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Chapter 5

Metals

5.1 Introduction

Metals are characterized by a finite electronic density of states f(εF) at the Fermi level at zero
temperature. This entails a number of salient features, such as thermodynamic, electrody-
namic, and transport properties.

5.2 T = 0 and the Fermi Surface

5.2.1 Definition of the Fermi surface

The Pauli principle says that each fermionic energy state can accommodate either zero or one
electrons1. At zero temperature, the ground state of a noninteracting Fermi gas is obtained
by filling up all the distinct eigenstates in order of energy, starting from the bottom of the
spectrum, until all the fermions are used up. The energy of the last level to be filled is called

the Fermi energy, and is written εF. The energy distribution function at T = 0 is thus n(ε) =

Θ(εF − ε), which says that all single particle energy states up to ε = µ are filled, and all energy
states above ε = µ are empty. As we shall see in the next section, the Fermi energy is the zero

temperature value of the chemical potential: εF = µ(T = 0). If the single particle dispersion

ε(k) depends only on the wavevector k, then the locus of points in k-space for which ε(k) = εF
is called the Fermi surface. For isotropic systems, ε(k) = ε(k) is a function only of the magnitude
k = |k|, and the Fermi surface is a sphere in d = 3 or a circle in d = 2. The radius of this circle

is the Fermi wavevector, kF. When there is internal (e.g. spin) degree of freedom, there is a Fermi

1We consider two degenerate energy states with different spin polarizations ↑ and ↓ to be distinct quantum states.

1



2 CHAPTER 5. METALS

surface and Fermi wavevector (for isotropic systems) for each polarization state of the internal
degree of freedom.

Let’s compute the Fermi wavevector kF and Fermi energy εF for the IFG with a ballistic disper-
sion ε(k) = ~

2k2/2m. We allow for a common degeneracy g for each of the k states, e.g., due to
spin, for which g = 2S + 1, with S = 1

2
for electrons. The number density is

n = g

∫
ddk Θ(k

F
− k) =

gΩd

(2π)d
· k

d
F

d
=





g kF/π (d = 1)

g k2F/4π (d = 2)

g k3F/6π
2 (d = 3) ,

(5.1)

where Ωd = 2πd/2/Γ(d/2) is the area of the unit sphere in d space dimensions (Ω1 = 2, Ω2 = 2π,

Ω3 = 4π, etc.). Note that the form of n(kF) is independent of the dispersion relation, so long as

it remains isotropic. Inverting the above expressions, we obtain kF(n):

k
F
= 2π

(
d n

gΩd

)1/d
=





πn/g (d = 1)

(4πn/g)1/2 (d = 2)

(6π2n/g)1/3 (d = 3) .

(5.2)

The Fermi energy in each case, for ballistic dispersion, is therefore

ε
F
=

~
2k2F
2m

=
2π2

~
2

m

(
d n

gΩd

)2/d
=





π2
~
2n2

2g2m
(d = 1)

2π~2 n
gm

(d = 2)

~2

2m

(
6π2n
g

)2/3
(d = 3) .

(5.3)

Another useful result for the ballistic dispersion, which follows from the above, is that the
density of states at the Fermi level is given by

g(ε
F
) =

gΩd

(2π)d
· mk

d−2
F

~2
=
d

2
· n
εF

. (5.4)

For the electron gas, we have g = 2. In a metal, one typically has kF ∼ 0.5 Å
−1

to 2 Å
−1

, and

εF ∼ 1 eV − 10 eV. Due to the effects of the crystalline lattice, electrons in a solid behave as if
they had an effective mass m∗ which is typically on the order of the electron mass but very often
about an order of magnitude smaller, particularly in semiconductors.
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Figure 5.1: Fermi surfaces for two and three-dimensional structures. Upper left: free par-
ticles in two dimensions. Upper right: ‘tight binding’ electrons on a square lattice. Lower
left: Fermi surface for cesium, which is predominantly composed of electrons in the 6s or-
bital shell. Lower right: the Fermi surface of yttrium has two parts. One part (yellow) is
predominantly due to 5s electrons, while the other (pink) is due to 4d electrons. (Source:
www.phys.ufl.edu/fermisurface/)

In solids, the dispersions ε(k) are in general anisotropic, and give rise to non-spherical Fermi
surfaces. The simplest example is that of a two-dimensional tight-binding model of electrons
hopping on a square lattice, as may be appropriate in certain layered materials. The dispersion
relation is then

