Chapter 5

Scaling and transformation groups.
Renormalization group

5.1 Dimensional analysis and transformation groups

We recall the definition of a transformation group. Suppose we have a set of

transformations with k parameters,

X=X o e By Ay o e AR, v=1,...,n, (5.1)

where the f, are smooth functions of their arguments in a certain domain. We
say that this set forms a k-parameter group of transformations if the following
conditions are satisfied.

1. Among the transformations (5.1) there exists the identity transformation.

2. For each transformation of the set (5.1) there exists an inverse
transformation that also belongs to the set (5.1).

3. For each pair of transformations of the set (5.1), i.e. a transformation A
with parameters A, ..., A and a transformation B with parameters
By, ..., By, atransformation C with parameters C, ..., C;, which also
belongs to the set (5.1), exists and is uniquely determined such that
successive realization of the transformations A and B is equivalent to the
transformation C. The transformation C is called the product of the
transformations A and B.

Dimensional analysis, which was considered in detail in Chapter 1, has a
transparently group-theoretical nature. Group considerations can turn out to
be useful also in those cases where dimensional analysis alone becomes in-
sufficient to establish scaling laws and the self-similarity of a solution and to
determine self-similar variables. A special place belongs here to the renormal-
ization group, a concept now popular in theoretical physics.

Dimensional analysis is based on the [1-theorem (see Chapter 1). This
theorem allows one to express a dimensional, generally speaking, function of
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n = k + m dimensional governing parameters, i.e. the physically meaningful
relationship

a=f(alv---|ak-b|-...»bm) (52)
where ay, ..., a; are the governing parameters with independent dimensions,
as a dimensionless function of m dimensionless parameters

IT=&l,..., ),
where
a b| b,,,
D=——— Whi=—g—m ... [da==g——.
al...ak al ...ak al .--ak

This means that the function f in (5.2) possesses the property of generalized
homogeneity:

bl bm

p r
ay,...,ag,by,....by)=ay---a, ® DT =al
f(l ks U1 m) 1 k alp""(lzl a:) “.a;

We note now that, for any positive numbers Ay, ..., A, the scaling trans-
formation of the governing parameters with independent dimensions

a'l = A|a,. aé — Azaz, T a,'( e Akak (5.3)

can be obtained by changing from the original system of units to some other
system belonging to the same class. At the same time the values of the remaining

parameters a, by, ..., b, vary in accordance with their dimensions:
a = A} Ala,
by = A}’ oAby, (5.4)

b = AP ... ATb,.

Direct verification shows easily that the transformations (5.3), (5.4) form a
k-parameter group. Indeed, if A} = A, = - -+ = Ay =1 then the transformation
(5.3), (5.4) becomes an identity transformation. For each transformation A in
the set (5.3), (5.4) there exists an inverse transformation B with parameter values
1 1 1
—A—ly 2—A—2, sy Bk—Ak
which also belongs to the set (5.3), (5.4) and such that the successive realization
of transformations A and B returns the variables to their original values. For
each pair A, B of transformations (5.3), (5.4), with parameter values A, ..., A
and By, ..., By, there exists one and only one transformation C, with parameter
values Cy = AB|,Cy = AyB,...,C, = Ay By, also belonging to the class
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(5.3), (5.4) and such that the successive realization of transformations A and B
is equivalent to the transformation C.

The quantities IT, 1, .. ., T1,, remain unchanged for all transformations of
the group (5.3), (5.4), i.e. they are invariants of this group. Thus, the I1-theorem
is a simple consequence of the covariance principle: relations with a physical
meaning among dimensional quantities of the form (5.2) can be represented in
a form invariant with respect to the group of similarity transformations of the
governing parameters with independent dimensions (5.3), (5.4), each transfor-
mation corresponding to a transition to a different system of units (within a given
class). The number of independent invariants of the group is less than the total
number of governing parameters by the number k of parameters of the group.

