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Thales of Miletus

Magnetism in Antiquity

Thales (c. 620 BCE - c. 546 BCE) : first theory of magnetism!  
“Thales…says that a [lodestone] has a soul because
  it causes movement to iron.” - Aristotle (4th c. BCE)

Lodestone : mostly magnetite (Fe3O4)

“south pointing spoon”

lodestone attracting iron

“The lodestone attracts iron.”

Compass : 2nd c. BCE - 1st c. CE in China

 - Wang Xu (4th c. BCE)

Initially used for divination (Feng Shui),
and eventually for navigation.



Han dynasty Jesus Roman empire Islam Charlemagne

Viking conquests Crusades Bubonic plague Columbus Shakespeare

Newton Beethoven American revolution Meiji restoration World War I



The Ising Model (Lenz, 1920)

with �i = ±1

ferromagnetic : J
ij

> 0 antiferromagnetic : J
ij

< 0;↑ ↓↑ ↑

H = �
X

i<j

Jij �i �j

i ij j
| i i|

Global symmetry group 𝕫2 : �i ! " �i with " 2 {�1,+1}

Other common global symmetries:

φ
p-state clock : xy : n̂

2
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Heisenberg :

Zp O(2) O(N)group :
discrete continuous continuous



Spontaneous symmetry breaking

M

TTc

M ∼ (Tc − T )
β

0

0

two sublattice Néel state

Below a critical temperature Tc , long-ranged order develops :

hŜii = M cos
�
Q ·Ri + '

�

ordering wavevectorspontaneous moment

(order parameter)

four sublattice Néel state

Q =
⇡

a
x̂+
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a
ŷ Q1 =

⇡

a
x̂ , Q2 =

⇡

a
ŷ

thermally

disordered


(paramagnet)

spontaneously

ordered


(ferromagnet/

antiferromagnet)

Up through the 1980s, work on magnetism focused either on ordered phases 
of  classical/quantum models  (and their  defects),  or  on special  features of 
quantum models in one space dimension (solvable by Bethe’s Ansatz).



Frustration “You can’t always get what you want.”

H = |J |
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ground state entropy : S
0
/N ≥
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3
ln 2 = 0.2310

S
0
/N =

3

π
kB

π/6∫
0

dω ln(2 cos ω) ≃ 0.3231

(G. S. Wannier, 1950)



Classical vs. quantum
Heisenberg interaction : H = JSi ·Sj

Redefining Sj ! �Sj sends J ! �J A
B

OK for classical spins on bipartite lattices!  FM = AFM !!

NOT OK FOR QUANTUM SPINS!
⇥
Sx, Sy

⇤
= i~Sz
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elementary excitations : FM/AFM spin waves



antiferromagnetic Heisenberg chain S = 1
2

H = +J

X

n

Sn ·Sn+1

1931 : general form of eigenfunctions (“Bethe’s Ansatz”)

1981 : S = ½ excitation spectrum by Faddeev and Takhtajan

1938 : ground state energy (Hulthén) E0/NJ = 1
4 � ln 2 > � 3

4

1998 : exact asymptotic correlation (Affleck) hS↵
0 S

�
r i ⇠ (�1)r�↵�

p
ln r

�⇥
(2⇡)3/2r

⇤

1962 : S = 1 excitation spectrum (des Cloiseaux and Pearson)



Triplet (and singlet) continuum:

E+(q) = ε( 1

2
q) + ε( 1

2
q) = πJ

∣∣ sin(
1

2
qa)

∣∣
E

−
(q) = ε(q) + ε(0) =

1

2
πJ

∣∣ sin(qa)
∣∣

E
−

(q) ≤ h̄ω ≤ E+(q)

ε(q) =
1

2
πJ

∣∣ sin(qa)
∣∣

Triplet (S = 1) excitation branch:
Up to an overall factor π/2, this is the same 
as the spectrum from spin wave theory!

