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Several original self-similar solutions are known in gasdynamics ( *). and were classified 
by Zel’dovich and Raizer [l] as self-similar solutions of the second kind (see also [;LJ). 

The formal definition of self-similar solutions of the second kind given in [l] is as fol- 
lows: the exponent appearing in the expression of self-similar variables canr?ot, in the 
case of such solutions, be directly derived from dimensional considerations on the basis 
of given defining parameters, as is possible with self-similar solutions of the first kind 

(see [3]). This exponent is derived by solving a system of ordinary differential equations 
to which the construction of self-similar solution is reduced (from the. condition of exist- 
ence of the entire solution of the boundary value problem corresponding to that system), 
The reason for the occurrence in various problems of self-similar solutions of the second 

kind has not been, so far, fully explained. The asymptotic behavior of the nonstationary 

filtration theory applied to the solution of the Cauchy problem of an elastic fluid in a 
deformable medium at extended times is considered here, In the case of an elastic me- 
dium the asymptotics is represented by the known self-similar solution of the first kind, 
while the problem of filtration through an elastic-plastic medium reduces to the deriva- 

tion of a new self-similar solution of the seco.id kind. The obtained results lead to cer- 

tain general conclusions. 

1. A simple sxamplc and ths statement of problem, (1)Let us 
first consider the elementary example, viz. the Cauchy problem of the classic heat con- 
ductivity equation, which also defines pressure distribution for the case of elastic fluid 

filtration in an elastic medium 
f?U Pu 
- =-- a2 =, 
(It 

- cx <z< 30, t >o (1.1) 

with the initial condition (see Fig. 1) which is conve- 
-_I___--- 
9 niently written 

Fig. 1 
Here u, is an additive constant, E is a certain length 

scale, Q is the “total extracted heat” , i, e. the quantity used in the theory of filtration. 

proportional to the amount of fluid extracted up to the initial instant, and u0 ($1 an even 
dimensionless function of its dimensionless argument. It is assumed that function u0 (5) 
is sufficiently smooth and decreases fairly rapidly with increasing 5, and that 

*) The Guderley, Landau and Staniukovich solutions of the convergent shock wave prob- 
lem, those of Zel’dovich and WeizsBcker of the short shock. and others. 
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-00 

Solution of the Cauchy problem (I. 1). (1.2) may, by means of dimensional analysis 
(the n-theorem, see [3]) be presented in the form 

where F is a dimensionless function of its dimensionless arguments, easily written in 

explicit form. We shall now consider the asymptotics of solution (1.3) for t -+ co, 

assuming that parameter 5 = x / fa?t remains finite. Argument 11 = Z j m 

will now tend to zero. Assuming that function F f& q) for IJ + 0 and finite E, tends 
to a finite value (this is readily proved in this very simple case), we find that the pre- 
dominant term of the asymptotics of solution (1.3) for t --t co is expressed by the well 
known formula U _ u = 

0 f (8 = J’(E, 0) (1.4) 

Obviously, the transition to limit with TJ --f 0 and finite E may be considered as cor- 
responding to 1 -+ 0 and constant 5 and t, hence.(l.4) is the solution of Eq. (l.l).cor- 
responding to 2 = 0, i.e. to the initial distribution in the form of &function. From 

Eq. (I. I), the conditions of symmetry and integrability we readily derive 

f(E) = +exp $ 
The above example is typical of self-similar solutions of the first kind. This is so, 

because, when the “not self-similar” argument 9 = Z! / v&? tends to zero, function 

F (g, q), which represents the solution, tends to a finite limit for finite El while para- 
meter 2 vanishes from the limit problem formulation “without trace”. Hence, it is pos- 
sible to derive the self-similar solution (1.4) in the usual manner by determining the 
exponents on the basis of dimensional considerations, with the assumption that us - 

- U (5, t) depends on parameters X, t, a2 and Q , and only on these. 
2) It was shown in the theory of filtration [4] of a low compressibility fluid through 

porous plastic media that the fluid pressure u satisfies equation 

(1.5) 

We shall assume aa2 > or2 (we consider the very simple case where a single process 

of consecutive pressure drop and increase occurs). 