ε(kx, ky) = −2t cos(kxa)− 2t cos(kya) , (5.5)

where kx and ky are confined to the interval
[
− π

a
, π
a

]
. The quantity t has dimensions of en-

ergy and is known as the hopping integral. The Fermi surface is the set of points (kx, ky) which

satisfies ε(kx, ky) = εF. When εF achieves its minimum value of εmin
F = −4t, the Fermi surface

collapses to a point at (kx, ky) = (0, 0). For energies just above this minimum value, we can
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expand the dispersion in a power series, writing

ε(kx, ky) = −4t + ta2
(
k2x + k2y

)
− 1

12
ta4
(
k4x + k4y

)
+ . . . . (5.6)

If we only work to quadratic order in kx and ky, the dispersion is isotropic, and the Fermi

surface is a circle, with k2F = (εF + 4t)/ta2. As the energy increases further, the continuous
O(2) rotational invariance is broken down to the discrete group of rotations of the square, C4v.

The Fermi surfaces distort and eventually, at εF = 0, the Fermi surface is itself a square. As

εF increases further, the square turns back into a circle, but centered about the point
(
π
a
, π
a

)
.

Note that everything is periodic in kx and ky modulo 2π
a

. The Fermi surfaces for this model are
depicted in the upper right panel of Fig. 5.1.

Fermi surfaces in three dimensions can be very interesting indeed, and of great importance
in understanding the electronic properties of solids. Two examples are shown in the bottom
panels of Fig. 5.1. The electronic configuration of cesium (Cs) is [Xe] 6s1. The 6s electrons
‘hop’ from site to site on a body centered cubic (BCC) lattice, a generalization of the simple
two-dimensional square lattice hopping model discussed above. The elementary unit cell in
k space, known as the first Brillouin zone, turns out to be a dodecahedron. In yttrium, the
electronic structure is [Kr] 5s2 4d1, and there are two electronic energy bands at the Fermi level,
meaning two Fermi surfaces. Yttrium forms a hexagonal close packed (HCP) crystal structure,
and its first Brillouin zone is shaped like a hexagonal pillbox.

5.2.2 Fermi surface vs. Brillouin zone

The construction of the first Brillouin zone proceeds as follows. Draw the bisecting planes

(d = 3) or lines (d = 2) for each of the reciprocal lattice vectors G =
∑d

µ=1 nµ bµ. The region
bounded by these bisectors which contains the origin is the first Brillouin zone. The regions for
which a minimum of one bisector is crossed in order to get to the first zone defines the second
zone. Points for which a minimum of (j−1) bisectors must be crossed to arrive in the first zone
comprise the jth zone. For the square lattice, this scheme is depicted in Fig. 5.2. By shifting all
the various fragments of the jth zone by reciprocal lattice vectors, one can completely cover the
first zone, with no overlapping areas. Thus, the volume of each of the zones is always v̂0.

Suppose there are Z electrons per unit cell. The Fermi wavevector kF is determined by kF =
(2πn)1/2 with na2 = Z. The side length of the Brillouin zone is b = 2π/a. Thus, the ratio of the
diameter of the free electron Fermi circle to the elementary RLV is

r ≡ 2kF

b
=

√
2Z

π
. (5.7)

If r < 1, the Fermi circle lies entirely within the first Brillouin zone Ω̂. This is the case for Z = 1,
when r = 0.798, but for Z = 2 the area of the Fermi circle is precisely the Brillouin zone area,
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Figure 5.2: Extended zones and their folding for the square lattice. Reciprocal lattice points are
shown as yellow dots. The central square, defined by the thick black line, is the first Brillouin
zone. The colored lines denote bisectors of reciprocal lattice vectors G = n1b1 + n2b2 and are
labeled by n1 and n2. In general, a minimum of j − 1 such bisectors must be crossed in going
from the jth Brillouin zone to the first Brillouin zone., with j labeled in black. (Not all of the
fourth zone is labeled.)

and r = (4/π)1/2 = 1.128, so the Fermi circle spills over into the second zone. The situation
is depicted in the left panel of Fig. 5.3. Since r <

√
2, it does not cross any of the red lines

in the left panel, i.e. the Fermi circle is confined to the first and second zones. The effect of
a weak crystalline potential, as we have seen, is to introduce energy gaps along the Brillouin
zone boundaries. If the crystalline potential is strong enough, it can pull all of the states from
the second zone into the first zone, completely filling it , thereby resulting in a band insulator.

When Z = 3, find r = 1.382 <
√
2, so again the Fermi surface lies only within the first and

second zones. For Z = 4, r = 1.596 >
√
2, and as we see in the right panel of the figure, the

Fermi sea completely encloses the first zone, and spills over into zones two, three, and four.

