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Flexible polymers in dilute solution enhance the viscosity in slow flows. But in strong, rapidly 
varying, shear fields, they behave elastically. A turbulent cascade (from large to small scales) should 
thus be deeply modified when the elastic stresses become comparable to the Reynold's stress. A 
(tentative) scaling picture for these effects has been proposed by M. Tabor and the present author1): 
it involves one unknown exponent n relating polymer deformation (~,) and spatial scales (r) in the 
cascade. We now show that, depending on the control parameters (turbulent power; polymer 
concentration and molecular weight) the cascade may proceed according to two "scenarios". In the 
first scenario 1 ) the smallest Kolmogorov eddy occurs when the chains are only partly stretched. In the 
second scenario, the smallest eddies display nearly full chain extension: polymer degradation is 
expected to be much more serious in the latter case. 

We also transpose these ideas to wall turbulence, in the first scenario. At a distance y from the 
wail, the smallest eddy scale available r**(y) is a decreasing function of y (very different from the 
classical Lumley picture, where it is an increasing function of y). The overall result is again an 
increase of the buffer layer, provided that the polymer concentration exceeds a-very  low but 
finite- threshold. 

We point out finally that the elastic effects discussed here could be present in many other systems: 
one amusing (although impractical) example is a binary mixture near a consolute point: the 
concentration fluctuations should be very similar, in this effects, to a polymer solution with coil size 
(the correlation length), at the overlap concentration c*. 

1. Introduction 

Flex ib l e  po lymer s  in di lute  solut ion can reduce tu rbu len t  losses very signifi- 

cant ly1) .  T h e  m a i n  ( tentat ive)  in te rp re ta t ion  of  this effect is due to Lumley2) .  H e  

e m p h a s i z e d  tha t  r emarkab le  visco-elast ic  effects can occur  only  when cer ta in  

h y d r o d y n a m i c  frequencies become higher  than  the re laxa t ion  ra te  of  one coil  

1 / T  z ( the " t i m e  cr i ter ion") .  H e  then p roposed  a crucial  assumpt ion :  namely  that,  

in reg ions  of  tu rbu len t  flow, the solut ion behaves  as a fluid of  strongly enhanced 

v iscos i ty-  p r e s u m a b l y  via  regions of  e longat iona l  flow. On  the o ther  hand,  

L u m l e y  no t i ced  that  - for  t, u rbu len t  flow near  a wall  - the  viscosi ty in the l amina r  

sub l aye r  nea r  the  wall  should  r ema in  low: this last  observa t ion  does  agree wi th  

the  v i scomet r i c  da t a  on  dilute,  l inear  po lymers  in good  solvents,  which show 

shea r  th inning3) .  Star t ing f rom the above  assumpt ions ,  and  pe r fo rming  a careful  
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matching of velocities and stresses beyond the laminar layer, Lumley was able to 
argue that the overall losses in pipe flow should be reduced. 

This explanation has been rather generally accepted. However, it is now open 
to some question: in recent experiments with polymer injection at the center of a 
pipe, one finds drag reduction in conditions where wall effects are not involved4,5). 

This observation prompted Tabor and the present author to try a completely 
different approach6): namely to discuss first the properties of homogeneous, 
isotropic, 3 dimensional turbulence without any wall effect, in the presence of 
polymer additives. This "cascade theory" is described in section 2. The central 
idea is that polymer effects at small scales (high frequencies) are not described by 
a viscosity, but by an elastic modulus. The general notion of elastic behavior at 
high frequencies is classical for molten, entangled chains3). We claim that it is 
also important for dilute polymers. In our approach the viscosity effects are 
mostly trivial, and we do not even discriminate between solvent viscosity and 
solution viscosity. 

In section 3 we return to wall turbulence, and try to set up a modified version 
of the Lumley approach, where, at each distance y from the wall, we have a 
cascade, but it is truncated elastically. This gives a law for the minimum eddy size 
r** versus distance y which is qualitatively different from Lumley's viscous 
effect. But the net result is still an enhancement of the intermediate "buffer 
layer". We expect drag reduction from this, although we have not carried out the 
detailed analog of Lumley's matching. 

