $ and velocity 
potential 4. x = V2$ and u = Vz4 are the vorticity and divergence of the test field. 
We seek the rate a t  which advection by y will mix the two parts x and u. This is 

and 

for which an MQN closure is 

A 

where x k  = ( x k x - k ) ,  & = ( u k u - k )  and where e-k,9,q is another unknown array. We 
observe that these equations describe the solution of another Langevin model: 

(d/dt + f i k )  ek = .fk, 

where f i k  = x '-k, p,q skpp 2 9  
P+q=k 

with &kp, = I k X pI4/k2p4q2. 
The argument is that the rate fik is a measure of the rate ,uk of self-deformation of the 
5 field. Including viscosity, p k  is written as 

where g is a phenomenological constant of order unity and e-k,9,q is again given by 
(7) but with a modified Green's function 4 ( t ,  t') depending on ,uk in place of q k .  

Now the reintroduction of waves is straightforward. Since wave propagation 
results in deformation of fluid parcels, this linear effect enters the modified Green's 

0 for t < t', 
8(t - t ' )  for t 2 t'. 

function as 
(d/dt + i u k  +A) d k ( t ,  t ' )  = 
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Stochastic closure for nonlinear Rossby waves 753 

We are therefore obliged to consider complex i?k(t,t’) and hence, by (7) ,  complex 
1 9 - ~ , ~ , ~ .  However, in closing (2)-(5)  one adds complex conjugates, thus retaining only 
the real part of (7). In  its quasi-stationary form, 8-k,v,q is 

a&, t ’ )  av(t, t ’ )  a,($, t’) dt’ 

4. Comparison with numerical experiment 
We have integrated ( 2 )  over a set of wave vectors lying in an annulus between 

1 k( = 1 and I k( = k,,, = 62. The amplitude of the motion is scaled such that a nominal 
‘eddy turnover time’ 27r/f.,.,. M 1 ,  where is the root-mean-square vorticity. 
It is observed that a unit of time corresponds to significant evolution of the flow. 
Integrations are then carried to t = 6.4,  well into the quasi-stationary decay of the 
flow. Initial conditions consist of a random phase c k  in an isotropic wavenumber band 
near k, = 1 1 .  As the flow evolves and energy migrates into larger scales, the character- 
istic energetic wavenumber k,  decreases to k,  M 5 at t = 6.4.  

The relative role of p can be expressed by defining k )  = /?/[r.m.,., a wavenumber for 
which the Rossby-wave period of the faster westward-propagating waves ( M 27rklp) 
is of the order of the eddy turnover time. However, we caution against too literal an 
interpretation of k)  as a waves-turbulence border. Rather, k )  is the lower wavenumber 
of a transitional region, roughly from k)  to perhaps 3kb, within which most triad 
interactions are characterized by M w?k.,v, a, where p and q are typically greater 
than k,, for which we find below that p M Cr.,.J27r. We have investigated three 
choices of p: /3 = 0 ( k )  = 0 ) ,  p = 12.5 ( k )  = 1.5 +- 2.5) and /3 = 25 ( k )  = 3 +- 5 ) ,  where 
we indicate in parentheses that kl increases as [rem.8. decays from an initial value cr.m.fl. M 8 toafinalvalue Cr.,,.,. x 5.The casesmaybedescribedas ‘nop’(forreference), 
‘small p’ and ‘moderate p’. We have not investigated the case of large ,6 in part be- 
cause we intend shortly to approximate ( 5 )  in an expansion about isotropy, i.e. about 
p = 0, and in part because the extension of resonant interaction theories to waves of 
small but finite amplitude warrants a more careful study on its own. 

Lastly we must provide a truncation-induced dissipation vk. At present there appears 
to be no fundamental justification for the form of the dissipation operator. We have 
chosen 

vok&,, x { O  for k < kd,  
vk = (k;,, - k:)2 ( k 2 -  k2,)2 for k 2 k,, 

a form which is discussed, though hardly justified, by Holloway (1976).  With k,,, = 62 
we have taken k, = 45 and vo = 0.005, a conservatively large damping rate which 
results in a falling off of the spectrum in the dissipation range k, < k < k,,,. 

