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Why | like these models

|) They remind me of Tinker Toys
from my childhood.

2) Geometric pictures and ridiculous
Hamiltonians remind me of AKLT
models from when | was a postdoc.

3) Many species of Majorana
fermions = excuse for

figures with pretty colors.




To play, simply print out
this bingo sheet and
attend a departmental
seminar.

Mark over each square
that occurs throughout
the course of the
lecture.

The first one to form a
straight line (or all four
corners) must yell out

B\\\\@O” to win!

B |

N GO

Speaker Speaker | Host Speaker
bashes Rﬁggaot?d sucks up | Professor | Wastes s
previous ‘um...” to host falls explaining
work " professor | asleep outline
Work Yolu're the
ties in to only one in
LaPIOP | Cancer/HIV | “...etal." |yourlab that| Siatant
maifunction) or War on bothered to |  YPO
Terror show up

Use of
Entire siide| “The data | FREE | powarmoint Rﬂg;‘fs"gfs

filled with | clearly | Speaker | template (past or

uations | shows...”" | runs out with blue
. of time | background | Present)

There's a Bitter “Beyond Master's

iGrad Student “That’s an student
wearin POStkdoc interesting thefstggpe bobs head
same clothes|  @SKS question or this fighting
as yesterday| question work sleep
Speaker ' u Results
forgets to |Cell phone -Zg: \X,?.‘ :t9s To“:'ze conveniently
thank goes off e T show
collaborators going on will..."  limprovement

JORGE CHAM © 2007

WWW.PHDCOMICS.COM




Kitaev toric code (2003):

o NS 2 - 2 r r . r I
it=——J E G ana 0 g 0y 0500y
_|_

electric charges magnetic vortices

Topologically degenerate ground state (4x on torus) with
gap to electric (e) and magnetic (m) excitations that have
nontrivial mutual statistics and form composite (e-m) fermions.

Kitaev honeycomb model (2006):

i / /
H=J) ofoi+J,) olo?+ 3> ofc]
(i5) (i5) (i5)

(0,0,1)

A : gapped abelian phases

N : gapless nonabelian phase

(0,1,0)

See A. Kitaev and C. Laumann (2009)



Majorana fermions

Self-conjugate (“real”) fermions : 9 = 41

Many species : {6%,6°} = 2§

2 Majorana = 1 Dirac:  c¢=1(0,+i6,) ¢ =21(6; —ib,)
2N Majoranas = 2N states . T/
{c,c } =ls

$=/2 algebra represented with Majoranas

Four Majorana species : 8¢ (a=0,1,2,3) S s g0g 1t
. . . y o020 S
Pauli matrices : ¢% = i0%90% (¢ =1,2,3) o¥ =4i0"0° = +i6'0
0% = i 0°0° = S

Constraint : 0916293 = 1

Projector onto constraint sector : P = Z(1+4 0"6'6°60°)

1
2



2D Toric Code

Apply unitary transformation U = ¢

to all NW/SE links: <(J } St {_UZ}

. E Y

O—ZC

This yields Wen’s model (rotated by 11/4)

H =g ‘]E E 0'7?30"? O‘If O‘f (construction due to A. Kitaev)
(Wen, 2003) ) E

(@' =0 SRINy

® ® @ Define the Z, gauge fields u;; = —i0;'0; oy
M E

Magic : Sticks of same color never share a vertex
means that the gauge fields uj commute!

® @ ® [uij ) Ukz} = 0 = classical Z2 gauge theory.
o

— Jy E uz] Uik Ut
O,M
o® =i0'0' = —i6%03 oY=i0"0>=+i0'@?

o? =1 (93 B 9192 Ground state : ¢p = uijujkuklulz’ — ]



Honeycomb Lattice Model 0% = 006! = —i6%°
/ / / = = AL
BRI it +.0,) alo! + ) olo e s S
(i7) (i5) (i5)
The honeycomb lattice is threefold coordinated. The magic stick rule still holds,
but one Majorana species is free to hop in the presence of a static 7, gauge field.

square-octagon lattice

(Kitaev 2006) (Yang et al. 2007 , Baskaran et al. 2009 , Kells et al. 2010)

honeycomb lattice



Counting spin, fermion and gauge freedoms

Consider N sites on a torus

Spins : 2" degrees of freedom

4 Majoranas per site

N Majoranas (6;) : 2%/2 DOF (1N Dirac fermions) T
4
, 4" =(v2") DOF
SN Z, gauge fields (u;;) : 2°™/* DOF } too many!