In section 4 we list some more general systems which can show drag reduction 
on turbulent flow. Some of the systems are dominantly elastic while others are 
probably dominantly viscous. 

Our whole discussion is very qualitative. But, even at this modest level, it leads 
to a surprisingly rich classification of possible cascades and flows. For instance, 
in bulk turbulence, we have three control parameters: a) the dissipation per unit 
mass e; b) the polymer chain length, or equivalently the number of monomers per 
chain N; c) the monomer concentration c (or the number of coils/cm 3 cp = c / N ) .  

This 3 dimensional parameter space can be split into regions where different 
"scenarios" for the cascade should occur. The identification of these scenarios is 
a natural aim for future experimental research. 

2. The cascade theory 

2.1. The time criterion 

Our starting point is the classical view of Kolmogorov 7) for homogeneous, 
isotropic, 3 dimensional turbulence. 
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At each spatial scale (r)  there is a characteristic fluctuating velocity U(r), 
related to (r)  by the condition 

e = constant. (2.1) 
r 

We must compare the characteristic frequencies U(r)/r  to the Zimm relaxation 
rate of one coil 8) 

1 kT  
- -  ~ - -  ( 2 . 2 )  
T~ //0 R3 '  

where k is the Boltzmann constant, T the temperature, */0 the solvent viscosity, 
and R the gyration radius of the coil at rest. We focus our attention on linear, 
flexible, neutral polymers in good solvents, where the Flory law holds 9,1°) 

R ~ N3 /Sa ,  (2.3) 

a being a monomer size, and N the number of monomers per coil. 
At large scales r, the hydrodynamic frequency U/r is smaller than 1/Tz. But, 

if we go down in scale, we may reach a value r = r* where the two frequencies 
become equal. Thus 

U(r*)  T z = r*. (2.4) 

Solving the coupled equations (2.1), (2.4) we arrive at 

r *  = (ETz3) 1/2 ( - -  N2"Tel/2), (2.5) 

U* = (eTz) 1/2 ( -  N°'%'/2). (2.6) 

Note that r* (and U*) depend on molecular weight, but not on concentration. 
Another parameter of interest for our discussion will be the Reynolds number 

computed at the scale r*, namely 

U *r * eTz 2 
Re* . . . .  ( -  N3%), (2.7) 

p p 

where 1, = ~o/P is the kinematic viscosity, p being the fluid density. 
The condition (2.4) defining r* is the natural expression of Lumley's time 

criterion2). Most interesting viscoelastic effects will occur only at frequencies 
higher than 1/Tz, or equivalently at scales r < r*. 
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2.2. The passive range 

If our solute macromolecules are very dilute, their reaction on the flow pattern 
is weak. Thus we expect that there exists a certain interval r* > r > r** where 
eddies of size r are still described by the Kolmogorov cascade, but where the 
polymer begins to undergo strong distortions. 

2.2.1. Information from laminar flows 
Let us concentrate first on elongationalflows. Two regimes have been probed in 

some detail. 
(i) Constant shear rate z/(fig. 1). Here one expects that the coils are essentially 

unperturbed when ? < 1/Tz and that they are strongly elongated when ~ > 
1/Tz11,12,1°). This sharp coil-stretch transition has been observed in an important 
series of experiments by Keller and coworkers13a4). We might think at first sight 
that this transition should show up in turbulent flows and bring in some 
important nonlinear effects. We shall argue, however, that this is not correct: for 
the situations of interest, where "~ (as seen by the molecule) is rapidly varying in 
time, the coil stretch-transition disappears completely. 

(ii) Variable shear rates. Two examples are shown on figs. 2a, b: in fig. 2a we 
have a duct with a periodic modulation of the cross section. In fig. 2b we consider 
the converging flow towards a very thin ( -  500 ,~) capillary. The main conclu- 
sion, obtained first from detailed calculations by Daoudi 15) for a coil under 
periodic modulations, is the following: whenever the modulation frequency is 
higher than the Zimm relaxation rate, the coil follows passively the deformations of 
the local volume element. The dimensionless elongation h of the coil is entirely 
fixed by the flow. 