In turbulence theory it is usually most convenient to assume isotropic statistics, 
summing the modal z k  in concentric shells to obtain a scalar enstrophy spectrum Z(k) .  
Then ( 5 )  gives the evolution of Z ( k )  in terms of integrals over Z ( k ) .  With /I present we 
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cannot assume isotropy. Rather we follow Herring (1975), resolving 
Fourier harmonics 

into angular 

& = Z,(k) e i n h ,  
n 

where $k is the angle between k and the kx axis. Odd harmonics $&, 3$k, etc., vanish 
since 2, = 2-k.  The result is an open set of coupled nonlinear integral equations for 
the even harmonics Z,(k) .  It is difficult to see how consistently to truncate this set, 
both in the number of harmonics and in the order of coupling, except for truncation 
at the lowest order in the departure from isotropy. Thus we limit the representation to 

2nk& = Z ( k )  (1 - R ( k )  COS 2$k), (10) 

where a term in sin 2#k vanishes by symmetry about the kx axis. In  the appendix we 
substitute (10) into ( 5 ) ,  integrating over $k and linearizing in the departure from iso- 
tropy, i.e. at order R ( k )  or a t  order p2, the lowest order in p. The result is the following 
pair of equations for the isotropic enstrophy spectrum 2 ( k )  and the anisotropy R ( k ) :  

d - R(k) = X( k )  +jkms'dpR( k,  p )  R(p) - v(k)  R( k) ,  
dt 1 

where 

and 

The various symbols are defined in the appendix. Equation ( 11)  describes the evolution 
of the isotropic enstrophy spectrum in terms of a forcing rate ( ( k )  and a damping rate 
q(k) .  Anisotropy does not appear in (1  1). However, penters the coefficient Il(e), namely 

Il(s) = 4ne/(e2 + 2 4 4 ,  where e(k ,p ,  q)  = (2k2/pa) ( p ( k , p ,  q)), 

when k < p ,  q. Equation (12) describes the evolution of the anisotropy in terms of a 
source term S ( k ) ,  a transfer-of-anisotropy term with kernel K ( k , p )  and a return-to- 
isotropy coefficient v(k) .  X(k) ,  K ( k , p )  and v (k )  are given by integrals over the isotropic 
spectrum with ,l3 entering the coefficients I,, I, and 13. 

Figure 1 shows the isotropic enstrophy spectra at t = 6.4 in the three numerical 
experiments: p = 0, p = 12-5 and p = 25. Also shown are calculated values of the 
TFM distortion rate p ( k )  according to equation (A 5) for the particular choice g = 0.7 
of the TFM parameter. Subsequently we shall investigate other choices g = 0.6 and 
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FIGURE 1. (a)  Observed isotropic enstrophy spectra at t = 6.4: . ... *, B = 0 ;  - - -, B = 12.5; 
- , /l = 25. ( b )  Theoretical deformation rates p ( k )  calculated from the observed enstrophy 
spectra; g = 0.7. 
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a 

10-2  
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g = 1.0 to be compared with a previous estimate g = 0.65 (Herring et al. 1974) obtained 
in a direct simulation of two-dimensional turbulence. Two immediate observations 
are that, with /3 present, less enstrophy is found in lower wavenumbers, and that the 
high wavenumber spectra (k > 10) are quite similar in the three experiments, falling 
roughly along a power law with slope between k-1 and k2. Z ( k )  cc k-l would corres- 
pond to a Kolmogorov-type enstrophy-cascading subrange. Over 10 < k < kd the 
theoretical ,u(k) is rather flat with a value of the order of cr .m.8 . /2~  x 1, supporting our 
earlier definition kb = ,4/[,.,,,.. 