Let us consider the Cauchy problem for Eq. (1.5) with the same initial condition(1.B). 
As was shown in [5], the solution of the problem thus formulated exists, is unique and its 

second derivative with respect to x is continuous. Similarity considerations lead to the 

following form of solution of the Cauchy problem : 

On similar considerations, and again assuming the finiteness at limit of function 
F (5, q, e) for finite z and q -0, we conclude that the limit solution (1.4) should, 

as in the previous case, be of the form 

UO (1.7) 
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However, there is no solution of Eq. (I. 5) in the form (1.7) which would be continu- 

ous, would have a continuous derivative with respect to .X and would satisfy the natural 

conditions of symmetry at infinity. In fact, if we substitute (1.7) into (1.5) we obtain 
for f the following expression: 

e-3 + ;-&v -0 ((‘<C <,<o). $&$+=O (b-$~<m) (1.8) 

Here &, is a coordinate at which (Et)’ prcportional to du / at vanishes. After inte- 
gration we obtain 

nj , 1 
“-dy ?- 2 -v = Cl (‘,<EECol, $- + +u = G ibIdE<=) (f-9) 

Due to symmetry df f dg = 0 for E = 0; when 8 + 00 t u (futwxian f is assumed 
to be integrable) and df / &E tend to zero. Hence, c, = c, -_ 0, and integration of 
the preceding equation yields 

i=Csexp * P < 4 < CO)? f ==Ceexp$ fEo<S<Q) WO) I 
where c, and C4 are new constants. The pressure and flow contirruity conditions stipulate 
the continuity of f and df / dE when E = &,, from which and from preceding equations 
we obtain the system 

EoZ CT3 exp -- -z z (:,exp+., c&&p-$=C&e*p- J$ 

When E -f; 1 this system does not have a nontrivial solution for any finite &, , which 
proves that solution of the form (1.7) does not exist. F~therm~, Ka~norn~~aia , 
who had investigated this problem, has proved that for a particular sekcticm of ftmction 

u,,(.z f 1) , with I tending to zero and constant 0, the solution of the Caucby pblem 
for any t > 0 tends at any point 5 either to the constant U,, or to infinity (dependin& 
on which of the inequalities e 2, 1 holds). 

2. Self~~imflrr :olution of the second kind, The possible reasurrof 
the paradoxical conclusion, - the nonexistence of a limit solutiorr,reacbed above in the 
case of E # 1 could be the incorrectness of the assumption of existence of a fir&o 

limit of F (c, q, ~)at finite g and q --PO. 
Ifthis limit is not finite, the following alternatives arise: either there exists a number 

Q such that lim q-“P (Et 7f, ej will be finite when 11 -s- 0 , or that such number does 
not exist. 

Let us consider the first alternative in which the asymptotic representation 

F (E, 71, 8) = q”f* ($7 4 G-9 

holds for F (k 9, E) when q + 0. Then with t + 00 the Cauchy problem Limit 
solution will no longer be of the form (1.4). but of the form 

u,, - u = -G&-j f” (51 e) 
(“1Q) 

(2.2) 

We remind that the tendency of q to vanish at finite t may also be neaIi.zed by the 
transition to limit for 1 --t 0 and constant x and 2. Expression (2.2) shows that, when 
this transition is made at constant Q, the solution will either tend to zero,or to irtf&ity. 
This relationship also shows that, if the transition is effected at E-0, and Q W&g 
either to zero, or infinity (so that @la remains finite), the self-simiktr soMzion of Eq. 
(1.5) obtained at limit, which defines the asymptotics of the Caucby problem soluttan, 
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must not be of the form (1.4). but of 

(2.3) 

Here p is a dimensionless constant, while parameter & remains as a kind of trace of 
the vanished parameters I and Q ; u could be calculated, if it were possible to carry 

out the transition from the solution of the not self-similar problem ; in a direct deriva- 

tion of a self-similar solution (2.3) parameter a is unknown and has to be determined. 
What is essential, is that parameter a, the trace of the vanished not self-similar para- 

meter, appears explicitly in the formulation of an asymptotic self-similar problem. 

