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Why I like these models

1) They remind me of Tinker Toys
    from my childhood.

2) Geometric pictures and ridiculous
    Hamiltonians remind me of AKLT
    models from when I was a postdoc.

3) Many species of Majorana
    fermions = excuse for
    figures with pretty colors.





Kitaev honeycomb model (2006):

Kitaev toric code (2003):

magnetic vorticeselectric charges

See A. Kitaev and C. Laumann (2009)

A : gapped abelian phases

N : gapless nonabelian phase
A

A AN

Topologically degenerate ground state (4x on torus) with
gap to electric (e) and magnetic (m) excitations that have
nontrivial mutual statistics and form composite (e-m) fermions.



Majorana fermions

Self-conjugate (“real”) fermions : 

Many species :

2 Majorana = 1 Dirac : 

2N Majoranas ⇒ 2N states

S=½ algebra represented with Majoranas

Four Majorana species :

Pauli matrices : 

Constraint : 

Projector onto constraint sector :



2D Toric Code
Apply unitary transformation

to all NW/SE links: 

This yields Wen’s model (rotated by π/4)

(construction due to A. Kitaev)

(Wen, 2003)

Define the gauge fields

Magic : Sticks of same color never share a vertex
means that the gauge fields uij commute!

⇒ classical gauge theory.

Ground state : 
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Honeycomb Lattice Model

The honeycomb lattice is threefold coordinated.  The magic stick rule still holds,
but one Majorana species is free to hop in the presence of a static gauge field.

honeycomb lattice square-octagon lattice
(Yang et al. 2007 , Baskaran et al. 2009 , Kells et al. 2010)(Kitaev 2006)



Counting spin, fermion and gauge freedoms
Consider N sites on a torus

Spins : degrees of freedom

N  Majoranas DOF (

gauge fields DOF

Dirac fermions)
DOF

too many!

4 Majoranas per site

Count gauge-invariant freedoms : hexagon fluxes ;  1 constraint

2 Wilson cycles

independent flux variables⇒



Projection onto the constraint sector :

the effect of projection

Suppose .  Then but , so

is to sum over all gauge configurations

consistent with a given flux assignment :
gauge field WFfermion WF

gauge transformation

sum over gauge configurations

Starting from some we can build the Hilbert space

multiplying by products of even numbers of Majoranas .

preserves (Dirac) fermion number modulo 2.

So everything works out to give :

,



Majorana fermions in a static gauge field

Hamiltonian : with

Problem : must find optimal gauge configuration

Solution : (1) numerical search, (2) Lieb’s theorem (1994)

Time-reversal

Choosing

Time-reversal properties of gauge fields and fluxes :

= # sites on perimeter of p

real, imaginary, with , one has

,

,

even-membered rings ➙ flux is even under
odd-membered rings ➙ flux is odd under



Time-reversal broken states : two routes

1) Add explicit T breaking terms :

This yields next-neighbor hopping in the gauge field background.
Still noninteracting fermions!

2) Lattices with odd-membered loops

(Kitaev 2006)

Spontaneous breaking of time-reversal when

(Yao and Kivelson 2007)

Ground state
Chern number



Lieb’s theorem
Consider a general single species Majorana Hamiltonian

on a lattice which has reflection planes which do not intersect any of

.We may assume

gauge field on each link is . 

Then the lowest energy assignment

the lattice sites.  The

of the plaquette fluxes is one which is reflection symmetric, and one in which

each plaquette p bisected by a reflection plane has flux . 

-1

-1

-1

-1

σ

σ

(Lieb, 1994)



Diagonalization of lattice Majorana Hamiltonians

Assume a regular lattice with an even element basis :

where and .

The spectrum consists of the positive eigenvalues of (plus half the zeros).

The spectrum of satisfies

time reversal invariant momenta

The Hamiltonian may be reexpressed in terms of Dirac fermions:

H = i
X

k

0
Ast(k)

�
c†ks ckt �

1
2 �st

�
+

i

4

X

Q

Ast(Q) ⇠s(Q) ⇠t(Q)



Spin-metal in the square-octagon model

with explicit T-breaking terms
(Kells et al. 2010)

Yang et al. 2007
Baskaran et al. 2009
Kells et al. 2010

Lowest energy flux configuration consistent with
Lieb’s theorem has σ= -1, but adding ring terms
such as to the Hamiltonian
can stabilize the phase with , which
has a Fermi surface (Baskaran et al. 2009).

Adding next-nearest-neighbor terms
explicitly breaks T and generates new phases,
some with exotic Chern numbers (Kells et al. 2010).



Gamma matrices and Clifford algebras
Clifford algebra : 

When ,  a representation of the CA can be constructed by tensor

products of Pauli matrices, viz.

In even dimensions, define .

With

Majorana fermion representation

Majorana fermions satisfying .

Then take . The following product is fixed :

Pauli matrices Dirac matrices



Interactions where .

Pauli matrices

Dirac matrices

In addition to and five , ten others :

These form a basis for 4x4 Hermitian matrices.

The construction can be continued for 2kx2k Hermitian matrices :

The symmetry of these various classes under time-reversal must be
worked out in detail and depends on conventions for the charge
conjugation operator.