The invariance of the formulation, and hence the solution, of any physically
meaningful problem with respect to the group of transformations (5.3), (5.4)
is thus necessary according to the general physical covariance principle. It can
turn out, however, that there exists a richer group with respect to which the
formulation of the special problem considered is invariant. Then the number of
arguments of the function ® in the universal (invariant) relation obtained after
applying the I1-theorem in its own right should be reducible by the number of
parameters of the supplementary group. Here the solution can turn out to be self-
similar, and the self-similar variables can be determined as a result of using the
invariance with respect to the supplementary group, although this self-similarity
is not implied by dimensional analysis (which exploits invariance with respect
to the group of similarity transformations of the governing parameters with
independent dimensions). We consider below an instructive example that will
clarify this idea.

5.2 Problem: the boundary layer on a flat plate
in a uniform flow

The problem of steady viscous incompressible flow past a semi-infinite flat plate
placed along a uniform stream ( Figure 5.1) leads to a system of Navier-Stokes
equations and the equation of continuity (see Batchelor 1967; Germain 1986;
Landau and Lifshitz 1987):

| -
Uy u + vdyu = —— dep + v(«')f"u + 6;vu),
: 0 X

1
ud v +vdyv = —— d,p + 1)(83‘ v+ afvu). (5.5)
. 0 X ¥,

deu + dyv = 0.

Figure 5.1. Viscous flow past a thin semi-infinite plate.

Here x and y are the longitudinal and transverse Cartesian coordinates, u(x, y)
and v(x, y) are the corresponding velocity components, p is the pressure, v is
the kinematic viscosity coefficient and p is the density of the fluid.

The boundary conditions for the problem under consideration can be repre-
sented in the form

u(x,0)=v(x,0)=0, x >0,
u(x,y) = U, v(x,y) = 0 for y?> — oo and arbitrary x
and for x — —oo and arbitrary y.

Here U is the constant speed of the uniform exterior flow; the origin of coor-
dinates x = 0, y = 0 corresponds to the tip of the plate. Up to now no single
problem of viscous flow past a body has been solved analytically; the problem
of the flow past a semi-infinite plate presented above, in spite of its seeming
simplicity, does not constitute an exception.

At the beginning of the last century Prandtl (1904) proposed the idea of
the boundary layer, which revolutionized fluid mechanics as a whole and, in
particular, led to an asymptotic approximate analytic solution of the problem
of viscous flow past a plate. This solution was obtained by Prandtl’s student
Blasius (1908) and modified by Toepfer (1912). The basic model of Prandtl
in application to this problem is that at large Reynolds number the effects of
viscosity are concentrated in a thin layer surrounding the plate only. Prandtl’s
hypothesis and certain qualitative considerations allowed a reduction of the
model to a simplified one (see Batchelor 1967; Schlichting 1968; Germain
1986; Landau and Lifshitz 1987), the system of equations

udeu + viyu = v u, deu+ dyv =0 (5.6)
under boundary conditions at x > 0, y > 0

u(0,y)=U, u(x, 00)=U, u(x,0) = v(x,0)=0. (5.7)




Two comments: first, no one has been able, up to now, to give a rigorous math-
ematical derivation of the system (5.6), (5.7) from the Navier—Stokes equations
at large Reynolds numbers without additional assumptions — this system re-
mains a result of Prandtl’s intuition. The second comment concerns the second
of the boundary conditions (5.7), which seems paradoxical: it is claimed that
the boundary layer is thin yet the condition is taken at infinity. In fact, this para-
dox is explained by the asymptotic character of the qualitative derivation of the
system (5.6), (5.7). This derivation is based on a ‘stretching’ of the system of
coordinates, an asymptotic analysis of the problgm in the stretched coordinates
and a subsequent return to the ori ginal coordinates. This asymptotic procedure
is illuminated by an original example proposed by Friedrichs (1966).