0 ≤ q ≤
π

a
;ε(q) =

1

2
πJ sin(qa)

The true elementary excitations are S=½ doublets, which are kinks, with  

BA

SWT

↑ ↑↑ ↑↓ ↓ ↓ ↓ ↑ ↓↑ ↓↓

↓ ↑ ↓↑ ↑ ↓ ↓↑ ↑↑ ↓ ↑↓

↑

↓↑ ↓↑ ↑↓ ↓↑ ↑↑ ↓ ↑↓

↓

However, these are composite excitations.



qa/π

frequency scans

q =
π

a

q =
π

2a

momentum scans

qa/π

M. B. Stone et al., PRL 91, 037205 (2003)J = 0.9 meVCu(C4H4N2)(NO3)2 ≡ CuPzN

E
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exchange interaction{ {anisotropy: prefers Sz

n = 0

elementary magnon / multimagnon continuua

2-magnon

3-magnon

elementary 
magnon

S. Ma et al., PRL 69, 3571 (1992)

Ni(C2H8N2)2NO2ClO4 (NENP)

The elementary excitation is a triplet (S=1) with dispersion 
ω(q), with an excitation gap at q= π, i.e. the Haldane gap. 

⟨S
l
· S

l+n
⟩ ∼ (−1)

n |n|−1/2
exp

(
− |n|a/ξ

)
F. D. M. Haldane, Phys. Lett. 93A, 464 (1983)

antiferromagnetic Heisenberg chain S = 1

H = J

X

n

Sn ·Sn+1 +D

X

n

�
S
z
n

�2



HOLSM Theorem Lieb, Schultz, Mattis (1961)
Oshikawa (2000) / Hastings (2005)

Setting : lattice model with conserved U(1) charge, in any d.

⌫ ⌘ total U(1) charge

number of unit cells
filling fraction:

“At fractional filling ν, a unique, gapped, featureless,
 insulating ground state is impossible.”

ν ∉ ℤ unique gapped featureless insulator EXAMPLE
NOT POSSIBLE

METALLIC

DENSITY WAVE
SPIN-CHARGE
SEPARATION

TOPOLOGICAL  
ORDER

BAND INSULATOR

✘
✓ ✓ ✓ ✓✓

✓
✓

✓

✘✓ ✓
✓ ✓ ✓✘

✓

✘ ✓ ✓ ✓ ✓

✘✓ ✓ ✓
✘ ✓ ✓ ✓



LSM theorem : flows from action of twist operator U = exp

✓
2⇡i

N

NX

j=1

j Qj

◆

which changes crystal momentum of ground state:

t | 0i = eiK0 | 0 i | 1i = U | 0i

t | 1i = eiK1 | 1i K1 �K0 = �2⇡⌫

and

⇒ where

The LSM argument works only in d=1 because

h 0|U
†
HU | 0i = E0 +

2⇡2

N2
h 0|H

local
? | 0i = E0 +O(Nd�2)

One-dimensional Hubbard model : ν = # electrons per cell per spin DOF

ν ∈ ℤ : adiabatic connection to band insulator

ν ∈ ℤ+½ : Mott phase preserves all symmetries, but 
                with no adiabatic connection to band insulator

⟹		gapless	excitations	or	degenerate	ground	state	for	S=½	HAFM



Oshikawa (2000) extended this argument to higher 
dimensions  by  considering  the  consequences  of 
adiabatic flux threading.   Place the system on a d -
dimensional torus, and thread U(1) flux     through 
one  of  its  cycles,  resulting  in  a  translationally-
invariant           .

�

H(�)

�

ê

⇥
H(�), t

⇤
= 0 ⇒ crystal momentum of                remains fixed! | 0(�)i

| 1i ⌘ U †| 0(2⇡)i “pullback” from Hilbert space of                     to
that of                    — “large gauge transformation”         H(� = 0)

H(� = 2⇡)

The difference in crystal momentum is then                                          ,
where N⊥  is the number of sites in a hyperplane transverse to    .

K1 �K0 = 2⇡N?⌫ ê

ê

�K not a reciprocal lattice vector ⇒ h 0| 1i = 0

With ν = p/q this requires (N⊥ , q) relatively prime, but not d = 1!



Example : next-nearest neighbor Heisenberg chain

H =
X

n

h
Sn ·Sn+1 + gSn ·Sn+2

i

gc0 0.5

GAPLESS SPIN-PEIERLS

Heisenberg model
(Bethe Ansatz)

Majumdar-Ghosh
point (dimers)

For g  gc ' 0.2411 , the spectrum is gapless.
For g > gc , the system is in a spin-Peierls phase (doubly

  degenerate ground state with excitation gap).