To isolate the role of ,4, we consider in figure 2 just the experiment with p = 12.5. 
In figure 2 (a)  we reproduce the distortion rate p ( k )  along with the forcing rate [(k) 
and damping rate q(k). t(k) > ~ ( k )  at very low and at very high wavenumbers indicates 
the transfer of enstrophy into these wavenumbers while [(k) < q(k) near k x k, x 5 
indicates removal of energy from these wavenumbers. [(k) and q(k) very nearly cancel 
over 10 -= k < k,. In  figure 2 ( b )  we recompute each of these rates for the same iso- 
tropic enstrophy spectrum, but now omitting ,4. The result is that all rates increase 
at all wavenumbers. However, the effect on spectral evolution is most evident for 
small wavenumbers k 5 kp, where the difference [(k) -q(k) approximately triples in 
value. Over 10 < k < k,, both [(k) and q(k) have increased but remain nearly 
in cancellation. Finally, and at first surprisingly, [(k) - q(k) increases significantly in 
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FIGURE 2. (a) For the case p = 12.5, theoretical curves show the deformation rate p(&), the 
damping rate ~ ( k )  and the forcing rate &k). (a) The role of ,8 in (a)  is revealed by recomputing 
,a@), q(k) and [(k) with p set to zero. 
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FIGURE 3. Observed anisotropy at t = 6.4 for B = 0, P = 12-5 and P =  25. 

the dissipation range k > kd though Rossby-wave propagation is totally negligible 
on these scales. We return to the discussion of these results in the next section. 

Figure 3 shows the anisotropy in the three experiments at t = 8.4. With p present, 
strong zonal ( R ( k )  > 0) anisotropy develops in k 5 k j .  Although the zonal tendency 
is less near k,, the anisotropy increases slightly with k over k > k,. When the flow 
has become quasi-stationary, we expect a balance among the source, transfer and 
return terms on the right-hand side of (12). Thus an equilibrium anisotropy profile is 

This R(k)  is shown in figure 4 for p = 12.5 and various choices of the TFM parameter g. 
Good agreement is found near g = 0-65. Also shown are the contributions due to 
S(k)/w(k)  and I K ( k , p )  R ( p ) d p / v ( k )  in the case g = 0.7. Poorer agreement is found in 
figure 5 ,  where p = 25, but this is to be expected since both the low-order representation 
(10) and the linearizing approximations made in obtaining (1.2) will fail as R(k) 
becomes a substantial fraction of upity. For larger values of /I one must return to the 
use of (6), (8) and (9) directly. 
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FIGURE 4. For the case B = 12.5, theoretical curves for the equilibrium anisotropy are compared 
with the observed anisotropy for three choices of the TFM parameter g. Dashed curves show the 
roles of generation S(k)  and transfer K ( k ,  p) of anisotropy compared with a return-to-isotropy 
coefficient Hk). 

5. Discussion 
A principal feature of this paper is that we avoid any fundamental distinction 

between wave-like and turbulent dynamics. The result provides a continuous des- 
cription ranging from waves of arbitrarily small amplitude to fully developed turbu- 
lence, as given by (8) and (9), namely 

8-k.p,q = ~k.b(1/(&p,q+W2_tp,q)* 

For vanishingly small amplitudes, and omitting dissipation, becomes vanishingly 
small while 8-k,p,q isolates resonant wave triads: 

8-k,p,q Td(0-k + u p  + Oq) as PG2/w2 0. 

The appearance of a transition from turbulence-like to wave-like dynamics may seem 
to occur abruptly since Pk, the measure of nonlinearity, increasingly draws its contn- 
butions only from nearly resonant wave triads. In  the limit of weak wave interaction, 
dependence on the phenomenological constant g vanishes as one expects. 
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FIGURE 5. For the case /3 = 25, the theoretical equilibrium anisotropy is compared with the 
observed anisotropy. Here the approximations made in obtaining (12) begin to fail 88 R a I .  

When advection thoroughly dominates wave propagation, 

and we recover the ‘ test-field model ’ for two-dimensional turbulence. The fact that 
this is the TFM is non-essential. We could have introduced waves a t  (7), obtaining 
the same wave interaction limit but a less accurate turbulence limit. 