We apply to the problem in the boundary-layer approximation (5.6), (5.7)
the standard procedure of dimensional analysis. The governing parameters are
v, x, U and y, so that

u=fuv,x,U,y), v=f,(v,x,U,y). (5.8)
The dimensions of the involved quantities are

L L2
[u]=[v]=[U]=;, (x]=[yl=L, [u]=7 (5.9)

so that, according to the standard procedure of dimensional analysis

’

u v
M, = — = &,(I1,, y), Iy = — =®,(IT,, ITy). (5.10)
7 U
Here
U Uy
ﬂ|=$=7x. n2=7]=7). (5.11)

In the new variables the relations (5.6), (5.7) are reduced to the form
Pude Py + D0, P, = 07 Dy, 8D, + 3, D, =0
D,(0,n) = D,(&, 00) = 1, D,(§,0) =D, (£,00=0 (5.12)

We see that the direct application of dimensional analysis does not give any
simplification of the problem. In fact, the only distinction between the system
(5.6), (5.7) and the system (5.12) is that in the latter the constants v and {/ are
equal to unity: a purely cosmetic transformation.

Itis instructive, however, that the system (5.12) is invariant with respect to an
additional transformation group. Indeed, let @, (&, n), ®,(&, ) be a solution of
the system (5.12) which exists and is unique. Let us consider a one-parameter

transformation group:

§=a%  n=an
@, (& n') = By, ), P&, n) = a D&, n), (5.13)

wherea > 0is the parameter. It is easy to verify by direct substitution that the set
of transformations (5.13) is a group: @ = 1 gives the identical transformation,
B = &~ gives the transformation inverse to @ and ¥ = ap gives the product of
the transformations with parameters « and . Substituting (5.13) into (5.12), we
obtain for arbitrary positive & the same problem as (5.12) but in the variables
.0, @, ®,. In view of the uniqueness requirement, the solution P, D
should also be unique, so that

D8, n) = O (¢, n) = D (%, an),
D&, n) = a® (', ) = a®,(@’E, an). (5.14)

Furthermore, after establishing the relations (5.14) the value of the parameter
@ can be taken as equal to an arbitrary positive number, in particular

1

o = ﬁ v
Substituting this relation into (5.14), we obtain that the determination of the
functions ®,, @, of two variables is reduced to the determination of functions
of a single variable

osn=.(15)-4(3) =+ ()
and

(5.15)

As we see, the solution is self-similar. Thus the self-similarity of the solution to

the boundary-layer problem (5.6), (5.7) is established and the expressions for

the self-similar variables are obtained. However, it has been achieved as a result

of the application of not only dimensional analysis but also the invariance of

the problem with respect to an additional transformation group (5.13).
Introducing a new function
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we obtain from (5.6), (5.7) and the definition of the function @(¢) the relations

1
fo= E"’"”l - @), (5.16)
9(0)=¢'(0) =0, ¢'(c0)=1; (5.17)

here a prime indicates differentiation. The relationships (5.17) present a
boundary-value problem for the ordinary equation @¢” + 2¢” = 0, with
boundary-value data at both ¢ = 0 and ¢ = oo. This is inconvenient, and
here also a simple group-theoretical consideration is helpful. Indeed, let us
consider the family of solutions to the equation p¢” + 2¢" = 0 satisfying the
two boundary conditions at { = 0, p(0) = ¢’(0) = 0. It is easy to check that
this family is invariant with respect to the transformation group:

ww” + 2¢III - 0’

eIt =a'o@), & =al, (5.18)

so thatif ¢(¢) is a solution to the equation p¢” + 2¢” = 0 satisfying the first
two boundary conditions in (5.17), then for any positive « the function ag ()
also satisfies the equation and these two boundary conditions.

Now consider the solution (¢ ) to the Cauchy (not the boundary-value) prob-
lem for which the third boundary condition in (5.17), the condition at infinity,
is replaced by a condition at zero, ¢[{(0) = 1. For the solution ¢y(¢), which is
easy to calculate numerically, the value of the derivative at infinity, ¢{(c0), is
3.02. Therefore the solution ¢(¢) = agg(a¢), where @ = 1/+/2.086 = 0.6925,
satisfies all the conditions of problem (5.17).