2n 2n+1
| �

total spin

|Ai =

|Bi =
2n 2n+1

| �

½

|Ai± |Bi has crystal
momentum 0, π

At MG point (g = 0.5),



F. D. M. Haldane (1983) argued that AFM Heisenberg chains
with S=0,1,2,… should exhibit an excitation gap, while those
with S=¹/₂, ³/₂, ... are gapless.  He derived the O(3) nonlinear
sigma model continuum field theory in the large S limit, based on classical
equations of motion, and noted that the integer and half-odd-integer cases 
differed in their quantization.

Historical interlude

Throughout the 1980s,  this scenario,  and gap for integer S,  was called the 
“Haldane conjecture”. But the real question should always have been why 
the half-odd-integer chains were gapless.  Bethe’s solution and wrongheaded 
notions of “quasi-LRO” misled many to presume that gaplessness was the 
natural state of affairs.  Prior to Berry’s seminal paper on geometric phases 
(1984), the essential differences between integer and half-odd-integer S chains 
at the quantum level were not widely appreciated, though Haldane clearly 
anticipated this distinction.



One aspect which gave Haldane pause was the existence of exactly solvable
gapless integer S chains with bilinear-biquadratic interactions of the form

Hn,n+1 = cos ✓Sn ·Sn+1 + sin ✓ (Sn ·Sn+1)
2

θ = 0 : Heisenberg model
θ = +π/4 : Lai-Sutherland model (1975), gapless, SU(3) symmetric
θ = -π/4 : Takhtajan-Babujian model (1982), gapless
θ = -π/2 : Barber-Batchelor model (1989), gapped, dimerized

Haldane  correctly  reasoned  that  the  sizable 
biquadratic  terms  must  be  responsible  for  the 
gap collapse.  Of particular importance was the 
construction of a model at tan(θ)=1/3 by Affleck, 
Kennedy, Lieb, and Tasaki (1987). Though non-
integrable, it has a solvable ground state which 
demonstrably  exhibits  exponentially  decaying 
correlations.   AKLT’s  model  would  pave  the 
way to matrix product states and to symmetry-
protected topological phases.

Läuchli, Schmid, Treibst (2006)
Sólyom (1987)
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| i| 0i =
total spin 0 or 1

H =
X

n

P2(n, n+ 1) = 1
2

X

n

h
Sn ·Sn+1 +

1
3 (Sn ·Sn+1)

2
i
+ 1

3N

Then P2(n, n+ 1) | 0 i = 0 for every n, so H | 0 i = 0 with

Let P2(n, n+ 1) be the projector onto total spin  Jn,n+1 = 2 .

AKLT models for valence bond solids
Spin S from symmetrized product of 2S spin-½ quanta :

1

2
⊗

1

2
= 0 ⊕ 1

Affleck et al. (1987)
DPA et al. (1988)

= symmetrizerS=1  :

| 0(L,M) i =
Y

hiji2L

(a†i b
†
j � b†ia

†
j)

M | 0 i

(DPA, Auerbach, Haldane, 1988)
Schwinger boson representation of SU(2)

General construction :

S = 1
2Mz Jmax = 2S �M,



Finding a Hamiltonian (S = 1) :

| i| 0i =

H =
X

n

P2(n, n+ 1) = 1
2

X

n

h
Sn ·Sn+1 +

1
3 (Sn ·Sn+1)

2
i
+ 1

3N

Then P2(n, n+ 1) | 0 i = 0 for every n, so H | 0 i = 0 with

total spin 0 or 1

Let P2(n, n+ 1) be the projector onto total spin  Jn,n+1 = 2 .

S = 2

| 0(L,M) i =
Y

hiji2L

(a†i b
†
j � b†ia

†
j)

M | 0 i

(DPA, Auerbach, Haldane, 1988)
Schwinger boson representation of SU(2)General construction :

● where zS = 1
2Mz is number of neighbors

● Jmax = 2S �M is maximum spin on each link



S=3/2 honeycomb (z=3) S =2 Kagomé (z=4)

S =3 pyrochlore (z=6)

שמח
חג

שמח
חג

שמח
חג
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S = ½ edge states of the S = 1 AKLT chain

INS: Kenzelmann et al. (2003) ESR: Yoshida et al. (2005)

T. Kennedy (1990) : exact diagonalization of open S = 1 bilinear-biquadratic 
chains for -π/4 < θ  < π/4.  Found that for  -π/4 < θ  < θAKLT  the spectrum 
consisted of four low-lying states separated by a gap from the continuum, split 
into singlet and triplet :