Of course there are still some local modulations in the coil shape: more 
specifically, if we call co the modulation frequency, we can define subunits of p 
monomers such that 

( 
0), 

7"z(p) 
T/0a3p 1.8 

T (p) k r  ' 

(2.8) 

( r )  = const, r-3 (2.9) 

where Tz(p) is the Zimm type of the subunit. Inside each subunit we still have 
some relaxation, but at larger scales the coil deforms affinely. 

These considerations have been transposed long ago zS) to the converging flow 
of fig. 2b. Here the shear rate at a distance r from the entrance point is of order 
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! 

Fig. 1. The tubeless siphon: a dilute solution of long, flexible polymers can be sucked up over large 
intervals h ( -  20 cm). This shows the dramatic effects of the polymer induced stresses in longitudinal 
shear flows. 

÷ ÷ "~" + .I- + 

X ~ k X ~ 

+ ÷ ~ + -t" ~ + + 

+ ÷ + + + + 

( . )  

+ ¢- 
/ 

+ + + 

(b) 

Fig. 2. Two (approximate) examples of longitudinal shear flows, a) Tube with periodic constriction; 
b) entry of a capillary. In both cases the molecules which lie exactly on the axis of symmetry (xx') 
experience a purely longitudinal shear. 
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Viscoelastic effects occur for r < r*, where: 

9(r*)  = 1 / L .  (2.10) 

At distances r > r* the coils are not deformed. At distances r < r* they deform 
affinely, and their elongation is 

•= (?)2 (3d). (2.11a) 

A similar discussion can be given for a 2 dimensional flow, where the fluid 
converges towards a slit. Here the result is 

r *  
X = -  (2d). (2.11b) 

r 

Thus for a simple longitudinal flow, there is always a simple power law relating 
the striction parameter r*/r  and the polymer elongation. 

2.2.2. Transposition to the Kolmogorov cascade 6) 
We now make a bold assumption: namely that for flows which are admixtures 

of longitudional shear and simple shear, and which are turbulent, there remains a 
power law between polymer elongation and spatial scale 

X(r)  = , (2.12) 

where n is an unknown exponent. The extreme case quoted in eq. (2.11) suggests 
that n < 2. In practical discussions we shall attempt to use n = 1 and n = 2 as 
possible values. 

It may be worthwhile to return here to the definition of molecular elongation. 
For  one particular coil, the dimensionless elongation h(D can be constructed 
from the radius of gyration/~ in the distorted state 

~2 
= R ( 2 . 1 3 )  

where R is the radius at rest [eq. (2.3)1. For an ensemble of coils in a turbulent 
flow, we should select the coils which belong, in real space, to eddies of size r 
(and which do not belong to any smaller eddy). Then the average of X(1) over this 
population is what we call h. One immediate question concerns the distribution 
of h(1 ) values within the population. In the present, naive, approach, we assume 
that this distribution is reasonably narrow, so that, for instance, the average of 
the squares is given by 

(h~l)) = k2 x2 (2.14) 
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with a constant k 2 which is independent of r, and of order unity. It may well be 
that this assumption of narrow distributions is not satisfactory, and that indepen- 
dent  exponents nln 2-.- would be required to describe the successive moments of 
the elongation. But, at our present level of ignorance, we shall omit this 
complication. 

To summarize: we expect that any coil, located in eddies of size r < r*, will 
follow passively the surrounding volume element, and will deform accordingly. 
We postulate a scaling law describing this effect [eq. (2.12)] in terms of a single 
exponent  n. 

This simple behavior, with afline deformation, and without significant reac- 
tions of the coils on the flow, will hold in a finite interval of spatial scales 
r*  > r > r**.  We call this interval the passive range. 