Solution (2.3) fuifils the initial singular conditio~~his siilgulari~ is, however, not 
the classic &function, as in the case of E = n), namely : 

u, - u (2, 0) - Mz (4 (2.4) 
The generalized function 6, (5) fulfils here the condition 

so that for function f (E, E) we have the relationship 

(2-S) 

Substituting (2.3) into (1.5) we obtain for f the equation 

e$++Eq-i_+r= 0 (0<5<;Eo)* 

zL+LE+ *i= 0 ([“<<<C 1 (2.1;; 

Here &, is the point at which f” (g, E) or its equivalent (by virtue of (2.6)) f’E + 

+ (1 -j- a) f proportional to the derivative au / at , vanish. 
By virtue of the natural symmetry of function f (E, E) the boundary condition is 

f’ (0, e-) = 0 (2.7) 

Function f (E, E) and its first derivative must be, moreover, continuous for Ij= &, 

(pressure and flow of the fluid are continuous at the “unloading wave”xs (t)= $fa 
where derivative C% / at changes its sign). 

The solutions of Eq.(2.6) are simply expressed by confluent hyper-geometric, or their 
contiguous parabolic cylinder functions [6 3. 

When 0 < E < & the solution of Eq. (2.6) satisfying the first condition (2. ‘7) is of 
the form 

f = c exp (- fj [Da (&) -t & (- &-)I (2.8) 

where C is a constant, and D, is the symbol of the parabolic cylinder function [S]. If 
g, < Ej , the solution of (2.6), for which integral (2.5) is convergent, is 

f = F esp ( - l/&s) D, (t/s 1%) (2.9) 

where F is a constant. (When E -+ 00 , the second linearly independent solution behaves 

as E-@ l, and integral (2.5) is divergent). 
By specifying condition 

(au / at) = 0 for 2=za((t)*0 
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or its equivalent 
(a.10) 

and using the recurrent relationships for the derivatives of the parabolic cylinder functions 
and the expressions of the latter in terms of confluent hypergeometric functions [C;], we 
obtain 

(2.11) 

Equations (2.11) define the unknown parameter 0: and the value of &,. This and the 
condition of continuity of f for g = &, yield the relation between constants c and F 

(by virtue of (2.10) the condition of continuity of f’ (g, B) is automatically fulfilled). 
constant c is defined from the normalization condition (2.5). There remains, thus, to 

investigate the system of transcendental Eqs. (2.11) in order to complete the solution 
analysis. 

Solving the first equation for &, / r/z, we obtain the monotonically increasing func- 

tion a represented in Fig. 2 by Curve 1. 

-f a / 2 3 

Fig. 2 Fig. 3 

Solving the second equation for E,, / jfz yields a monotonically decreasing function 
a, Curve 2 of Fig, 2. The dependence of &, ! fz: on 3, for any given E is obtained by 

simply stretching Curve 2 along the ordinate axis. When B = 1, i.e. at = a2 ‘Curves 

1 and 2 intersect at point SC = 0, as they should according to the results ot the classic 
case presented in Sect. 1. When B > i , the intersection point abscissa ~1 is positive. 
lt will be readily seen that due to the character of Curves 1 and 2 their intersection 

point is unique. Function M (8) is shown in Fig. 3 in the form of a cixve. 
It should be noted that for large a Curves 1 and 2 have also other branches. The second 

branch of Curve 1 begins at point & = 0, a = 1 .and runs monotonically increasing 
below the first branch, while the second branch of Curve 2 is two-valued and lies above 
its first branch. Points corresponding to intersections with secondary branches and exist- 
ing for sufficiently great E have no physical meaning, as they correspond to nonmonoto- 
nit pressure distribution. 