What happens in d = 3 dimensions? Fig. 5.4 shows some examples. Sodium (Na) is mono-
valent, and the volume of its free electron Fermi sphere is half that of the Brillouin zone and

fits entirely within Ω̂. The crystal structure is bcc and the first Brillouin zone has the shape
of a rhombic dodecahedron. Copper (Cu) is also monovalent, but the crystalline potential is
stronger and leads to the eight Fermi surface ‘necks’ shown in the figure. The crystal structure
is fcc, and the Brillouin zone has the shape of a truncated octahedron. The necks straddle the
eight hexagonal faces of the first zone. Calcium (Ca) is divalent, hence the free electron Fermi
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Figure 5.3: Brillouin zones and free electron Fermi seas (in blue) for the square lattice. Left:
Z = 2 electrons per cell. The Fermi surface has area v̂0, and the free electron Fermi sea extends
into the second zone. Right: Z = 4 electrons per cell. The Fermi surface has area 2v̂0. and
the free electron Fermi sea completely covers the first zone, and extends into portions of the
second, third, and fourth zones.

sphere has exactly the same volume as that of the first Brillouin zone. Thus, this sphere must
cut across the Brillouin zone boundaries, resulting in two bands, the Fermi surface in the first
of which is depicted in the figure. The lattice potential pulls most but not all of the states in the
second zone into the first zone.

5.2.3 Spin-split Fermi surfaces

Consider an electron gas in an external magnetic field H . The single particle Hamiltonian is
then

Ĥ =
p2

2m
+ µ

B
Hσ , (5.8)

where µ
B

is the Bohr magneton,

µ
B
=

e~

2mc
= 5.788× 10−9 eV/G

µ
B
/k

B
= 6.717× 10−5K/G ,

(5.9)

where m is the electron mass. What happens at T = 0 to a noninteracting electron gas in a
magnetic field?



5.2. T = 0 AND THE FERMI SURFACE 7

Figure 5.4: Top: First Brillouin zones for bcc (left) and fcc (right) lattice solids. Bottom: Fermi
surfaces for Na (left), Ca (center), and Cu (right). (Source: www.phys.ufl.edu/fermisurface/)

Electrons of each spin polarization form their own Fermi surfaces. That is, there is an up
spin Fermi surface, with Fermi wavevector kF↑, and a down spin Fermi surface, with Fermi
wavevector kF↓. The individual Fermi energies, on the other hand, must be equal, hence

~
2k2F↑
2m

+ µ
B
H =

~
2k2F↓
2m

− µ
B
H , (5.10)

which says

k2F↓ − k2F↑ =
2eH

~c
. (5.11)

The total density is

n =
k3F↑
6π2

+
k3F↓
6π2

=⇒ k3F↑ + k3F↓ = 6π2n . (5.12)

Clearly the down spin Fermi surface grows and the up spin Fermi surface shrinks with increas-
ing H . Eventually, the minority spin Fermi surface vanishes altogether. This happens for the
up spins when kF↑ = 0. Solving for the critical field, we obtain

Hc =
~c

2e
·
(
6π2n

)1/3
. (5.13)
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In real magnetic solids, like cobalt and nickel, the spin-split Fermi surfaces are not spheres, just
like the case of the (spin degenerate) Fermi surfaces for Cs and Y shown in Fig. 5.1.

5.3 Quantum Thermodynamics of the Electron Gas

Electrons are fermions, and from this flows some universal features of their thermodynamic
properties. We shall assume for the moment that the electrons are noninteracting, or that their
mutual interactions can be treated within a “mean field” scheme. In this case, the grand poten-
tial of the electron gas is given by

Ω(T, V, µ) = −V k
B
T
∑

α

ln
(
1 + eµ/kBT e−εα/kBT

)

= −V k
B
T

∞∫

−∞

dε g(ε) ln
(
1 + e(µ−ε)/k

B
T
)

.

(5.14)

The average number of particles in a state with energy ε is

n(ε) =
1

e(ε−µ)/k
B
T + 1

, (5.15)

hence the total number of particles is

N = V

∞∫

−∞

dε g(ε)
1

e(ε−µ)/k
B
T + 1

. (5.16)

5.3.1 Fermi distribution

We define the function f(x) = 1/(eβx + 1), known as the Fermi distribution. In the T → ∞ limit,
f(ǫ) → 1

2
for all finite values of ε. As T → 0, f(ǫ) approaches a step function Θ(−ǫ). The average

number of particles in a state of energy ε in a system at temperature T and chemical potential
µ is n(ε) = f(ε− µ). In Fig. 5.5 we plot f(ε− µ) versus ε for three representative temperatures.