2.3. The first scenario: semi-stretched chains 

2.3.1. Stresses in a partly stretched state 
Let us now consider the reaction of the polymers on the flow: when our coils 

are stretched by a factor ~, a certain elastic energy is stored in each of them. We 
shall, for the moment, assume that the coils are significantly stretched (2~ >> 1) 
but  that they are still far from full extension: the deformed size k is still much 
smaller than the contour length Na: or returning to eqs. (2.3-13): 

1 << h << N 2/5. (2.15) 

Since N - 104-103 in typical experiments, we may go up to )~ - 100. 
What  is the elastic energy of a coil in this regime? In the harmonic approxima- 

tion, it would be proportional to ()~ - 1) 2 (or equivalently to h 2, since 2~ >> 1). 
However, for coils in good solvents, the harmonic approximation is not very 
good: the shape, and the monomer repulsions, change with 2~. This has been 
analyzed by  Pincus16). 

The final result is an anharmonic energy 

F 1 -~ kT)~ 5/2 (1 << )~ << N 2/5) (2.16a) 

or a free energy per unit volume 

F~1 = -~kThS/2= G)k 5/2, (2.16b) 

where G has the dimensions of one elastic modulus, and is linear in concentra- 
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tion. Equivalently the restoring force on one spring is 

k T  
f l  --- - - X3 /2  (2.17a) 

R 

and the stress due to c / N  springs/cm 3 is 

C 
z -- - ~ f l X R  =- Fel. (2.17b) 

2.3.2. The elastic limit r~* 
Whenever z is much smaller than the Reynolds stresses o U  2, the reaction of 

the polymer on the flow is negligible. If we go towards smaller and smaller scales, 
X and "r increase, while the local Reynolds stress pUZ(r) decreases. Thus, at a 
certain scale q**, the two stresses become equal. 

G[)~(r~'*)] 5/2= pU2(rl**).  (2.18) 

Using the Kolmogorov formula (2.1) this leads to 

, . .  (,n 32_)1 
r*  = Xv' v = -~- + , (2.19) 

where we have introduced a dimensionless parameter 

G 
X ~ p U . 2  ( -  cN-Z'se-t) .  (2.20) 

X is a natural measure of concentration effects. Consider a typical case with 
U* = 1 m / s ,  O = 1 g / c m  3, ca 3 = 10 -4, a = 2 A T = 300 K, N = 104. Then 

G = 60 e r g / c m  3 and X = 6 × 10 -3. Depending on our choice of n, the exponent 

v might be in range t 1 ~ - g .  

2.3.3. Comparison with the Kolmogorov limit 
Can we effectively go down to the elastic limit ;-1"*, retaining the inertial 

cascade all the time? The Kolmogorov scheme is always truncated by viscous 
dissipation at a scale r, defined by7): 

r *  
- -  = (Re*)  3/4. (2.21) 
r~ 

The elastic limit is observable only if r~** > r~. Comparing (2.19) and (2.21) we 
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find that this condition is equivalent to 

X > ( R e * ) - 3 / 4 0 .  (2.22) 

The condition (2.22) has no counterpart in the Lumley scheme, where drag 
reduction was expected to occur at arbitrarily low polymer concentrations. Here, 
we do find a minimum X, or equivalently, a concentration threshold c m, below 
which the polymer should have no visible effect. Using eqs. (2.20) for X and (2.7) 
for Re*,  we can find how the threshold concentration c m depends on N and e: 

C m - -  N 2 " 8 - 2 7 / v E  1 - 3 / 4 v .  (2.23) 

Since 1 /0  is expected to be in the range 3-6, c m should be a strongly decreasing 
function of N. It may well be that for long chains, c m is extremely small and 
practically invisible. But systematic experiments at variable N might detect the 

threshold c m. 

2.3.4. Ultimate fate of the turbulent energy 
At the scales r = r**, the liquid should behave like a strongly distorted rubber, 

carrying elastic waves (longitudinal and transverse) with comparable kinetic and 
elastic energies. 

At the scales r < r** inertial nonlinearities are not, by themselves able to 
generate smaller structures. But the elasticity is also nonlinear, and may have the 
ingredients required to produce shock waves in the "rubber".  This process may 
imply a further thinning of scales-  down to the natural width of a shock front. 
This scheme is completely conjectural: we may deal with a sea of rarefaction 
waves and shock waves, with very peculiar couplings between them: Thus, we do 
not  know the ultimate fate of the turbulent energy. 