For the drag F on a section of unit width and length [ of the flat plate in a
uniform stream of velocity U we obtain from the previous relations, using the
results of numerical calculation of the function ¢,

l U ! dx
F=2 ey)y=0dx =2U | — / 0) —
./‘;(U.,)y odx ‘/ = pY . Ju( )ﬁ

[U3L
= 4,/ — pve"(0) = 4’ pv U3y
V
= 1.328pv U3lv.

Here (0yy), is the shear stress on the plate.
Introducing the dimensionless parameter IT = F/(pU?l) corresponding to
the drag F, we get

l_I_d)R)_l.328 R_UI
= (c—m. c-v.

We note inpassing that one can also see that at this well-known relation reveals
incompletesimilarity in the Reynolds number. In fact, the drag F is determined

by the following quantities: the length / of the plate, the viscosity v and density
p of the fluid and the velocity U of the stream. Application of the standard
procedure of dimensional analysis gives

IT = d(Re).

For the high Reynolds numbers characteristic of the boundary layer there is
no complete similarity with respect to Reynolds number, since there does not
exist a non-zero limit of the function ® = 1.328Re™"/? as Re — 00. Hence the
relations

IT = const, F = const pU?|

that would have to hold in the case of complete similarity in the Reynolds
number cannot be expected to be true, no matter how high the Reynolds number.
Nevertheless, one has the relation
m* = i = const = 1.328
T s 328,
corresponding to incomplete self-similarity: the parameter IT* cannot be ob-
tained from standard dimensional analysis and contains the dimensional pa-
rameter v whose explicit introduction into the problem violates self-similarity.

The example of boundary-layer flow past a flat plate which we have just
considered is instructive also in the following aspect: the application of a more
general group of transformations can here be given the form of generalized
dimensional analysis, and this device turns out to be useful in many other
special cases (but, it should be emphasized, not always).

Namely, we shall use different units to measure length in the x-direction and
length in the y-direction. So, we introduce two different units of length, /, and
ly, and consider x and y as having different dimensions L, and L. Let us use
this in the boundary-layer problem (5.6), (5.7). In this case all terms entering
the boundary-layer equations and boundary conditions of the problem have
identical dimensions if we take [u] = [U] = L, /T,[v] = Lf,/T, (el =L, /T,
[x] = L, and [y] = L,. Thus, among the governing pararﬁetcrs v, x, U and
y not two but three have independent dimensions and the single independent
dimensionless similarity parameter will be

§ Ry e (5.19)

SvxJU’
whence follows immediately the self-similarity of the solution

u = Ufu(£), v=wU/x fi(Q). (5.20)



It is instructive that using such independent units for longitudinal and trans-
verse lengths is impossible for the full Navier—Stokes equations (5.5). In these
equations the terms vE)* 4 and vd“ v appear in sum with the terms vd? u
and vd? v, so that if we measure x and y in different units these terms wnll
have different dimensions, and this is impossible for equations having physical
meaning. Consequently, the full Navier-Stokes equations, unlike the bound-
ary layer equations, are not invariant with respect to the transformation group
(5.13).

A natural question arises: is there an algorithm for seeking a maximally broad
group of transformations with respect to which a given system of differential
equations is invariant? Such an algorithm does exist. The basic ideas here be-
long to the Norwegian mathematician of the nineteenth century Sophus Lie. In
recent times a series of general results and applications to particular systems
of equations encountered in applied mathematics have been obtained; we refer
the reader to the valuable books by Birkhof (1960), Bluman and Cole (1974)
and Olver (1993).