N even N odd
�

with gap � ⇠ J exp(�N/⇠), the
signature of interacting S = ½ 
edge states!  These edge states 
were experimentally observed 
in  INS  and  ESR  studies  of 
Y2BaNi1-xMgxO5.

| i| 0i =

S = ½
edge state



Away from AKLT point, ground state is a linear superposition:

Equivalent to “topological protection of edge states” for odd S.
Pollman et al. (2010)



For an AFM spin chain with SU(2) symmetry and a singlet ground
state, the entanglement eigenstates may be classified by total spin :
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entanglement gap
remains finite in

thermodynamic limit

S=1 HeisenbergS=1 AKLT (special)

levels descend

from ξ=∞ 

product state
(trivial)

S=0



Hidden order and ℤ2 × ℤ2 symmetry

0 + 0 −0 +0 −
�� 

↵
=

X

~m

Am1···mN

��m1, . . . ,mN

↵
with m j  =  +1,0,-1

den Nijs and Rommelse (1989)
DPA and Girvin (1989)
Kennedy and Tasaki (1992)
Oshikawa (1992)
Tu, Zhang, and Xiang (2009)

Before projection, each link is a linear combination |"# i � |#" i :

Write as

| i| 0i =

+ - + 0 0 0 0 0 0 - 0 0 0 0 + - + 0

0 0 - 0 0 0 + 0 - 0 0 + - 0 0 0 0 +

0 + 0 0 0 0 0 + 0 0 0 - 0 0 0 - 0 + 

✓
✓
✘

So contains:



Perfect antiferromagnetic order among the +/− states once the 0 states are 
removed! The system has a “string order parameter”, 

C(n) ⌘ hSz
0S

z
ni = 4

3

�
� 1

3

�|n| eC(n) ⌘
D
Sz
0

n�1Y

j=1

ei⇡S
z
j Sz

n

E
= � 4

9,

first  derived by den Nijs  and Rommelse  (1989)  in  the  context  of  classical 
models of the preroughening transition. 

RSOS flat RSOS roughdisordered flat

Q[n, n0] =
n0X

j=n

Sz
j = `n�1 � `n0 with lj 2 {0, . . . , S}

DPA and Girvin (1989)“Charge” Q is bounded : �S  Q  S

General S AKLT chains:



Kennedy-Tasaki-Oshikawa nonlocal unitary transformation :

If H is the S = 1 Heisenberg Hamiltonian with open boundaries,

U =
Y

j<k

ei⇡S
z
j S

x
k : H ! eH = UHU

†

eH =
X

n

h
S
x
n e

i⇡Sz
n+1S

x
n+1 + S

y
n e

i⇡(Sz
n+Sz

n+1)S
y
n+1 + S

z
n e

i⇡Sz
n+1S

z
n

i

This model has a ℤ2 x ℤ2 symmetry, i.e. global rotations by π about the 
x, y, or z axis (symmetry group D2) which is realized nonlocally on H. 
The string operator transforms as

U
⇣
Sz
j e

i⇡
Pk�1

l=j Sz
l Sz

k

⌘
U † = Sz

j S
z
k

Spontaneous breaking of ℤ2 × ℤ2 symmetry then entails a fourfold
ground state degeneracy for both     and    .  The “hidden” string
order for      is realized as bulk ferromagnetism for     , where the
moment points along

eH H

H eH
±x̂± ẑ.

still local!



AKLT chain as a symmetry protected topological phase
Big question : how to distinguish different phases of matter?
Conventional answer : Ordered phases of matter are classified by 
their patterns of spontaneous symmetry breaking.  Disordered phases
(liquid, gas) are essentially equivalent.

phase diagram

g1

g2
A

B C

N
0

0

FEATURELESS

What about quantum (T=0) phases?  Same story?

Two gapped quantum phases are distinct if their WFs are adiabatically 
disconnected.   A  quantum  phase  which  cannot  be  adiabatically 
connected, by some sequence of local unitary  transformations, to a 
(trivial) product state is topologically ordered.

Modern perspective : “beyond the Landau paradigm”
Hastings and Wen (2005) Chen, Gu, and Wen (2010)

Examples : FQHE states, Kitaev toric code (ℤ2 spin liquid)



For local Hamiltonians in d=1, the ground state is always
adiabatically connected to a trivial product state. Verstraete (2005)

However, imposing a symmetry G can result in an obstruction
to this adiabatic connection.  In this case, either:

SSB : ground state ⎢Ψ0⟩ state breaks G.■

G remains unbroken, and ⎢Ψ0⟩ adiabatically connected
to trivial product state by local G-preserving unitaries.