On the whole, it is tempting to assume that the formation of new eddies is 
strongly restricted for r < r**. Using the description of eqs. (2, 18-23), this 
would then lead to a truncation in the cascade at r = r~** (the index 1 stands for 
the "first scenario" with partly elongated chains, which was the only one 
discussed above). 

The result is 

r~'* = r*X  °, (2.24) 

r~* * - N 2 7 -  2.8 o e l / 2 -  o c o. ( 2 . 2 5 )  

We expect at last a qualitative change, and possibly a truncation, of the cascade 
at r = rl**. Note that rl** should increase rapidly with N. 
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Recent experiments on pipe turbulence or with planar mixing layers17), using 
strophometry or laser Doppler anemometry, do suggest that polymer additives 
can suppress certain small scales. But detailed proposals, such as (2.25), for the 
truncation, remain to be checked. 
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Fig. 3. Reynolds stresses and molecular stresses in a Kolmogorov cascade with a dilute polymer 
solution, a) In the first scenario, the Kolmogorov cascade is truncated at a certain scale r**: at this 
scale, the chains are only partly stretched; b) in the second scenario, the trunction occurs (at a scale 
r2**) where the chains are totally stretched. 



TOWARDS A SCALING THEORY OF DRAG REDUCTION 19 

2.4. The second scenario: strongly stretched chains 

Let us return to the passive regime, and assume that we can reach very small 
scales r, so that the polymer under flow may become fully elongated. Returning 

to (2.15), we see that this corresponds to ~, = hm~ x = N 2/5. Inserting this value 
into the scaling law (2.12), we arrive at a certain characteristic scale 

rE** = R * N  -2/(5n). (2.26) 

We call rE** the stretching limit. The meaning of r2** is made more apparent  by 
the construction of fig. 3 which is a log-log plot of the stresses as a function of 
the striction ratio r* / r .  When )~ gets very close to ~'max, the stresses tend to 
diverge (detailed laws for this have been constructed on simple molecular 
models): this fixes rE**. 

In  this second scenario the behavior at scales r smaller than r**  is probably 

rather  different: viscous forces are very important when we have rod particules 
immersed in a fluid; it may well be that viscosity takes over at r = rE**. 

3.  F l o w  n e a r  a wall 

3.1. A reminder on pure fluids 7) 

Wall turbulence is characterised by a velocity U~ such that the wall stress is 
equal to pU 2. The average velocity profile for a pure fluid is represented in fig. 4: 

U(y) 

u S 
6 

y:- 

Fig. 4. Average velocity profile in the wall turbulence of a pure fluid (qualitative). y is the distance 
from the wall, and 8 = v/U~ is the thickness of the laminar sublayer. At y >> 8 the profile is 
logarithmic. 
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it is linear very close to the wall, in a laminar sublayer of size 

= - -  (3.1) u, 

then, at long distances from the wall, it is logarithmic. At any distance y (>> ~) 
from the wall we find eddies with waves vectors k lying between two limits: the 
largest size (or the smallest wave vector -1 kmin) is given by the distance y itself; the 
smallest size (or the largest wave vector -1 km~,) is given by a Kolmogorov limit r, 
similar to eq. (2.21). The main difference is that now the dissipation e is a 
function of the distance to the wall. 

e = U,3/y. (3.2) 

A formula, equivalent to (2.21, for r~(y) is 

(~)1/4 ~3/4yl/4 
(3.3) 

Thus the eddies expected around the observation point (y)  have wave vectors in 
the range 

1 1 
-y < k < ~3/4yl/-------~" (3.4) 

We call the lower limit the geometrical limit, and the upper limit the viscous 
limit. The range of turbulent eddies is shown on fig. 5. 

3.2. The Lumley model for polymer solutions 2) 

Lumley kept the viscosity in the laminar sublayer at its Newtonian value, but 
he assumed an increased viscosity ~/t in the turbulent regions. This implied that, 
at any distance y from the wall, the Kolmogorov limit r~(y) was shifted 
upwards; in the log/log plot of fig. 5, the new viscous limit is represented by a 
dotted line, parallel to the original limit (slope - 4  according to eq. (3.3)). The 
higher the concentration, the higher the shift of the viscous limit. 