Count gauge-invariant freedom:s : %N hexagon fluxes ¢, ; 1 constraint 0. =1
p

7 )
2 Wilson cycles W, , = H U
H/V X

==

— %N + 1 independent flux variables
¢p = Uy

1la 3%z l3ly ylg Tilglg il



Projection onto the constraint sector :

1 1 7171 ’ 1

0000 | B— o+ A

Suppose u;;|¢) =+|¢) . Then u A;|¢) =—A;|¢) but [P, ¢,] =0,s0

the effect of projection |¥) — (HP) | @) is to sum over all gauge configurations

consistent with a given flux assignment : Z i } Yo (u | d(u) )

sum over gauge conf'gur'atlons fermion WF gauge field WF

gauge transformatlon

Starting from some | ¥, ) we can build the Hilbert space

multiplying by products of even numbers of Majoranas 9? ,

H preserves (Dirac) fermion number modulo 2.

So everything works out to give :

oEil lgauge DOF| x 2 [Majorana DOF] = 2% [spin DOF]



Majorana fermions in a static Z, gauge field

Hamiltonian : — 4ZA 6.60. with A Dl

Ul ] Ol )
Problem : must find optlmal gauge configuration {gbp} , Wy, Wy

Solution : (1) numerical search, (2) Lieb’s theorem (1994)

R = charge conjugation operator RT=RI =R =_R

Ti me-reve rsal T o R /C IC = complex conjugation operator
Choosing {6°,6%} real, {6',6°} imaginary, with R = i o¥ = 626°, one has

TR T = T =
Time-reversal properties of 7, gauge fields and fluxes :

L)

N,, = # sites on perimeter of p

even-membered rings —> flux is even under 7
odd-membered rings = flux is odd under 7



Time-reversal broken states : two routes

&

1) Add explicit T breaking terms : : J @ @
Ul A,
&

el et 2t P
—zﬁjﬁj

This yields next-neighbor hopping in the Z, gauge field background.

Still noninteracting fermions!  (Kitaev 2006)

2) Lattices with odd-membered loops

Spontaneous breaking of time-reversal when THT ~1

(Yao and Kivelson 2007)
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energy gap A in unit of J'
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Ground state
Chern number

M

Energy levels in unit of J
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Lieb’s theorem  (Lieb, 1994)

Consider a general single species Majorana Hamiltonian H = ZAz‘j 0. Hj
on a lattice £ which has reflection planes which do not intersect any of

the lattice sites. The 7, gauge field on each link is (i — Sgn(AZ-j) .

We may assume A = A* = —A®. Then the lowest energy assignment

of the plaquette fluxes is one which is reflection symmetric, and one in which

each plaquette p bisected by a reflection plane has flux ¢, = —1.




Diagonalization of lattice Majorana Hamiltonians

Assume a regular lattice with an even element basis :

H=1Y A,(R-R)¢(R)&(R) _4ZA k)& (k)

R R’
where A, (k) = —A;,(k) = —A,,(-k) = A%(-k) and &,(k)T = £,(—k).

The Hamiltonian may be reexpressed in terms of Dirac fermions:

—ZZA Ck Cry — 3 05) + = ZA Q)¢&.(Q)

tlme reversal invariant momenta Q = 1G

The spectrum of ¢A(k) satisfies spec {z’A(k)} = —spec {z‘A(—k)}

The spectrum consists of the positive eigenvalues of ;A _, (k) (plus half the zeros).



Yang et al. 2007

Spin-metal in the square-octagon model e erai 2009

o= "1

Kells et al.2010

Lowest energy flux configuration consistent with
Lieb’s theorem has 0= -1, but adding ring terms
such as o7 05 05 0; = —¢, to the Hamiltonian
can stabilize the phase with ¢, = ¢35 = +1, which
has a Fermi surface (Baskaran et al. 2009).

Adding next-nearest-neighbor ofc’o; terms

i
explicitly breaks T and generates new phases,
some with exotic Chern numbers (Kells et al. 2010).

0 02 04 06 0.8 1
k /2m

o7 =41

N N R R R
B +
B +3
L] +2
] +1
(] o
] -1
;
B -3
B 4

0 8 i AT e T e

s O.ix/gﬁ Sl with explicit T-breaking terms a,ffajya,i

Jy=J,=J,=1 (Kells et al. 2010)



Gamma matrices and Clifford algebras
Clifford algebra : {F“ ; Fb} = 2§59 Db E il A

When N =2k, a representation of the CA can be constructed by tensor

products of £ Pauli matrices, viz.