■

G remains unbroken, but ⎢Ψ0⟩ adiabatically disconnected
from a trivial product state via local G-preserving unitaries.
⎢Ψ0⟩ is then a symmetry-protected topological (SPT) phase.

■



H = J

X

n

Sn ·Sn+1 +D

X

n

(Sz
n)

2

Back to S=1 chain :

Haldane large DIsing AFMga
p 
∆

D/J
1.0

| 0i ⇠ | · · · 00000 · · ·i| 0i ⇠ | · · ·+�+� · · ·i
......| 0i ⇠ | i

Pollmann, Turner, Berg, and Oshikawa

Haldane phase is an SPT protected by any of :
(i) time-reversal, (ii) space inversion, or (iii) broken ℤ2×ℤ2 symmetry 

single ion anisotropy

product state product state

�0.3



Explicit symmetry-breaking adiabatic trivialization
Schwinger boson representation of S=1 AKLT chain :

| 0i =
Y

j

�
a†j b

†
j+1 � b†j a

†
j+1

�
|0i

S=2 AKLT chain : adiabatically connected to large-D state
Pollmann et al. (2012)not topologically protected!

AKLT : ...... i| 0i = | , ✓e =
⇡
4 , ✓o = ⇡

4

,| 0i = | · · · 00000 · · · i ✓e = 0 ✓o = 0,D=∞ :
| 0i = | · · ·+�+� · · · i , ✓e = 0 ✓o = ⇡

2,D=-∞ :

break time reversal, space inversion

| 0i =
Y

n

�
cos ✓ a†nb

†
n+1 � sin ✓ b†na

†
n+1

�
|0i

| 0i =
Y

n

�
cos ✓e a

†
2n b

†
2n+1 � sin ✓e b

†
2n a

†
2n+1

��
cos ✓o a

†
2n+1 b

†
2n+2 � sin ✓o b

†
2n+1 a

†
2n+2

�
|0i

break lattice translation



Continuum field theories of quantum magnetism

{
Lorentz invariance with c2

= ρs/χ

Goldstone’s theorem precludes SSB for (d+1) ≤ 2 , but expect mass gap
with exponential decay of correlations.  How to understand S =½ chain?

{
from Berry phase

susceptibility

S =

∫
ddx

∫
dt

[
1

2
χ (∂tn̂)

2
−

1

2
ρs

∣∣∇n̂

∣∣2
]
− h̄S

∑
i

η
i
ω[n̂

i
]

Quantum antiferromagnet (requires some work) : Haldane (1983, 1988)
Affleck (1985)

spin

stiffness

nonlinear sigma model in (d+1)-dimensions

solid

angle

Néel

vector

Read and Sachdev (1995)

Using spin coherent state path integral, one can derive :

Quantum ferromagnet (naive continuum limit of CSPI) :

S =

∫
ddx

∫
dt

[
− h̄M

0
A(Ω̂) ·

∂Ω̂

∂t
−

1

2
ρs

∣∣∇Ω̂
∣∣2

]

magnetization

density

spin

stiffnessr⇥A = ⌦̂



Berry phase in d=1 : spin liquid vs. Haldane gap

= 1
2S

Z
dx

Z
dt n̂ · @n̂

@t
⇥ @n̂

@x
= 2⇡S Qtx

SBerry/~ = �S

Z
dt

X

j

(�1)j ![n̂j ]

Néel vector

is an integer topological invariant (Pontrjagin number)Qtx

eiSBerry/~ = e2⇡iSQtx

topological term is invisible ☞ conventional NLσM
Haldane gap, exponential decay of correlations
all Heisenberg chains with 2S even qualitatively the same

2S even :

2S odd : destructive interference between topological sectors
spin liquid behavior, “quasi-LRO”, power law decays
all Heisenberg chains with 2S odd qualitatively the same

n̂(x, t)
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Berry phase term cancels for smooth Néel field configurations.