The net result is a shrinkage of the turbulent domain: beyond the laminar 
layer, we now find a buffer layer, of size increasing with the polymer concentra- 
tion. It is then natural to expect that the turbulent losses be reduced; Lumley 
gave a detailed argument to show this2). Note that the whole effect occurs at 
arbitrarily low c: as soon as we add some polymer, the viscous limit shifts. 
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Fig. 5. The distribution of eddy wave vectors k at various distances y from the wall. a) Pure fluid: 
the smallest eddies are defined by the viscous limit of Kolmogorov. b) Polymer solution in the Lumley 
scheme: the limit is shifted to the left but the slope of the limiting line remains the same (-4). 

3.3. A modified oersion in the first scenario 

Let  us assume that the discussion of  section (2.3) holds: the chains are part ly 
stretched, bu t  never fully extended, and there is an elastic limit r~**, given, in 

terms of  the local energy dissipation e, by  eqs. (2.21, 24, 25). Inserting eq. (3.2) for 

e(y),  this gives 

rl** ( y )  _ U 3(1/2- O)yO- 1/2 N 2.7- 2.8OCO" (3.5) 

Let  us fur ther  assume that no singular dissipation occurs at scales smaller than 
the elastic limit. Then we are led to a modified Lumley construction, shown in fig. 
6. There  is an  elastic limit, described by the dot ted line, and the slope of  this line 

is reversed in sign. At  very low c, the new limiting line intersects the geometrical 
limit at thickness y smaller than the laminar sublayer 8: in this regime, we expect 

no  macroscopic  effect. But, beyond  a certain threshold c o (o stands for: onset), 
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Fig. 6. The plot of fig. 5, transposed to the present model, in the first scenario. The maximum wave 
vector of turbulent eddies can depend upon an elastic limit: note the difference in slope with fig. 5. At 
very low polymer concentrations c < c6, this limit is never relevant. Above c = co, it becomes 
relevant. When the elastic limit reaches point A the polymer concentration just corresponds to coils in 
contact (c = c*). 

the  t u r b u l e n t  d o m a i n  is ac tua l ly  t runcated .  The  scal ing s t ructure  of  c o can  be  

e x t r a c t e d  f rom (2.5), wr i t ing r ~ ' * ( 8 )  = 8. c o is the wal l  ana log  of  the  concent ra -  

t ion  c m i n t r o d u c e d  in our  d iscuss ion of  homogeneous  turbulence.  In  m a n y  

p r a c t i c a l  cases,  c o will be  very small .  But, conceptua l ly ,  the existence of  c o 

reveals  a s ignif icant  difference with  the Lumley  model .  

I f  we increase  c b e y o n d  c o, the  elast ic  l imi t  shifts u p w a r d  in fig. 6, and  we 

aga in  f ind a buffer  layer :  we conjec ture  that ,  in this regime, d i ss ipa t ion  is 

r educed .  
A t  a ce r t a in  higher  concent ra t ion ,  the  in tersec t ion  of  the elastic l imi t  and  the 

K o l m o g o r o v  l imi t  reaches po in t  A. A t  this moment ,  the largest  eddies  cease to 

sa t i s fy  the  t ime  cri ter ion.  W e  expect  tha t  any  add i t i on  of  po lyme r  b e y o n d  this 

p o i n t  wil l  b e  less effective. 
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It turns out that the polymer concentration associated with point A is a 
familiar object of solution theory: it is the concentration. 

c* = N / R  3 = a - 3 N  - 3 ~  (3.6) 

at which neighboring coils begin to overlap. Thus, in the interval c o < c < c* we 
expect a significant drag reduction, increasing steadily with c. At concentrations 
beyond c*, the behavior is more complex, because some eddies are operating in a 
Newtonian regime, and the trivial increase of Newtonian viscosity due to the 
polymer may become the leading feature. 

4. Conclusions and perspectives 

4.1. Elasticity versus viscosity 

The main idea of this paper is that flexible coils, even in the dilute regime, 
behave elastically at high frequencies: a description of small eddies in terms of a 
renormalised (real) viscosity is not entirely adequate. 