5.3 The renormalization group and incomplete similarity

5.3.1 The renormalization group and intermediate asymptotics

Among the groups additional to the group of scaling transformations of quan-
tities with independent dimensions that lead to scaling laws and self-similarity,
a special and very important place belongs to the renormalization group. The
renormalization group approach, following the ideas of Stiickelberg and
Peterman (1953), Gell-Mann and Low (1954), Bogolyubov and Shirkov (1955,
1959), Kadanoff (1966), Kadanoff er al. (1967), Patashinsky and Pokrovsky
(1966) and Wilson (1971), has found extensive applications in modern theoret-
ical physics. N. Goldenfeld, O. Martin and Y. Oono demonstrated a deep relation
between the renormalization group method as traditionally used by physicists
and the intermediate-asymptotics approach, developed independently and pre-
sented in this book. They did this by using the renormalization group method,
in the form in which it is usually applied by physicists to solve some typi-
cal problems whose solution had been obtained previously by the method of
intermediate asymptotics. Vice versa, they solved by the method of intermedi-
ate asymptotics some classical problems in statistical physics solved earlier by
the renormalization group approach (Goldenfeld 1989; Goldenfeld, Martin and
Oono 1989, 1991; Goldenfeld et al. 1990; Goldenfeld and Oono 1991; Chen,

Goldenfeld and Oono 1991; Chen and Goldenfeld 1992; the book Goldenfeld
1992 is especially recommended).

We recall, see Chapters | and 4 and section 5.1 of this chapter, that any phys-
ically significant relation among dimensional (generally speaking) parameters

a=j‘(alv"*ak~bla°-',bm)

can be represented in the form of a relation between normalized dimensionless
parameters [1, IT;,i = 1,...,m:

Il = D(ITy, i o i)

This is due to the compulsory invariance of physically significant relations with
respect to the transformation group (5.3), (5.4) corresponding to a transition
from the original system of units of measurement to an arbitrary system of
units belonging to the same class of systems of units, i.e. having basic units of
the same physical nature but different magnitude.

This means, we repeat, that every function f which enters a physically sig-
nificant relation possesses the property of generalized homogeneity:
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In the general case of incomplete similarity the function ® possesses at
large or small values of the dimensionless parameters Iy, ..., I1,, the same
property of generalized homogeneity in its own renormalized dimensionless
arguments:

C 70 CORI O ; - SRR ¢

n m
=M Ty | 51) (5.21)
(U TR Y

where the powers a4, ..., 8¢ are certain constants, which cannot be obtained
by dimensional analysis even in principle.

The property of incomplete similarity also has a group-theoretical nature.
It means that in addition to the compulsory group of transformations (5.3),
(5.4) the problem at large or small values of the dimensionless parameters

g4ty ..., I, has the property of invariance with respect to the set of trans-
formations
a, = ay, a, = az, a; = a,
8 B §
bl Bﬁl—l Bmlbh LR b’ BE-:—I .--Bm'b(h (5 22)
by, = Bepibeyy, b, = Byb,;

Qg o
a' = B} ---Bira.
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Here the parameters By, ..., B,, are certain positive numbers. Naturally, the
values of these parameters should not be too large or too small, otherwise the
applicability of the asymptotics (5.21) will be violated. The set (5.22) has the
properties of a transformation group with parameters By |, ..., B,,. Indeed, if
allthe Byyy, ..., B, are equal to unity then the transformation (5.22) is an iden-
tity transformation. For every transformdtion in the set (5.22) there exists an in-

verse transformation with parameters B(, o+ -0 B, also belonging to this set.
Finally, the product of two transformations with parameters Bx),, ..., BV and
B\ .., BY, which has parameters By, = B\, BY,. ..., B, = BVBO),

also exists in the set (5.22) and is uniquely determined. We will identify the
group (5.22) with the renormalization group and so establish a link between this
concept and the concepts of intermediate asymptotics and incomplete similarity
considered earlier in this book.

More precisely, we will prove that the statement of the asymptotic invariance
to the renormalization group (5.22) of the basic relation obtained after the
application of dimensional analysis,

M= ®ITy, ..., g, Mpgyy ey M), (5.23)

is equivalent to the statement of incomplete similarity.