Complex conjugation : one can always take
this is consistent with the constraint

Charge conjugation :  for take ;  for take

Correspondence to spin tensor algebra for : Murakami et al. 2004
Yao et al. 2009
Chua et al. 2011
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Models with k=2
Consistent with “magic stick rule” we look for a 5-fold coordinated lattice
and impose the Hamiltonian

Examples of viable lattices :

Both contain triangular plaquettes and will have T -breaking ground states.

cubic lattice
of octahedra

Local projector : ,

Wu et al. 2009
Yao et al. 2009



For the decorated square lattice model,
the lowest energy flux configuration is
that in which all square plaquettes have

and all triangle fluxes are the
same, with .

Circuit composition rule for flux :

# of common links



edge state structuretopologically nontrivial topologically trivial

ground state : bulk energy bands

Chern number = ±1 Chern number = 0



Spin correlations
The ground state, when properly projected onto the constraint subspace, is a sum
over all gauge configurations consistent with a given flux pattern:
Only gauge-invariant objects can have an expectation value.  Thus,

Nonabelions for
Kitaev showed how each vortex binds an odd number of Majorana zero modes
in a phase where the Chern number is odd.  Yao and Kivelson (2007) observed
a degeneracy 2n+1 for n well-separated vortices.   We find (at fixed WH/V) n Dirac 
zero modes for 2n vortices.

vortices and gauge strings



where or . This model has at least two
interesting phases : (i) a gapped chiral spin liquid (C=±2) with abelian vortices, 
and (ii) a gapless spin liquid with a stable spin Fermi surface (possibly stabilized by

Building on the work of Yao, Zhang, and Kivelson, considered the following model :

additional flux energy terms cf. Baskaran et al. 2007).

(Chua, Yao, and Fiete, 2009)Kagome chiral spin liquid 



Diamond lattice model
diamond = two interpenetrating FCC lattices , 

Our model : k=2 (4x4 Γ matrices).  Start with

and add

where

,

This Hamiltonian exhibits deformed Dirac cones at the three
inequivalent X points on the Brillouin zone square faces.  The
spectrum is linear in two directions and quadratic in the third.



So far we’ve only used .  We now add in corresponding terms where

is replaced by .  Then

 where and with

primitive RLVs

 Here are a gamma-matrix basis for 4x4 Hermitian - not spin operators!

Defining a pseudo-time reversal operator and parity

we consider the most general model which is symmetric under both.  This allows
for the addition of a hybridization term,

This preserves the essential ‘solvability’ of the model in terms of its representation
as two Majorana species (0 and 5) hopping in a static Z2 gauge background.

,

.



The Hamiltonian then becomes

where .   Pseudo-time reversal symmetry ⇒ :

We can set .   Now let J4 ≠ J123 ≡ J, 
following Fu, Kane, and Mele (2007).  Then the
Dirac nodes at the X points acquire a mass gap
proportional to | J4 - J |.  The system is then
topologically nontrivial when J4 > J, and there
are an odd number of surface Dirac cones.

Finally, if we relax the requirement of separate and symmetries and require
only then the band structure is richer, with γ4 , γ14 ,	γ45 ,	γ24 , and γ34 terms
in the Hamiltonian, potentially allowing for a more diverse set of possibilities.



Octahedron cubic lattice model
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If we assume a single cube unit cell, there
are ten distinct flux assignments for each 
octahedron (modulo time reversal).

Several potentially interesting phases appear :

(Z. Huang and DPA, in progress)



However, all these phases violate Lieb’s
theorem, which applies here because of
the presence of reflection planes.  For
each octahedral flux configuration, the
energy is minimized with a reflection-
symmetric extension to the full lattice,
requiring a 2x2x2 cubic unit cell.  The
A phase always has the lowest energy.

A C4

Surface energy plots at :
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k=3 and beyond...
Constraint is . Try

If -- not conventional time-reversal !

?

, then

How to represent using algebra?

The 21 and 35 multiplets are of mixed symmetry 
under the familiar time reversal operation.
(I.e. 21=3+5+13 , 35=9+11+15).

Solution : Take , which results in .  Then is odd
under time reversal, while are all even :(Y. Li and DPA, 2011)
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(courtesy of Y. Li) 



k=3 on the pyrochlore lattice

This generalizes the model of Chua, Yao, and
Fiete to a k=3 system.  The hybridization term
KΓ7 may or may not break time reversal.

Once again, there are two Majorana species
hopping in the presence of a single gauge
field, and with on-site hybridization.

Z. Huang (PhD thesis, 2014)



tetrahedra fluxes



hexagon fluxes
Fixing the fluxes through all the triangular faces
of the tetrahedra still leaves the hexagonal faces
in all the Kagome planes unconstrained.  On a
supertetrahedron containing four elementary
tetrahedra, there are four hexagonal faces, and
we can flip an even number of them :

minimal unit cell :  A2 ground state free hexagon fluxes :  A1 ground state

1 + 6 + 1 = 8 hexagon configurations

Total energies for :



fermi surfaces top : bottom :
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