MNM=09l®-- - 191 %1 622060 - Q0% c%
P =0R1®---1x1 I’ =6 QRc*Q---Qac? R a?
F320_2®0_:U®®1®1 F2k—|—1:O_z®O_z®”.®O_z®0_z

In even dimensions, define T'?**! = (—{)*T'?...1?~

Majorana fermion representation
With 2k 4 2 Majorana fermions 0% (0 <a <2k +1) satisfying {0, 6°} = 26" .

Then take T'* =36°0% (a=1,...,2k+1). The following product is fixed :

90 91 S (92]<;—|—1 thic Z-k—l

k=1 : Pauli matrices k =2 : Dirac matrices



Interactions I'{' 'y = i 0 9? U, ;

o where w s =Sl S

J
k=1 : Pauli matrices T'=¢%  I?=¢¥%, I¥ = —iI''T? = ¢*
k=2 : Dirac matrices I'® = -T2+

In addition to 1 and five T'%, ten others : T'% =

%, 7] —asos

These form a basis for 4x4 Hermitian matrices.

k> 2 : The construction can be continued for 2kx2k Hermitian matrices :

class number | k=1 | k=2 | k=3 | k=14
1 1 1 1 1 1
16904 2k + 1 3 5 7 9
i0°6° (s i 10 21 36
GROSOROEE ) - 35 84
GRGEOOH [FE(e E - - 126
total A 4 16 64 256
rank D 2 4 8 16

The symmetry of these various classes under time-reversal must be

worked out in detail and depends on conventions for the charge
conjugation operator.



Complex conjugation : one can always take 0% K =

(_1)61, HCL

this is consistent with the constraint §° ¢! ... g2k+1 — j8=1

Charge conjugation : for k = 1 take R = i['?; for k = 2 take R = (¢T'?)(:T"*)

o [ 1P A | R R R e 1 | 70 O
RO F O | E matrices I I R42
S mesEETe0O ) E | O multiplicity || 1 5 10
er [ O] OO ]| OO Er E E O
Correspondence to S= % spin tensor algebra for k=2 Sl
Chua et al. 201 |

e = Lo S s

rank O T

I rank O 1 1
3—rank1 S¢

B rank 1:-— 5
5 — rank 2 §¢S°P

- __rank 3 S°SP8”

' rank 2 —10

I = 5={5%,5%}

= —2-{5% 5%}

I° = —- (St

I = (5258 st ol
[° =875 — ¢



. —— Wu et al. 2009
Models with k=2 Yao et ol 2009
Consistent with “magic stick rule” we look for a 5-fold coordinated lattice
and impose the Hamiltonian

EeE ipiiojector s P — 1 (1 —4070,6:070,07) , [H,B)]

1 () R e s A

Examples of viable lattices :

fh— o

cubic lattice
of octahedra

Both contain triangular plaquettes and will have T-breaking ground states.



For the decorated square lattice model,
the lowest energy flux configuration is
that in which all square plaquettes have

¢ = —1 and all triangle fluxes are the
same, with ¢, = *1.

Circuit composition rule for Z, flux :

Do = <—1>N<§’C’> e b

# of common links

O L e o e e s o e e

Energy per site/J




ground state : bulk energy bands

77
ATEESS
AT OSSN

LTH

7R

Chern number = +1 edge state structure Chern number = 0

topologically nontrivial topologically trivial
_IIIIIIIIIIIIIIIIIII_ _IIIIIIIIIIIIIIIIIII

iEsEsE(QE0.5 1 —1 —095:-0 056 1 —1=0.5 0 (55l
k /m k /m k /m



Spin correlations

The ground state, when properly projected onto the constraint subspace, is a sum
over all gauge configurations consistent with a given flux pattern: | ¥.[¢]) = P | ¥[u] )

Only gauge-invariant objects can have an expectation value. Thus,

USSR S — 0 if J, =0

m

U | TR R R e R R SR O M P S (]

m

Nonabelions for J, < v8J

Kitaev showed how each Z, vortex binds an odd number of Majorana zero modes
in a phase where the Chern number is odd. Yao and Kivelson (2007) observed

a degeneracy 2"*! for n well-separated vortices. We find (at fixed Whv) n Dirac
zero modes for 2n vortices.

nontopological topological
IIIIIILI ILIJ_ | | V[ | 11 | | g |
| NN N 0.6—§%§§§§§— O-iggggl!
X = aE === = === = =
me == -

* = E E = =B E =] i

L gosl= === == | o e
= e e e = o
/ S — == === = aT R
el s T
S e e e S LR e - A o
e __—::Eg E T ]
| T T T o B b e
. . 0 2 6 0 2 4 6
Zy vortices and gauge strings number of vortex pairs number of vortex pairs