5.3.2 Sommerfeld expansion

In dealing with the ideal Fermi gas, we will repeatedly encounter integrals of the form

I(T, µ) ≡
∞∫

−∞

dε f(ε− µ)φ(ε) . (5.17)
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Figure 5.5: The Fermi distribution, f(ε − µ) =
[
exp

(
(ε − µ)/kBT

)
+ 1
]−1

. Here we have set
kB = 1 and taken µ = 2, with T = 1

20
(blue), T = 3

4
(green), and T = 2 (red). In the T → 0 limit,

f(ε− µ) approaches a step function Θ(µ− ε).

The Sommerfeld expansion provides a systematic way of expanding these expressions in pow-
ers of T and is an important analytical tool in analyzing the low temperature properties of the
ideal Fermi gas (IFG). We start by defining

Φ(ε) ≡
ε∫

−∞

dε′ φ(ε′) (5.18)

so that φ(ε) = Φ′(ε). We then have

I =

∞∫

−∞

dε f(ε− µ)
dΦ

dε
= −

∞∫

−∞

dε f ′(ε) Φ(µ+ ε) , (5.19)

where we assume Φ(−∞) = 0. Next, we invoke Taylor’s theorem, to write

Φ(µ+ ε) =

∞∑

n=0

εn

n !

dnΦ

dµn
= exp

(
ε
d

dµ

)
Φ(µ) . (5.20)

This last expression involving the exponential of a differential operator may appear overly
formal but it proves extremely useful. Since

f ′(ε) = − 1

k
B
T

eε/kBT
(
eε/kBT + 1

)2 , (5.21)

we can write

I =

∞∫

−∞

dv
evD

(ev + 1)(e−v + 1)
Φ(µ) , (5.22)
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Figure 5.6: Deformation of the complex integration contour in Eqn. 5.23.

with v = ε/k
B
T , where D = k

B
T d

dµ
is a dimensionless differential operator. The integral can

now be done using the methods of complex integration:2

∞∫

−∞

dv
evD

(ev + 1)(e−v + 1)
= 2πi

∞∑

n=1

Res

[
evD

(ev + 1)(e−v + 1)

]

v=(2n+1)iπ

= −2πi

∞∑

n=0

D e(2n+1)iπD = −2πiD eiπD

1− e2πiD
= πD csc πD .

(5.23)

Thus,
I(T, µ) = πD csc(πD)Φ(µ) , (5.24)

which is to be understood as the differential operator πD csc(πD) = πD/ sin(πD) acting on the
function Φ(µ). Appealing once more to Taylor’s theorem, we have

πD csc(πD) = 1 +
π2

6
(k

B
T )2

d2

dµ2
+

7π4

360
(k

B
T )4

d4

dµ4
+ . . . . (5.25)

Thus,

I(T, µ) =
∞∫

−∞

dε f(ε− µ)φ(ε) =

µ∫

−∞

dε φ(ε) +
π2

6
(k

B
T )2 φ′(µ) +

7π4

360
(k

B
T )4 φ′′′(µ) + . . . . (5.26)

If φ(ε) is a polynomial function of its argument, then each derivative effectively reduces the
order of the polynomial by one degree, and the dimensionless parameter of the expansion is
(T/µ)2. This procedure is known as the Sommerfeld expansion.

2Note that writing v = (2n+ 1) iπ+ ǫ we have e±v = −1∓ ǫ− 1
2ǫ

2 + . . . , so (ev + 1)(e−v + 1) = −ǫ2 + . . . We then

expand evD = e(2n+1)iπD
(
1 + ǫD + . . .) to find the residue: Res = −D e(2n+1)iπD.
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5.3.3 Chemical potential shift

As our first application of the Sommerfeld expansion formalism, let us compute µ(n, T ) for the
ideal Fermi gas. The number density n(T, µ) is

n =

∞∫

−∞

dε g(ε) f(ε− µ) =

µ∫

−∞

dε g(ε) +
π2

6
(k

B
T )2 g′(µ) + . . . . (5.27)

Let us write µ = εF + δµ, where εF = µ(T = 0, n) is the Fermi energy, which is the chemical
potential at T = 0. We then have

n =

ε
F
+δµ∫

−∞

dε g(ε) +
π2

6
(k

B
T )2 g′(ε

F
+ δµ) + . . .