We have examined the consequences of this closure for the case of barotropic 
Rossby waves, for which U, = -/3kz/k2. A wavenumber kb = b/cr.m.s,, where cr.m.8, 
is the root-mean-square vorticity, may be thought of as a lower wavenumber in a 
transitional zone, roughly from kb to 3kb, over which the character of the flow changes 
from more wave-like when k < kb to more turbulence-like when k > 3kb. But neither 
regime is pure. If kb is small compared with a characteristic energetic wavenumber k,, 
then any departure from isotropic statistics will be expected to be small and we can 
simplify the theory by considering the flow field to consist of an isotropic part plus 
a lowest wave vector harmonic of anisotropy. The resulting approximations (1  1) 
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and (12 )  are found to be in some agreement with numerical simulations and to recover, 
in part, the observations of Rhines (1975). 

One effect of $ is to suppress isotropic enstrophy, or energy, transfer into large 
scales of motion k < k,. This effect is represented in the coefficient I, in (11).  For 
k 9 k,, I, 3 477 as in turbulence, whereas, for k < k,, I, vanishes as I, cc k.  In  a 
subrange k, < k, < k < k, the effect of /3 is slight. Asymptotically as kdlkl + a, 
one may expect approach to an enstrophy-cascade subrange Z ( k )  K k-I. Kraichnan 
(1971 b )  argues though that, in a subrange as steep as k-l, enstrophy transfer across 
very high wavenumbers is directly influenced by shearing on larger scales up to k,, 
leading to a logarithmic correction Z ( k )  K k-l (In k/k,)--*. Now if k, x k,, wave 
propagation renders the large scales less effective in shearing the fine scales, sup- 
pressing somewhat the logarithmic correction. Although numerical simulations with 
k,lk, x 10 cannot realize such subranges, we may observe in figure 1 that the spectra 
with $ present do exhibit flatter shapes over 10 < k < k,, implying that /3 is in- 
hibiting some enstrophy transfer across high wavenumbers. This is supported by com- 
paring theoretical rates in figures 2 (a) and ( b ) ,  which show that, for a given isotropic 
spectrum, ,5 suppresses transfer into the dissipation range k > k,. We infer that 
Rhines’ observation that $ produces a steeper high wavenumber spectrum can 
be attributed to his use of a molecular form for the eddy viscosity, i.e. vk = v,,k2, 
leading to a much broader dissipation range over which a steeper spectrum is 
expected. 

Another important effect of $ is to induce anisotropy. For sufficiently small depar- 
tures from isotropy, this effect is described by (12) in terms of a source, or forcing, 
term X(k) ,  a transfer term I K ( k ,  p )  R ( p )  dp by which anisotropy in the wavenumber 
p induces anisotropy in the wavenumber k ,  and a relaxation, or return-to-isotropy, 
term v ( k )  R ( k ) .  When these three effects are balanced, an equilibrium profile results 
as shown in figures 4 and 5. Dashed curves in these figures show the separate roles of 
the source term S ( k )  and transfer term I K ( k , p )  R(p)  dp scaled by v ( k ) ,  for the choice 
g = 0-7. In  fact, $ acts as a source of anisotropy across the entire spectrum. However, 
v ( k )  x 2c(k) increases rapidly with k,  approximately as k2 as seen in figure 2. Thus the 
direct effect of $ results in large departures from isotropy in k < kfl  with negligible 
anisotropy over k > k,. 

Transfer of anisotropy alters this in three ways. First, small scales of motion are 
directly sheared by the large scales, producing substantial zonal anisotropy in high 
wavenumbers despite the return tendency. Second, actual relaxation of anisotropy 
is not measured only by the return-to-isotropy coefficient v ( k ) .  For k M p > k,, the 
positive kernel K ( k , p )  tends to maintain anisotropy so that a continuous spectrum 
of anisotropy exhibits a weaker return tendency than one would suppose from v (k )  
alone. A third effect is due to negative K ( k ,  p )  in k < p x k,. Indeed, it is a distinguish- 
ing feature of flow in two dimensions that the back-reaction from anisotropy in higher 
wavenumbers is to induce oppositely signed anisotropy (here meridional) in low wave- 
numbers. As the figures show, this meridional tendency acts effectively to limit the 
growth of zonal anisotropy in k < k,. 