Indeed, assume that there is incomplete similarity in the parameters
Mgy, ..., [, at small values, for definiteness sake, of these parameters, i.e.
that the relation (5.21) holds for the function ®. Let us perform the transforma-
tions (5.22). We form the quantities

b

l = - —_ ph 8 _ pbi i
nl = 'p r Bl‘+l Bm P n o= BH.| B,,, I;
al .. .ak a| "l -ak
b b
! — (4 — Be S f - 8’
ne = 'y e T Bf! | Bm' P T B(+| m Iy,
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Clearly, for every i = 1, ..., £ we have by construction
IT; . IT;
I
and also
I B I
Mg Mo Mg - T
We obtain using (5.21),
=By B = BygY - B (T, ..., Ty, Moyyy . ony [)
_B;"“---B"mn"“'---n“wl( e e B 5)
s s r ne+| Tl ne+| Iy
‘ay e I I
= T4 - T2 c[:,(ne+l R T ,’2’)
= o(M), ... M, Mpyy, ..o, TT).

Thus, from incomplete similarity, (5.21), follows the invariance of the basic
relation (5.23) with respect to the renormalization group (5.22). And now, vice
versa, assume that there is invariance of the basic relation (5.23) with respect
to the group (5.22). This means that for every By, ..., B, the relation (5.23)
preserves its form. Without loss of generality we can rewrite (5.23) in the form

n’ ' I
= r =“’< By g Mg oo Ty |
My -« " My - T Mgy M

Returning to the previous variables we obtain
I I1
; 7 & e
nﬂtﬂ.”n;m n(_‘;l’...]']m

£41
D(ITy, ooy Mgy ety o oo [y)
My - I,

I
=\D( nl e - slaBl’-O-lnk‘-f-lv---vann)-
1+| I'I nz+1 M

From this relation it follows (compare the proof of the basic theorem of di-
mensional analysis in Chapter 1) that the function ¥ does not depend on the
arguments IT, ..., I1),. Indeed, let us fix all parameters B;,i = £+1, ..., m,
except for one, say B;, and vary B; arbitrarily. The result will not depend on B;.




Therefore

I1 I,
l]l:(b( B : ST B t LT
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Thus the function @ has the property of generalized homogeneity (5.21) and

we have a case of incomplete similarity. We have proved the equivalence of

incomplete similarity and invariance with respect to the renormalization group.

5.3.2 The perturbation expansion

The basic relation (5.2) in which we are interested can be written in a dimen-
sionless form as

n = ¢(ﬂ|, oo’y n’"vc)'

Here we have added an additional constant dimensionless parameter ¢ on which
the phenomenon is also assumed to depend. Its use will become clear shortly.
Again let the parameters Iy, ... I1,, be small for the sake of definiteness and
assume that generally speaking, incomplete similarity holds, so that

l'I=(D(l'l.....,l'lg,ﬂ”.....,ﬂ,,,.c)

IR 'Y ( il el 5(,0):
I-l(-}-l “Aim I-I£+l T

it follows that at least one of the POWErs &gy, .. ., d; is different from zero. Gen-
erally speaking, gy, ..., §; depend on the parameter c. Let us assume further
that all the powers a1, . .., 8; vanishat ¢ = 0, i.e. that at ¢ = 0 we have a case
of complete similarity . Then, for sufficiently small Mgy, ..., Iy, the func-
tion O(TTy, ..., Ty, Mpyy, ..., I,,) can be replaced by its finite non-zero limit
(I, ..., 1, 0, ..., 0), so that the dimensional parameters by, ..., b, dis-
appear from consideration. We can say, therefore, that at sufficiently small

values for 4, ..., IT,, the phenomenon is asymptotically invariant to the
transformation group

!
a =a, @) = Gy, L a, = a,

. b; = by; b,,,, = Buby,
(5.24)

byyy = Butibesi,

where By, ..., B, are the group parameters. In the case of incomplete simi-
larity the problem is asymptotically invariant with respect to a more complicated
renormalization group, (5.22).
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The next step and, we emphasize, an independent one, is to obtain the pa-
rameters i, ..., 4, by a perturbation expansion, using some quantitative
relations concerning the phenomenon, in particular, the non-integrable conser-
vation laws. The latter point is crucial: if no further information concerning the
phenomenon under consideration is available then the parameters oy, ..., 8
entering the renormalization group (5.22) and the incomplete similarity relation
(5.21) cannot be determined.