=

ε
F∫

−∞

dε g(ε) + g(ε
F
) δµ+

π2

6
(k

B
T )2 g′(ε

F
) + . . . ,

(5.28)

from which we derive

δµ = −π
2

6
(k

B
T )2

g′(εF)

g(εF)
+O(T 4) . (5.29)

Note that g′/g = (ln g)′. For a ballistic dispersion, assuming g = 2,

g(ε) = 2

∫
d3k

(2π)3
δ

(
ε− ~

2k2

2m

)
=
mk(ε)

π2~2

∣∣∣∣
k(ε)= 1

~

√
2mε

(5.30)

Thus, g(ε) ∝ ε1/2 and (ln g)′ = 1
2
ε−1, so

µ(n, T ) = ε
F
− π2

12

(k
B
T )2

εF
+ . . . , (5.31)

where εF(n) =
~
2

2m
(3π2n)2/3.
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5.3.4 Specific heat

The energy of the electron gas is

E

V
=

∞∫

−∞

dε g(ε) ε f(ε− µ) =

µ∫

−∞

dε g(ε) ε+
π2

6
(k

B
T )2

d

dµ

(
µ g(µ)

)
+ . . .

=

ε
F∫

−∞

dε g(ε) ε+ g(ε
F
) ε

F
δµ+

π2

6
(k

B
T )2 ε

F
g′(ε

F
) +

π2

6
(k

B
T )2 g(ε

F
) + . . .

= e0 +
π2

6
(k

B
T )2 g(ε

F
) + . . . ,

(5.32)

where e0 =
ε
F∫

−∞
dε g(ε) ε is the ground state energy density (i.e. ground state energy per unit

volume). Thus,

CV,N =

(
∂E

∂T

)

V,N

=
π2

3
V k2

B
T g(ε

F
) ≡ V γ T , (5.33)

where

γ =
π2

3
k2

B
g(ε

F
) . (5.34)

Note that the molar heat capacity is

cV =
NA

N
· CV =

π2

3
R · kB

T g(εF)

n
=
π2

2

(
k

B
T

εF

)
R , (5.35)

where in the last expression on the RHS we have assumed a ballistic dispersion, for which

g(εF)

n
=

gmkF

2π2~2
· 6π

2

g k3
F

=
3

2 εF
. (5.36)

The molar heat capacity in Eqn. 5.35 is to be compared with the classical ideal gas value of 3
2
R.

Relative to the classical ideal gas, the IFG value is reduced by a fraction of (π2/3) × (k
B
T/εF),

which in most metals is very small and even at room temperature is only on the order of 10−2.
Most of the heat capacity of metals at room temperature is due to the energy stored in lattice
vibrations.
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5.4 Effects of External Magnetic Fields

5.4.1 Magnetic susceptibility and Pauli paramagnetism

Magnetism has two origins: (i) orbital currents of charged particles, and (ii) intrinsic magnetic
moment. The intrinsic magnetic moment m of a particle is related to its quantum mechanical
spin via

m = gµ0S/~ , µ0 =
q~

2mc
= magneton , (5.37)

where g is the particle’s g-factor3, µ0 its magnetic moment, and S is the vector of quantum
mechanical spin operators satisfying

[
Sα , Sβ

]
= i~ǫαβγ S

γ , i.e. SU(2) commutation relations.
The Hamiltonian for a single particle is then

Ĥ =
1

2m∗

(
p− q

c
A

)2
−H ·m =

1

2m∗

(
p+

e

c
A

)2
+ 1

2
g µ

B
H σ , (5.38)

where in the last line we’ve restricted our attention to the electron, for which q = −e. The
g-factor for an electron is g = 2 at tree level, and when radiative corrections are accounted for
using quantum electrodynamics (QED) one finds g = 2.0023193043617(15). For our purposes
we can take g = 2, although we can always absorb the small difference into the definition
of µ

B
, writing µ

B
→ µ̃

B
= ge~/4mc. We’ve chosen the ẑ-axis in spin space to point in the

direction of the magnetic field, and we wrote the eigenvalues of Sz as 1
2
~σ, where σ = ±1. The

quantity m∗ is the effective mass of the electron, here assumed to be isotropic in the vicinity of a
band edge. An important distinction is that it is m∗ which enters into the kinetic energy term
p2/2m∗, but it is the electron mass m itself (m = 511 keV) which enters into the definition of the
Bohr magneton. We shall discuss the consequences of this further below.