5, Ths CAIO of a “dipole”, Dlrcu~rfon of the filtration problem, 
1) The preceding Sections dealt with the Cauchy problem for an unbounded space. 

ft is interesting to consider the mixed problem for the half-space x > 0 at the boundary 
of which x = 0, the pressure u (0, t) is constant 
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u (0, t) = u, (3.1) 

The asymptotics of this mixed problem in the classic case of E = 1 (Eq. (1. I)) is 

represented by a solution of the dipole type 
- x2 

uo-u(x,t)== Mx - 
2a3 Jf/nts exp 4aat 

(3.2) 

which may be easily derived by dimensional analysis, using the readily proved, in this 

case, law of conservation of the value (the “dipole moment”) 
c3 

1 iv,--- U(5, t)] 5dZ = 111 (3.3) 
0 

When E # 1 (Eq. 1.15). all of the reasoning of the preceding Section holds also with- 
out any change in the problem under consideration ; however, it must be borne in mind 

that Eq. (1.5) and the initial condition (1.2) are considered here for J: > 0. Further- 

more, for function f (E, E) , by virtue of the boundary condition (3.1). condition 

f (0, E) = 0 (3.4) 
is to be substituted for boundary condition (2.7), so that function f (E, e) satisfying 
conditions (3.4) and condition w 

1 F;“f GE) JE = 1 (3.5) 
becomes of the form 

f = C exp g 
/~(~)-~a(-~~] 

(0 d 5 < 0) 

f =Pexp- ;/L(&) (EZ40) (3.6) 

In this case conditions (2.11) are of the form 

D a+s * =o, 
( > 

+*,;,Mj_() (3.7) 

(it is seen that the first of the above conditions remains unchanged). 
Solving numerically Eq. (3.7) we obtain the functional dependence a (E) shown in 

Fig, 4 ; for E = 1, obviously a = 1 which is in agreement with the classic case. 
Constants c and F are determined in a manner exactly similar to that of the previous 
case. 

2) In the two cases considered here (initial pressure perturbation in an unbounded 
space, and in a half-space) the asymptotic behavior of pressure distribution of an elastic 

fluid in an elastic-plastic medium is defined by the 
4 

ry 

L2!H 

self-similar solution of the second kind 

UO - u (2, t) = (al~l),,,qr + tl) f 6 E) (3.8) 

2 It follows from the preceding that in the definitions 

of function f all constants a, $, & and F are 

E 
uniquely defined. 

r 2 4 6 Thus, the asymptotic representation of pressure 
dis~ibution is defined to within constant A = 8 QI”. 

Fig, 4 
In the classic case of E = 1 this constant is deter- 

mined by the conservation law 
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5 lU,-u(x,t)]dx==: i [f~,-u(x,0)]dx+ 
-x --x) 

in the case of unbounded space, and by 
CO px: 

1 [U, -. u (5, t)l xdx = 5 [U, - ~(a:, O)] zdx == A 
0 

(3.9) 

(3.10) 

in the case of half-space, In a general case these two conditions are not fulfilled. For 

example, when ag + aI (e $= 1) we have in the case of unbounded space 

-$ s /U,--u(~,t)]dxz- ---:!(~~~-.a~~)!~~~~~~(,)$0 (Xllb; 
-m 

and in the case of half-space with constant pressure at the boundary, 

4-r [Uo - u (,z, t)] xdx =-: -- (az” - a12) x0 (0 f g,,, (t) - 

- (a22 - aI”) [U, - u (To (t), t)] -f- 0 

The law of conservation with respecx to time applicable to the integral 

in the case of unbounded space and to the integral 

I2 =: r [U, - u (z, t)] x”dx 
i 

(3.13) 

in the. case of a half-space, is not known. 
If these conservation laws were known, it would have been possible to determine con- 

stant A uniquely from initial conditions. As this is not the case, the only way of finding 

constant A is by numerical computation of the problem, proceeding from the not self- 
similar initial conditions. The outcome of such computations should bring the solution 
to self-similar asymptotics f&3), and make the determination of constant A possible. 

A comparison of computation results of the two alternative initial conditions correspond- 
ing to the same values of integrals (3.12) and (3.13) is particularly interesting. 

4, Certafn conclurionr. Certain general conclusions relative to self-simiIar 
solutions of the second kind may be drawn from the example considered above. 