As an example we will consider a perturbation expansion for the problem of
groundwater dome spreading with absorption considered in Chapter 3.

From the basic equation for the water head (3.5) the non-integrable (generally
speaking) conservation law (3.8) was obtained:

xf Xy
(% H(x,t)dx = —2kc | (3, H)%dx.

—Xy —Xf

The limiting self-similar solution was represented in the form (3.21):

g_—fZ([e(l—Jn)/N)Z“ﬂ

H = f(C| C)~
1=2u
G == (5.25)
E= ;_f-, X = ff(lf(l—3“)/‘LKI)#.
Therefore
b 3 (10030013 !
/ PR IS ! (KI)"3“) : (./1 f({,c)d{).

xq E ( 160~ m)/u 3# 2
/ (U;H)de = (Kt)z 3# (f [f(g C)]de)

Atc = 0, u = 1/3; therefore the value of 1 — 3 is small at small values of ¢.
To the accuracy of the leading terms we obtain

d Xy 1_3# < /I
dt = e kb ] ,0)dc,
2t /-n H(x,t)dx P K& o £, 0)de

/ (0. H)*dx =
3

S / £z, O)Pdc.



Now we need to use the relations

. . I 2 o) — l
S, 0)= i“ =), f(&.0)= =355

/Ifd -3 fl Vg = -
¥ = 3 _l(f = 6

We substitute these relations into the non-integrable conservation law (3.8) and

obtain
|
e |
so that “‘3(1_§C)'

The same relation is obtained in the first approximation by expansion of the
eigenvalue 1 = (1 — ¢)/(3 — 2c). This simple example illustrates the basic
idea of the renormalization-group-with-perturbation-expansion approach. The
following basic points should be noted. A scaling law, in our terms incomplete
similarity, is assumed; this scaling law depends on a parameter. For the value
zero of the parameter the solution is known. An asymptotic expansion is then
used to find the solution for small but finite values of the parameter.

If there is no value of the parameter for which there exists complete similarity
then the expansion cannot be performed. The only ways to obtain the ‘anoma-
lous dimensions’, gy, ..., &, are to solve the nonlinear eigenvalue problem
or to perform an experiment, physical or numerical.
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Chapter 6

Self-similar phenomena and travelling waves

6.1 Travelling waves

In various problems in applied mathematics an important role is played by trav-
elling waves. These are phenomena for which distributions of the properties of
motion at different times can be obtained from one another by a translation,
rather than by a similarity transformation as in the case of self-similar phe-
nomena. In other words, one can always choose a moving Cartesian coordinate
system such that the distribution of properties of a phenomenon of travelling-
wave type is stationary in that system.

In accordance with the definition given above, solutions of travelling-wave
type can be expressed in the form

v=V(x — X))+ Vy(1). (6.1)

Here v (generally speaking, a vector) is the property of the phenomenon being
considered; x is the spatial Cartesian coordinate, an independent variable of
the problem; ¢ is another independent variable, for definiteness identified with
time, although this is not necessary, and X(r) and V(t) are time-dependent
translations along the x- and v-axes. In particular, if the properties of the process
do not depend directly on time, so that the equations governing the process do
not contain time explicitly, the travelling wave propagates uniformly:

v=V(x — At +¢) + pt. (6.2)

Here A, p and c are constants; ¢ is the phase shift and A and g represent
the speeds of translation along the x- and v-axes. For an important class of
waves, steady travelling waves, the distribution of properties in a wave remains
unchanged in time, so that g = 0 and

v=V(x —Ait+0). (6.3)
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