In a crystalline semiconductor, the spin-orbit interaction,

V
SO

=
~

4m2c2
p · σ ×∇V , (5.39)

leads to an effective g which is often very far from the free electron value. For cubic systems
with a direct band gap, the g-factor in band n is given by4

g

2
= 1 +

2

m
Im
∑

n′

′ 〈nΓ | px |n′ Γ 〉〈n′ Γ | py |nΓ 〉
En(Γ)−En′(Γ)

+ . . . , (5.40)

where the wavefunctions and the energies are all taken at the zone center Γ. InSb, for example,
has g ≃ −44, while in GaAs g ≃ 0.4.

3We denote the g-factor by g in order to obviate confusion with the density of states function g(ε).
4See, e.g., ch. 14 of C. Kittel, Quantum Theory of Solids.
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Figure 5.7: Fermi distributions in the presence of an external Zeeman-coupled magnetic field.

In the absence of orbital magnetic coupling, the single particle dispersion is

εσ(k) =
~
2k2

2m∗ + µ̃
B
H σ . (5.41)

At T = 0, we have the results of §5.2.3. At finite T , we once again use the Sommerfeld expan-
sion. We then have

n =

∞∫

−∞

dε g↑(ε) f(ε− µ) +

∞∫

−∞

dε g↓(ε) f(ε− µ)

= 1
2

∞∫

−∞

dε
{
g(ε− µ̃

B
H) + g(ε+ µ̃

B
H)
}
f(ε− µ)

=

∞∫

−∞

dε
{
g(ε) + (µ̃

B
H)2 g′′(ε) + . . .

}
f(ε− µ) .

(5.42)

We now invoke the Sommerfeld expension to find the temperature dependence:

n =

µ∫

−∞

dε g(ε) +
π2

6
(k

B
T )2 g′(µ) + (µ̃

B
H)2 g′(µ) + . . .

=

ε
F∫

−∞

dε g(ε) + g(ε
F
) δµ+

π2

6
(k

B
T )2 g′(ε

F
) + (µ̃

B
H)2 g′(ε

F
) + . . . .

(5.43)
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Note that the density of states for spin species σ is

gσ(ε) =
1
2
g(ε− µ̃

B
Hσ) , (5.44)

where g(ε) is the total density of states per unit volume, for both spin species, in the absence of
a magnetic field. We conclude that the chemical potential shift in an external field is

δµ(T, n,H) = −
{
π2

6
(k

B
T )2 + (µ̃

B
H)2

}
g′(εF)

g(εF)
+ . . . . (5.45)

We next compute the difference n↑ − n↓ in the densities of up and down spin electrons:

n↑ − n↓ =

∞∫

−∞

dε
{
g↑(ε)− g↓(ε)

}
f(ε− µ)

= 1
2

∞∫

−∞

dε
{
g(ε− µ̃

B
H)− g(ε+ µ̃

B
H)
}
f(ε− µ)

= −µ̃
B
H · πD csc(πD) g(µ) +O(H3) .

(5.46)

We needn’t go beyond the trivial lowest order term in the Sommerfeld expansion, because H
is already assumed to be small. Thus, the magnetization density is

M = −µ̃
B
(n↑ − n↓) = µ̃2

B
g(ε

F
)H . (5.47)

in which the magnetic susceptibility is

χ =

(
∂M

∂H

)

T,N

= µ̃2
B
g(ε

F
) . (5.48)

This is called the Pauli paramagnetic susceptibility.

5.4.2 Landau diamagnetism

When orbital effects are included, the single particle energy levels are given by

ε(n, kz, σ) = (n+ 1
2
)~ωc +

~
2k2z
2m∗ + µ̃

B
H σ . (5.49)

Here n is a Landau level index, and ωc = eH/m∗c is the cyclotron frequency. Note that

µ̃
B
H

~ωc

=
ge~H

4mc
· m

∗c

~eH
=
g

4
· m

∗

m
. (5.50)
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Figure 5.8: Density of states for a three-dimensional free electron gas with g = 0 in the presence
of an external magnetic field (blue), compared with B = 0 result (dark red).

Accordingly, we define the ratio r ≡ (g/2)× (m∗/m). We can then write

ε(n, kz, σ) =
(
n+ 1

2
+ 1

2
rσ
)
~ωc +

~
2k2z
2m∗ . (5.51)

The density of states per unit volume is then

g(ε) =
1

2πℓ2

∑

n,σ

∞∫

−∞

dkz
2π

δ
(
ε− ε(n, kz, σ)

)
, (5.52)

where ℓ = (~c/eH)1/2 is the magnetic length. The significance of ℓ is that the area per Dirac
fluxoid φ0 = hc/e is 2πℓ2.