A Kolmogorov cascade remains unaltered by polymer additives only down to a 
certain limit r** where the polymer stresses balance the Reynolds stresses. In the 
second scenario, this occurs at full stretching. Chemical degradation is probably 
severe in this last case. 

The fate of the turbulent energy below the limiting scale r** is unclear: in the 
first scenario, it might result from a delicate balance between elastic shock waves 
and rarefaction waves. In the second scenario, viscous effects may be immediately 
dominant. 

4.2. Other elastic systems 

a) Apart from linear polymers, many other systems may show an elastic 
behavior at high frequencies. One obvious example is branched polymers, which 
may show an improved resistance to degradation. However, the regime of 
extreme deformation (the analog of the second scenario) is reached at much small 
elongations X: we need a special discussion of branched systems, and the details 
of the branching statistics (e.g. the number of internal loops) will be important. 

b) Another family of interesting systems is obtained with binary fluid mixtures 
near a consolute point. Ruiz and Nelsord 8) have studied situations where, at the 
starting point, the two fluids are not fully mixed. They pointed out that the 
resulting concentration gradients induced elastic stresses in the system, and that 
these stresses react on the turbulent field. 
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c) We may also consider a modified version of the Nelson-Ruiz problem, 
where the binary mixture is macroscopically homogeneous; there remains an 
effect due to fluctuations of concentration, with a characteristic size ~ (the 
correlation length). These fluctuations are remarkably similar to polymer coils: 
is the analog of the unperturbed polymer size R. There is a characteristic time 
(first introduced long ago by Ferrell and Kawazaki) which is the exact analog of 
the Zimm time (eq. (2.2)) with R ~ ~. There are elastic tensions (although, to our 
knowledge, the analog of the nonlinear Pincus formula, eq. (2.16), has not been 
worked out). The fluctuations span all space: this is the analog of a polymer 
system at the concentration of first overlap c* = N / R  3. In practice, the main 
limitation is that, to reach long times T z (needed to satisfy the time criterion) we 
need a large ~, i.e. a good temperature stabilisation, in the one phase region, near 
the critical point. 

d) Similar effects may exist in the 2-phase region, where small droplets are 
constantly broken (and coalesce) in turbulent flow: here, the elasticity of the 
droplets can be expressed in terms of one interracial tension, following the classic 
papers of Taylor. Very near to the critical point, however, we should return to a 
microscopic description: the basic formulas are described by Aronowitz and 
Nelsonl9). 

4.3. The third scenario 

All our discussions have used, as a starting point, the "t ime criterion" of 
Lumley: spatial effects have been ignored because the coil size R is usually much 
smaller than the smallest eddy size. However, after stretching, the situation may 
be different. A deformed coil of length ~R, with X >> 1, may become compara- 
ble to the eddy size r: this may lead to a third scenario - an idea first suggested to 
us by E. Siggia. It is easy to construct the scale 1"3"* at which we would meet this 
effect. It is far more difficult to perceive what would happen at even smaller 
scales. In practice, the third scenario should occur only if we achieve turbulence 
even at very small scales, with extremely large Reynold's numbers; it will 
probably be associated with strong degradation. 

4.4. Open problems 

All our discussions are extremely conjectural a) The very existence of a single 
exponent n characterizing the elongation at different scales (eq. (2.12)) is un- 
proven. (Among other things, we might need a family of exponents to give 
separate scaling law for the various moments 2,".) b) The behavior of the cascade 
beyond the elastic threshold is entirely unclear, c) The intermittency features 
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which are omi t ted  in the Kolmogorov  description of  the cascade may  be much  

more  significant for  polymer  solutions than for pure liquids. 
However ,  we feel that  the proposed scheme, the classification of  scenarios, and 

even the tentative scaling laws which we propose, should be of  some use to guide 

fu ture  experiments.  
A p a r t  f rom the elastic systems discussed here, there also exist some interesting 

quest ions with rigid rods: they do have an orientational entropy, which leads to 

some analog of  an elastic energy in aligning flows: but  they cannot  follow the 

local  de format ion  affinely, as done by the coils. Viscous dissipation is thus much 

stronger.  It  m a y  be that the Lumley scheme holds for rods. 
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