A few further comments should be made. Our use of the Rossby-wave dispersion 
relation was really incidental. wk may be chosen arbitrarily so long as w-k = -wk, 
suggesting that the formalism provides a more general closure for nonlinear waves. 
An objection may be that Rossby waves are unusual since they derive from a first- 

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022112077000962
Downloaded from https:/www.cambridge.org/core. Access paid by the UCSD Libraries, on 08 Mar 2017 at 22:34:36, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112077000962
https:/www.cambridge.org/core


Stochastic closure for nonlinear Rossby waves 76 1 

order wave equation, i.e. allow only westward phase propagation. More commonly 
we should encounter a second-order wave equation 

However, this factorizes into a pair of first-order equations in the variables 

and 

whence $k = (i/a@k) (4g - #i). closure consists of coupled master equations for three 
species of second moments: ($i $Ik), (4; $?k) and Re ($$ $f). These master equa- 
tions, in turn, correspond to components in the closure of a Langevin equation for a 
vector random variable (&, 4;). 

Another point is that, if we strictly omit dissipation vk in the truncated set of 
equations (2), then methods of classical statistical mechanics may be applied to 
predict evolution to an inviscid equilibrium state 

which is Kraichnan’s (1 967) equipartition solution for inviscid, spectrally truncated, 
two-dimensional turbulence. It may be verified that this is the stable, stationary 
solution of ( 5 ) ,  omitting dissipation. y1 and yz are determined from the average energy 
and enstrophy density and the truncation wavenumber. We note especially that the 
inviscid equilibrium solution is independent of p, so that the effects of /3 can be asso- 
ciated only with disequilibrium processes, i.e. the response to the disequilibrium initial 
state and the role of dissipation. Thus, for example, omitting dissipation in (2), we 
should expect much the same early departure from isotropy but, after some very long 
time, a complete return to isotropy. Indeed, substitution of the equilibrium isotropic 
spectrum Z ( k )  = 2nk/( y1 + y2 k2) into (12) leads to R(k) = 0. 

One can imagine extending closure theories to include such effects as underlying 
irregular topography or the resolution of vertical degrees of freedom (baroclinic 
modes). Beginnings of such theories may be found in Herring (1977), Holloway (1977) 
and Salmon (1977). For the case of unforced, inviscid, spectrally truncated equations 
of flow in two layers with p, irregular bottom topography and lateral boundaries, 
absolute-equilibrium solutions are given by Salmon, Holloway & Hendershott (1976). 
A rather surprising feature of these absolute-equilibrium solutions is their physically 
realistic appearance despite quite unrealistic dynamics, i.e. no average energy transfer 
among modes. Equilbrium calculations show, for example, the prevalence of steady 
anticyclonic circulation around hills and the prevalence, in two-layer flow, of baro- 
tropic motion on scales larger than the internal Rossby radius of deformation. The 
fact that such features persist qualitatively in realistic flows, i.e. far from equilibrium, 
indicates the statistical-mechanical tendency towards entropy maximization. Com- 
pared with these equilibrium calculations, turbulence theoretical closures can be 
characterized as theories of the disequilibrium statistical mechanics of quasi-geo- 
strophic motions as, in the present case, for Rossby waves. 

Though the results of closures for more complicated situations are not yet available, 
we may still note some of the more immediate connexions with the present work. 
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Thus, in barotropic flow, p is equivalent to a uniform bottom slope. The tendency 
towards zonal anisotropy on the P-plane can be identified as a tendency towards flow 
along contours off IH, where f is the rotation rate and H the depth of fluid. However, 
for topographic elements of finite extent, an important difference arises: on the un- 
bounded P-plane anisotropy is due solely to disequilibrium processes. Over topography, 
these disequilibrium processes enhancing contour flow of arbitrary sign act in the 
presence of an equilibrium tendency towards contour flow of a definite sign, i.e. anti- 
cyclonic around hills. Another effect of topography is to prevent the transfer of an- 
isotropy from the large to fine scales of motion, plausibly by providing a negative 
contribution to the transfer kernel K ( k , p )  and so producing a strong isotropizing 
effect on small scales. In  saying this we assume no mean zonal flow, hence no resonant 
forcing of topographic Rossby waves. Finally, if we consider flow in two layers, the 
effect of p is to propagate both faster barotropic and slower baroclinic Rossby waves. 
It was noted that absolute equilibrium is characterized by barotropic motion on large 
scales with uncorrelated (mixed barotropic and baroclinic) motion on small scales. 
Extension of the present barotropic theory then suggests that disequilibrium flow 
in two layers will develop an anisotropic correlation between, say, the stream functions 
in the two layers. For flow initially isotropic and uncorrelated between layers, we 
expect zonal flow on scales larger than the internal deformation radius to become well 
correlated (barotropic) while the larger-scale meridional flow remains uncorrelated 
(mixed barotropic and baroclinic). These concluding remarks are only qualitative. 
In quantitative predictions and comparisons, we can expect to assess both the validity 
of Markovian quasi-normal kinds of closures as well as their usefulness in realistic 
geophysical fluid dynamics. 