The dimensional analysis is based on the II-theorem 133 which states that dependence 

between( n j-l)-dimensional quantities a, al.. . t a, 

cz = f(fll ,..., ah, a/,+ ,... .,a,) (4.1) 
may be presented in the form 

II = QIII,..., II,._,) (4.2) 

n=n_._ III= 
‘k-e1 

11 
an 

ala . . . ctkxt ala’ . . . ak 
x,, -.-, n__k = al=di Xn__k 

(4.:1) 

ax 
on the assumption that al,. . . . ak have independent dimensionalities. and that among 
al,..., (11% there are no k --1.. 1 quantities of independent dimensionality. 

The conclusion as to the shedding of one, or another of the defining parameters ayc+i 
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is usually reached on the basis of an estimate of the corresponding dimensionless para- 
meter TIi ; this is based on reasoning that when I& is either “small” or “large” (as com- 
pared with unity) then its limit value, either zero, or infinity, is substituted for lI, in the 

expression of function F(l&,..., lI,_r, Iii, ni+LjB..Y I&,-t) ,and a function of n-k-l 

arguments is considered : 0 

sD(rI~,rl2 ,..., &’ r&...., rI,_,)=F(rh,..., n,_p =* n,+~M %_k) 

and in this case argument ag+t is called nonessential. 

The validity of this reasoning is, however, based on the usually tacit assumption 
that the limit of function F, for II* tending to zero. or infinity, and fixed remaining argu- 

ments, exists and is different from either zero, or infinity. There are obviously cases in 

which this assumption does not hold. In such cases the dependence on parameter Ifi 
remains essential, no matter how small or large the dimensionless parameter n,. The 

following particular case is significant. 

1) The limit of function F(lIr,.. ., II,_t, I&, II,,,.. . . , II,_,) for rIi --+ 0 , or to w , 
is either zero, or infinity, there exists, however, a number a such that for ITi 4 0, or to 00 

lim I$-“F = 0 (IL, . . . . lT_,, n,+r, . . . . n,_,) Pi - 0, m) (4.4) 

where 0 is finite when its arguments are finite, and such that for small (or large) values 

of argument ll+ the following asymptotics hold for function F : 

FZ lI,aO(~r,...* Tri_r> TIi+.r,*.+, n*-,) (4.5) 

If the limit of function F for lI+ and rrj, separately tending to zero,exists and is finite, 
the order and character of ~ansition to limit are obviously immaterial, If‘ however, this 
limit does not exist, then in the analysis of asymptotic behavior the character of transi- 

tion to limit, i. e. the relative rate of tendency to vanish of IIi and II,, becomes essen- 
tial, no matter how small these parameters may be. A particular case is important in 
this context. 

2) the limit of function F(l% ,... l& ,..., II+.., iI,_,) does not exist, but there exist 
numbers a and 0, such that for l& and ITj --f 0 : 

F Z II~Q6,(IIj/ITiB* III, e.0~ II_,, Tl[i+l* **.i) nj_l* nj+l* **.I n,-,) (4-S) 

Similar sub-groups may obviously be separated when three, or more parameters tend 

to zero. 
We shall now consider in general terms a certain not self-similar boundary value prob- 

lem of a system of equations in partial derivatives, describing a certain phenomenon, 
Its solution may be expressed on the form (4.1),(4.2) (the number a of functions equals 

the number of unknowns, and variables and parameters of the problem will be represented 

by al...+). In the derivation of self-similar solutions, the transition to limit at certain 
values of parameters ll, tending to zero, or infinity is applied. The resulting self-similar 
limit solutions represent at the same time exact particular solutions with singular bound- 
ary conditions and a smaller number of defining parameters, as well as the asymptotic 
representation of not self-similar solutions 

