<u>Open book</u>. Show all steps in your calculations. Justify all answers. Write clearly. hc = 12,400eVA, $\hbar c = 1973eVA$, $m_ec^2 = 511,000eV$, $k_B = 1/11,600eV/K$ $ke^2 = 14.4eVA$; $1A = 10^{-10}m$; $c = 3 \cdot 10^8 m/s$; $\hbar^2/m_e = 7.62eVA^2$ proton: $m_p/m_e = 1836$; Uncertainty principle: $\Delta x \Delta p \sim \hbar$, $\Delta t \Delta E \sim \hbar$

Problem 1 (10 pts)

An electron is described by the wavefunction

 $\psi(x) = C(1-x^2)$ for $-1 \le x \le 1$, $\psi(x) = 0$ for |x| > 1, where x is measured in A. (a) Find C.

(b) Calculate the quantum uncertainty in the position, Δx . Do not make approximations. (c) Calculate the quantum uncertainty in the momentum, Δp , expressed as a number times \hbar . Do not make approximations.

(d) Verify whether your results satisfy $\Delta x \Delta p > \hbar/2$. If not, explain why not.

(e) Calculate the average kinetic energy of this electron, in eV.

Justify all your answers.

Problem 2 (10 pts)

For a quantum harmonic oscillator (also for a classical one) the average kinetic energy $\langle K \rangle$ equals the average potential energy $\langle U \rangle$. (Hint: $K=p^2/2m$.) Using that fact: (a) Prove that in the ground state of the quantum harmonic oscillator, $\Delta x \Delta p = \hbar / 2$. (b) Find the value of $\Delta x \Delta p$ for the first excited state of the quantum harmonic oscillator. (c) An electron is in the first excited state of a harmonic oscillator potential and has classical amplitude of oscillation 3Angstrom. Find the uncertainty in its position, Δx . (d) Find the energy of this electron in the first excited state of this potential, in eV.

Problem 3 (10 pts)

In the figure, the potential U(x) is 0 for x<0, U₁ for 0<x<a, U₂ for a<x<b, 0 for x>b, with U₁=2eV, U₂=7eV, a=5A, b=6.5A. Electrons are incident from the left with kinetic energy E=3eV, at a rate of 10,000 electrons per second.

(a) How many electrons get reflected at x=0 per second? You may ignore U₂ for this part. (b) How many electrons per second are detected at a point x>b?

(c) Is the wavefunction $\psi(x)$ describing these electrons an eigenfunction of the momentum operator? If yes, what is its eigenvalue, in units eV/c? Justify your answer. (d) Is $\psi(x)$ an eigenfunction of the Hamiltonian operator for this problem? If yes, what is its eigenvalue, in eV? Justify your answer.