The grand potential is then given by

Ω = −HA
φ0

· Lz · kB
T

∞∫

−∞

dkz
2π

∞∑

n=0

∑

σ=±1

ln
[
1 + eµ/kBT e−(n+ 1

2
+ 1

2
rσ) ~ωc/kBT e−~2k2z/2m

∗k
B
T
]

. (5.53)

A few words are in order here regarding the prefactor. In the presence of a uniform magnetic
field, the energy levels of a two-dimensional ballistic charged particle collapse into Landau
levels. The number of states per Landau level scales with the area of the system, and is equal
to the number of flux quanta through the system: Nφ = HA/φ0, where φ0 = hc/e is the Dirac
flux quantum. Note that

HA

φ0

· Lz · kB
T = ~ωc ·

V

λ3T
, (5.54)
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hence we can write

Ω(T, V, µ,H) = ~ωc

∞∑

n=0

∑

σ=±1

Q
(
(n+ 1

2
+ 1

2
rσ) ~ωc − µ

)
, (5.55)

where we have defined the dimensionless function

Q(ε) = − V

λ2T

∞∫

−∞

dkz
2π

ln
[
1 + e−ε/kBT e−~

2k2z/2m
∗kBT

]
. (5.56)

We now invoke the Euler-MacLaurin formula,

∞∑

n=0

F (n) =

∞∫

0

dx F (x) + 1
2
F (0)− 1

12
F ′(0) + . . . , (5.57)

resulting in

Ω(T, V, µ,H) =
∑

σ=±1





∞∫

1
2
(1+rσ)~ωc

dε Q(ε− µ) + 1
2
~ωcQ

(
1
2
(1 + rσ) ~ωc − µ

)

− 1
12
(~ωc)

2Q′(1
2
(1 + rσ) ~ωc − µ

)
+ . . .



 .

(5.58)

We next expand in powers of the magnetic field H to obtain

Ω(T, V, µ,H) = 2

∞∫

0

dε Q(ε− µ) + 1
4

(
r2 − 1

3

)
(~ωc)

2Q′(−µ) + . . . . (5.59)

Thus, the magnetic susceptibility is

χ = − 1

V

∂2Ω

∂H2
=
(
r2 − 1

3

)
· µ̃2

B
·
(
m/m∗)2 ·

(
− 2

V
Q′(−µ)

)

=

(
g2

4
− m2

3m∗2

)
· µ̃2

B
· n2κT ,

(5.60)

where κT is the isothermal compressibility5, which at T = 0 is related to the density of states by

κT (T = 0, n) = n−2g(εF). In most metals we have m∗ ≈ m and the term in brackets is positive

5We’ve used − 2
V
Q′(µ) = − 1

V
∂2Ω
∂µ2 = n2κT .
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(recall g ≈ 2). In semiconductors, however, we can have m∗ ≪ m; for example in GaAs we
have m∗ = 0.067m and g = 0.4. Thus, semiconductors can have a diamagnetic response. If we
take g = 2 and m∗ = m, we see that the orbital currents give rise to a diamagnetic contribution
to the magnetic susceptibility which is exactly −1

3
times as large as the contribution arising

from Zeeman coupling. The net result is then paramagnetic (χ > 0) and 2
3

as large as the Pauli
susceptibility. The orbital currents can be understood within the context of Lenz’s law.

5.4.3 de Haas-van Alphen oscillations

The Landau level structure in the density of states (see Fig. 5.8) is responsible for striking
behavior in metals when subjected to an external magnetic field. For weak fields, the magneti-
zation density is m = χH , but at stronger fields we have

m(T,H, µ) = − 1

V

∂Ω

∂H
=

(
e2

4π2~

)(
2µ

m∗

)1/2

H ·
{
(
r2 − 1

3

)
+

+

(
2πk

B
T

~ωc

)(
2µ

~ωc

)1/2 ∞∑

l=1

(−1)l√
l

sin
(
2πlµ
~ωc

− π
4

)
cos
(
lπr)

sinh
(
2π2lk

B
T/~ωc

)
}

.

(5.61)

The electron number density is given by

n(T,H, µ) = − 1

V

∂Ω

∂µ
=

1

3π2

(
2m∗µ

~2

)1/2
·
{
1 +

3

32

(
~ωc

µ

)(
r2 − 1

3

)
+

+

(
3πk

B
T

~ωc

)(
~ωc

2µ

)3/2 ∞∑

l=1

(−1)l√
l

sin
(
2πlµ
~ωc

− π
4

)
cos
(
lπr
)

sinh
(
2π2lk

B
T/~ωc

)
}

.