QM in d dimensions ↔ statistical mechanics in (d+1) dimensions

Quantum AFM in d > 2 : Néel order vs. quantum disorder

Euclidean action functional of the Néel field :
Chakravarty, Halperin, Nelson (1988)

DPA and Auerbach (1988)

Read and Sachdev (1989)

Sachdev (1999)
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T=0: (d+1)-dimensional NLσM
         with “temperature” g.

g<gc: Néel order
g>gc: quantum disorder
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On all d=2 Bravais lattices, even for “best case” S=½ , the nearest
neighbor Heisenberg antiferromagnet possesses Néel order at T= 0. 

What do we need to get a quantum disordered ground state?
• Extension to different algebras of quantum spin:

SU(N) , Sp(N) , …
Affleck and Marston (1987)
DPA and Auerbach (1988)
Read and Sachdev (1990)

• Reduction to space of local singlet coverings:
quantum dimer model Rokhsar and Kivelson (1988)

Moessner and Sondhi (2001)

• Further neighbor couplings, frustrated lattices
geometrical frustration Misguich and Lhuillier (2003)

Moessner (2001)

depleted lattices e.g. CaVa4O9, SrCu2(BO3)2
Taniguchi et al., (1995)
Kageyama et al. (1999)

• Models with gauge symmetries:
Kitaev’s models Kitaev (2005, 2006)
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Schwinger bosons for SU(2)
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Schwinger representation of SU(2):

DPA and Auerbach, (1988)
Read and Sachdev (1990)

Sz
=

1

2
(na − n

b
)S+

= a† b

S−
= a b† 2S = na + n

b

Heisenberg interaction:
S

i
· S

j
= S2

−
1

2
A†

ij
A

ij

A
ij

= a
i
b
j
− b

i
a

j

N copies

which is the Sp(N) extensionnc =

N∑
m=1

(
a†

im
a

im
+ b†

im
b
im

)
≡ κ N

A
ij

=

N∑
m=1

(
a

im
b
jm

− b
im

a
jm

)

SU(2) ∼= Sp(1) ⇒ κ = S

Large N extensions of SU(2)
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Aij =
NX
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Original large-N model (AA 1988, RS 1989) :
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×
N

N̄

= ●  ⊕
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1

N2�1

bipartite lattice :
fundamental × antifundamental

yields singlet + adjoint
representations

A B

H = � 1

2N

X

i<j

Jij A
†
ijAij

,

Harada, Kawashima, and Troyer (2003):
SU(N) antiferromagnet with n c = 1 (square lattice)
via quantum Monte Carlo method.

N ≤ 4 : Néel order
N ≥ 5 : quantum disorder
            (columnar valence bond crystal)



Spin liquids
1992 : surprisingly difficult to avoid magnetic order via frustration

2017 : embarrassment of riches!  several experimental candidates!
           trivial to elicit model spin liquids via Kitaev constructions

What is a spin liquid?  No precise definition, but general desiderata:
• quantum disordered ground state
• no broken lattice translational symmetries
• half-odd integer spin per unit cell

review : Savary and Balents, Rep. Prog. Phys. (2017)

Three broad classes :
topological : gapped, local singlets, short-ranged correlations -
                       FQHE, J1,2,3 kagome, triangular lattice QDM, toric code

U(1) gapless : gapless charged fermions + gauge field - Heisenberg kagome?
                         or gapped charges + gapless photon - quantum spin ice
ℤ2  gapless : gapless Majorana fermions, local spin correlations -
                      Kitaev honeycomb and generalizations



kagome = “basket weave”

Kagome lattice antiferromagnet
Classical kagome HAFM has infinite number of soft modes
Kagome QAFM @ T=0 : nonmagnetic, 〈S0‧Sr〉 short-ranged

Early experiments on quasi-kagome QAFM showed:

Ramirez et al. (2000) : SrCr9pGa12-9pO19

p=0.89

No long-ranged magnetic order down to 50 mK
Heat capacity CV∝T2  : gapless excitations < 0.1 
Weak dependence of CV on field H (singlets!)

Number of low-lying singlet excitations ∼exp(0.14⋅N)

S = 3
2

S=½ material : herbertsmithite ZnCu3(OH)6Cl2



Honeycomb lattice model (2006):

Toric code (2003):

magnetic vorticeselectric charges

“Topological phases and quantum computation” : Kitaev and Laumann (2009)

A : gapped abelian phases
N : gapless nonabelian phase

A

A AN

Topologically degenerate ground state (4x on torus) with
gap to electric (e) and magnetic (m) excitations that have
nontrivial mutual statistics and form composite (e-m) fermions.

Kitaev’s models