Kagome chiral spin liquid (ChuaYeo,and Fiete, 2009)

Building on the work of Yao, Zhang, and Kivelson, considered the following model :

BRI > [T+, Y TPTP +J ZF35F45+J5ZF5

(ig) €L (ig) €V (i7) €L (7)€Y
SR 0T 0+ > (8000 + T 00 +zJ5ZGOH5
(ij) €A (ig)ev
where u;; = —i0} 67 (A) or uy,; =—i6} 0] (V). This model has at least two

interesting phases : (i) a gapped chiral spin liquid (C=1%2) with abelian vortices,
and (ii) a gapless spin liquid with a stable spin Fermi surface (possibly stabilized by
additional flux energy terms cf. Baskaran et al. 2007).

O @®@ 00 0O
9()91620394

phase diagram Fermi surface
Js

(Jas s Jhs o0 I ) — (10503 H0SSRUETRIEE:




Diamond lattice model

diamond = two interpenetrating FCC lattices, z =4

Our model : k=2 (4x4 I matrices). Start with

4
il >: >: J. 'R FGJRJréaJ

R a=1
and add
£ 7 yrab
7—(1 _> > hab _l_habVR)
a<b
where
ab 1 7ab
ERinly s ., VA =1R . TRIL

This Hamiltonian exhibits deformed Dirac cones at the three
inequivalent X points on the Brillouin zone square faces. The
spectrum is linear in two directions and quadratic in the third.




So far we've only used 6#”%%%* . We now add in corresponding terms where

I =36 (a=1,2,3,4) is replaced by I'** =659 (¢ = 1,2,3,4) . Then

w(k) 0 A(k) 0 — G
0 —w(k) 0 —Ak)|— 8
e NIRRT T
Or & Al e 20 wk) | — 63

= w(k)y* — Re A(k)y* + Im A(k) 4 primitive RLV

4 4 Y
where w(k) = "k, sin(y, —¢y) and A(k) =4  J, e with ¢, =k b, (1, =0).

a<b

Here 7" area gamma-matrix basis for 4x4 Hermitian - not spin operators!

Defining a pseudo-time reversal operator 7 = iv** JC and parity P = ~*° IC,

we consider the most general model which is symmetric under both. This allows
for the addition of a hybridization term,

5 5 a Tab 5b o ab T5b
thb — mz (FR e FR—|—é4) e Z (gab FR FR"‘éaFR‘I‘él_éb +gab FR+éaFR FR+éb>
R R

This preserves the essential ‘solvability’ of the model in terms of its representation
as two Majorana species (0 and 5) hopping in a static 7, gauge background.



The Hamiltonian then becomes

5 <<'Z>> : Z% o AK)
i —Ww 0 —
Hk) = | Ax(k) (k) B(k)

0 -A*k) p7(k) w(k)
= w(k)y* —Re A(k) 7y +Im A(k)4*
+ Re B(k)7v>* +Im B(k)~+**

4
- m =0
where 3(k) = im + iZgab e'Ya=")  Pseudo-time reversal symmetry = Im B(k)=0 : g ==
a<b
We can set Imw(k) = 0. Now let Js # Ji23=J, y [cos [T[PTPT] v [cas [T[P]PT
: I [ = e s s el B
following Fu, Kane, and Mele (2007). Then the g B s B e [ =
Dirac nodes at the X points acquire a mass gap v = [ e R e T
. L R e e e s
proportional to | J1 - J |. The system is then 7= [ e
. . e o 3= = = — — | — -k
topologically nontrivial when J4 > J, and there T T Tk e
are an odd number of surface Dirac cones. v [T e T I

Table 1: Symmetry properties of the y-matrices.

Finally, if we relax the requirement of separate 7 and P symmetries and require
only P 7 then the band structure is richer, with 94, y14, ¥45, 24, and 934 terms

in the Hamiltonian, potentially allowing for a more diverse set of possibilities.



Jsinn

Octahedron cubic lattice model| (@ Huangand DPAin progress)

If we assume a single cube unit cell, there
are ten distinct flux assignments for each
octahedron (modulo time reversal).

0.02 B l T T T T l
0.01 <
<
I
=3 O —
il £l
| | | | | | | | | | | | | | | | | | | | |
0.3 0.35 0.4 0.45 0.5
n/m

Several potentially interesting phases appear :




However, all these phases violate Lieb’s
theorem, which applies here because of
the presence of reflection planes. For
each octahedral flux configuration, the
energy is minimized with a reflection-
symmetric extension to the full lattice,
requiring a 2x2x2 cubic unit cell. The
A phase always has the lowest energy.