This study was prompted by the previous investigations of Dr P. B. Rhines. Much 
of this development was substantially clarified in conversations with Dr J. R. Herring 
and Dr U. Frisch. Computations were performed at  the National Center for Atmos- 
pheric Research, which is sponsored by the National Science Foundation. This work 
was supported under Grant NSF-ID074-23117. 

Appendix. Low-order representation of anisotropy 
We have supposed that for sufficiently small B, in the sense that kb is small compared 

with k,, a departure from isotropy will remain small, so that we may adopt a low- 
order representation 

where Ak = 1 is the discrete wave-vector separation. The consistency of (A 1) depends 
upon a calculation showing that R(k) is in fact small compared with unity. We sub- 
stitute (A 1) into ( 5 )  and (8), approximating summation over p by integration 

Subsequently we separate Z ( k )  and R(k) by integration 

j;d$.. 
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T 

\ 
\ P  

q = k m i n  4 q = k m a x  

FIQURE 6. The domain of integration A. 

First it is convenient to change the integrals around a bit. Let x, y and z be the 
interior angles of a triangle opposite sides k, p and q. Integration is rewritten as 

where the domain of integration A, in which k, p and q can form the sides of a triangle, 
is shown in figure 6. Integration over A is considered to be performed twice, once for 
each of the following choices of triad: 

#p = #kkz, #a = #k 7 y* (A 2) 

In isotropic turbulence these choices do not matter and a single integration over A 
may be doubled. 

Equations (5) and (8) become 

and 

The separation of (A 3) into isotropic and anisotropic parts remains complicated by 
the (bk dependence of B-k,p,a, which is due primarily to the #k dependence of &,Q,q. 

The #k .dependence o f p k  is weaker, being derived from t3-k,p,a and R @ )  in (A4). 
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Thus on substitution from (A 4) into (A 3) we may consistently retain only an iso- 
tropic estimate of p k ,  i.e. 

Finally, the smallness of kb compared with kl means that triads all of whose com- 
ponents lie in k 5 k, will be relatively ineffective and we shall approximate the y5k 
dependence of d k , 9 , q  by the #k dependence in that mode k, p or q which has the least 
modulus k, p or q. Call this mode 1. Then we take for O , , ,  

Pu(& +PufP) +lufa) 
'--k93q = (p(k) + p ( p )  +p(q))2+ (/32/212) (1  + cos 2f$kcos 2a sin  sin 2a)' 

where a is the interior angle opposite 1 when 1 + k and a = 0 when 1 = k. Since this 
o-k ,p ,q  remains symmetric in its indices, we retain the property that nonlinear inter- 
actions preserve energy and enstrophy. 

Integrations over #k are of three kinds: 

cos u d u  
1 + (1  + cos u cos 201 f sin CT sin 2a)/e 

(2e2 + 4e + 1) COB 4a + 1 
= 2ne 

where e (k ,p ,q )  = (p(k)+p(p)+p(q))2/( /32/2Z2) and the integral is the sum over the 
sign choices f . With these expressions, (A 3) yields (11)  and (12), where terms of 
order R2 or order P2R are dropped. Further discussion and interpretation of this 
derivation, including calculation up to order P2R, are given by Holloway (1976). 
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