If the limit of F exists and is finite, self-similar solutions of the first kind may be 
obtained as the result of such transition to limit, in which the exponents of self-similar 

parameters are derived from the dimensional analysis of the problem input data (e, g. 
the Sedov problem of strong explosion [3], the problem of heat source (see Sect 1 and 
others). The not self-similar parameters vanish “without tract” in such problems, and 
may be excluded from the formulation of the limit problem. 
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If function F has no limit, then, generally speaking, a self-similar limit solution does 

not exist, and the asymptotic representation of the solution of a not self-similar problem 
will not be self-similar for any arbitrarily small (large) values of parameters tending to 

zero (infinity). 
The existence of self-similar solutions of the second kind is 

due to the particular Cases (1) and (2). 
As regards Case (1) this is illustrated by examples adduced to Sects.2 and 3. The 

particular Case (2) is illustrated by the convergent shock wave problem and that of short 
shock. We shall demonstrate this in somewhat greater detail on the example of the lat- 

ter problem. 
Let a piston, moving at constant velocity U during time intarval ‘5 commencing at 

instant t ==O, thrust onto a half-space filled with a perfect gas, of which the density PO 

at the initial instant is constant and the pressure equal to zero. At instant t = r the 
piston is removed. The resulting gas motion is obviously not self-similar. 

Considerations of similarity applied to the solutions of problems of gas dynamics yield 
the following expression : 

p = P&2Fp(nI, rh), p = p$P(nl, n), u = UF,Fh, n2) 

II1 = z/t, II% = xl ut ((1.7) 

where p , pc and u are the pressure, density and velocity, respectively ; po, piston velocity 
U and time F are taken as the parameters of independent dimensionalities. 

It is interesting to consider the limit motion for t --L 1~. Function F has no finite 

limit for III -+5 (& -+ 0 corresponds to r --+ 0 with finite x, U and t , and all func- 

tions tend to zero). However, when t - w , Fi, and I& tend simultaneously to zero. In 
this problem the singular Case (2) occurs, in which for ~JI and II2 -+ 0 * the predominant 

asymptotic terms of functions F,, P, and F,, are of the form (4.6): 

where c1 is a certain positive number. As far as n, and n2 can be made to tend to zero 

by making U tend to infinity, and t to zero at constant J: and 1, the asymptotic solu- 
tion of the form (4.8) is obtained for such transition to limit. but, in order to retain the 

pressure and velocity finite, this must be done so, as to have the product UO~l-a finite, 
as shown by relationship (4. 8). 

The limit solution form was derived in El]; parametera appearing explicitly in the 

formulation of this problem remains as a kind of trace in the irregular transition to 

limit. 
The presence of a certain constant A appearing amongst the self-simiIar variables is 

characteristic of self-similar solutions of the second kind. Its dimension is determined 
by parameter o derived from the condition of existence of a self-similar solution as a 
whole. The value of this constant, corresponding to the asymptotics of a particular not 
self-similar solution, cannot, generally speaking, be derived from the integral conserva- 
tion laws. It may be determined by tracing (e. g_ by numerical computation) the com- 
plete process of evolution of the not self-similar solution to the self-similar asymptotics. 

(Were it possible to derive constant A from the integral laws of conservation, it would 
mean that by a proper selection of defining parameters the problem can be restated and 
reduced to a problem of the first kind. For example, solutions of the problem of strong 
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explosion, and that of the heat source may be obtained as self-similar solutions of the 
second kind if defining parameters of the pre-self-similar statement of the problem are 

“unluckily” selected. The possibility of obtaining these solutions in the form of self- 
similar solutions of the first kind is related to the selection of energy E and total heat 

Q as the determining parameters which, by virtue of the corresponding integral conserva- 
tion laws. do not change in time). 

In conclusion the authors wish to thank V. M. Entov for his attention to this work. 
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1. We consider the problem of steady filtration in a thin layer in the presence of a 
single crack. 

The flow in a crack which can be regarded as a piecewise-smooth line I in studying 
the external filtration field is describable by means of the equations of a lubricant layer, 
i.e. the pressure can be assumed constant within each cross section but different at each 

one ofthem; p-(s) = p’(s) = p(s) ; the fluid velocity u,, inside the crack can be assumed 
to have a parabolic profile, n2 - 2k - h2 a~ 

llg= - 
21’ as (1.1) 

Here n is the normal to the crack axis, 2h (~1 is the width of the crack at the cross 

section M (s), p is the viscosity of the fluid, and k is the permeability of the porous 

medium. 
The volume rate of the fluid flow through the cross section M (s) is given by 

I, 

Q (s) = $ u,,dn = 2h ‘“;,’ “k) 2 (1.2) 