Surface energy plots at 1 = IZ

-1
(1,1) (-1,-1) (1,-1) (—1,1) (-1,-1)
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0.6 |- ]
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04| ‘ N\ By —=— |
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& . 1
03 RN, ¢,
2 B l ) Cs |
K s C,
0.2 L % Cs ——
Ceg ——
0.1 b |
0 - o+ Dttaaaaaaa
0 0.1 0.4 0.5

(-1,-1) (1,-1) (-1,1) (-1,-1)




k=3 and beyond... e e
Constraint is §°91626%0%9°6%¢" = —1. Try R =il? — (iI%)(iT*) — (dT%)(0%)(iI°)

If K%K =(—1)*6%,then T2 = +1 -- not conventional time-reversal'

How to represent using S=I algebra?

fa—13 L | eBe i R !
matrices I e Fab Fabc 1—|—3—|—5—|-7—|—9—|—11—|—13—|—15:8 = 64
multiplicity || 1 7 21 39 The 21 and 35 multiplets are of mixed symmetry
&1 D O O L under the familiar time reversal operation.

(l.e. 21=3+5+13 ,35=9+11+15).

Solution ;: Take R = I''I®I'® , which results in 72 = —1 . Then T'7 is odd
(Y.Liand DPA,2011) ynder time reversal, while T'1,2:3:4:5,6 are all even :

=13 1 | 40902 | 36°07 | sT'Te | 40260° | 0°970°0° | 6°0°0°4°
matrices I | [ T R e fu@s p@e
multiplicity 1 0 1 0 155 15 20
7T symmetry || E E O E O E O

a,b,c€{1,2,3,4,5,6}

l1+6+1+6+154+154+20=14+34+54+7+9+11+13+ 15
28 EVEN , 36 ODD




gafiima k=3 Gamma matrix decomposition table spin

matrices (courtesy of Y. Li) tensors
rank O — 1 1 ranHk 0
I
3— rank 1
SOé
2
5— rank 2
rank 1 _7<5<3 Sozsﬁ
FCL
: 7— rank 3
5> §P 8
£ g 9 K 4
e} = —— ran
rank 2 — 21 < - 8/ SG8.5788
B xg 11— rank 5
¢ SE5 2SSk
12 i 26 13— rank 6
15 < 3 558 875%5¢8¢

20 12
[ete 4 15 rank 7
y S§*88875°8¢5¢ gn

SQU:%Zrlrll_%Zrﬁrﬁ_§2F3F4+§ZF2F5+%ZF1F3F4+%ZF1F2F5+%ZF2F4F6_%ZF3F5F6

v N8 T T g R e e R R el R e sl S A R e DR e - LT T

57 = RN R R Rl e



k=3 on the pyrochlore lattice  zHuang PhD thesis. 2014

H=Jx [PtlA Ty + Ty Tip + TiaTic + Tig Tip + Tia Tip + I F?c}
te[111]
=T [T%Z Tig + Tl Ty + TEATEE + Tig T + TR T3 + T8 F%}
te[111]
+Jg Z {F%A Tig + Tic Tip + Toa e + T Tip + }
€[111]
+J, Y [PETH + DT + TR + T + + [EX: oM
Fe[liT] i

Sl
=

[111]

111]
—iy (JA9?9?+J’AQZH;)uij+iZ (JVH,?H?jLJ’vH,ZH;)u,,;j+iZK9g9i7
(i) .

This generalizes the model of Chua,Yao, and
Fiete to a k=3 system. The hybridization term
KT7 may or may not break time reversal.

Once again, there are two Majorana species
hopping in the presence of a single Z, gauge

field, and with on-site hybridization.




tetrahedra fluxes




nexagon fluxes

Fixing the fluxes through all the triangular faces
of the tetrahedra still leaves the hexagonal faces
in all the Kagome planes unconstrained. On a
supertetrahedron containing four elementary
tetrahedra, there are four hexagonal faces, and
we can flip an even humber of them :

1 + 6 + 1 = 8 hexagon configurations

Total energies for (Jo = Ja,Jg = J, K) = (sinf cos ¢,sin 0 sin ¢, cos 0) :

minimal unit cell : A2 ground state

free hexagon fluxes : Al ground state

/ -0.45 \ /

o

~




fermi surfaces k2P B%S@ gl B%ﬁ

#=0.10807 , ¢ =0.257 0 =0.10827, ¢ =0.257 0 =0.10847, ¢ =0.257
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