(5.62)

These expressions are valid in the limit µ≫ ~ωc and µ ≫ k
B
T . Under experimental conditions,

it is the electron number density n which is held constant, and not the chemical potential µ.
Thus, one must invert to obtain µ(n, T,H) and substitute this in the expression for m(T,H, µ)
to obtain m(n, T,H).

To derive the above results, we integrate Eqn. 5.14 twice by parts to obtain

Ω = −V
∞∫

−∞

dεR(ε)

(
− ∂f

∂ε

)
, (5.63)

where R(ε) is given by

R(ε) =

ε∫

−∞

dε′
ε′∫

−∞

dε′′ g(ε′′) , (5.64)
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i.e. g(ε) = R′′(ε). In the presence of a uniform magnetic field, the density of states for a ballistic
particle with dispersion ε(k) = ~

2k2/2m∗ is

g(ε) =
1

2πℓ2

√
m∗

√
2 π~

∞∑

n=0

∑

σ=±1

[
ε−

(
n+ 1

2
+ 1

2
σr
)
~ωc

]−1/2

+
, (5.65)

where r = g m∗/2m as before, and [x]+ ≡ xΘ(x). Thus,

R(ε) =

√
2

3π2

(
m∗

~2

)3/2 ∞∑

n=0

∑

σ=±1

[
ε−

(
n + 1

2
+ 1

2
σr
)
~ωc

]3/2
+

, (5.66)

We now invoke the result

∞∑

n=0

φ(n+ 1
2
) =

∞∫

0

du φ(u) + 1
24
φ′(0)−

∞∑

n=1

(−1)l

2π2l2

∞∫

0

du φ′′(u) cos(2πlu) , (5.67)

which is valid provided φ(∞) = φ′(∞) = 0. This follows from applying the Poisson summation
formula6,

∞∑

n=−∞
δ(x− n) =

∞∑

l=−∞
e2πilx , (5.68)

integrating by parts twice, and using
∑∞

l=1(−1)l+1/ l2 = π2

12
.

R(ε) =
2
√
2

15π2

(
m∗

~2

)3/2 [ ε− 1
2
r~ωc

]5/2
+

~ωc

−
√
2

48π2

(
m∗

~2

)3/2
~ωc

[
ε− 1

2
r~ωc

]3/2
+

+

− 1

8π4

(
m∗

~2

)3/2
(~ωc)

3/2

∞∑

l=1

(−1)l

l5/2
cos

(
2πlε

~ωc

− πlrσ − π

4

)
.

(5.69)

We next integrate over ε, using the Sommerfeld expansion and the result

∞∫

−∞

dε eisε
(
− ∂f

∂ε

)
=

πs k
B
T

sinh(πs k
B
T )

. (5.70)

The final result for Ω(T, V, µ,H), valid for ~ωc ≪ µ and k
B
T ≪ µ, is

Ω(T, V, µ,H) = −V ·
√
2

π

(
m∗

~2

)3/2{
4
15

〈
ε5/2
〉
+ 1

8
(~ωc)

2
(
r2 − 1

3

) 〈
ε1/2
〉
+

+ 1
2
√
2
(~ωc)

3/2k
B
T

∞∑

l=1

(−1)l

l3/2

cos
(
2πlµ
~ωc

− π
4

)
cos
(
lπr
)

sinh
(
2π2lk

B
T/~ωc

)
}

.

(5.71)

6One first extends the function φ(u) to the entire real line, symmetrically, so φ(−u) = φ(u).
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Figure 5.9: Left: de Haas-van Alphen oscillations in the underdoped high temperature su-
perconductor YBa2Cu3O6.5, measured by C. Jaudet et al in Phys. Rev. Lett. 100, 187005
(2008). Right: Schubnikov-de Haas oscillations and their temperature dependence in the three-
dimensional topological insulator Bi2Se3, indicating the presence of metallic surface states. A
smooth polynomial background has been subtracted. Measurements by M. Petrushevsky et al.
in Phys. Rev. B 86, 045131 (2013).

Here, we have used the notation

〈
ψ(ε)

〉
≡

∞∫

−∞

dε ψ(ε)

(
− ∂f

∂ε

)
. (5.72)

For homogeneous functions,

〈
εp
〉
= µp + π2

6
p(p− 1) (k

B
T )2 µp−2 +O(T 4) . (5.73)

Differentiation of Ω(T, V,H) with respect to H and µ yields7, respectively, the results in Eqns.
5.61 and 5.62. From Eqn. 5.71, we see that the oscillating factors are periodic in 1/H with peri-
ods ∆(1/H) = ~e/2πlµm∗c. In experiments, the magnetization M is typically measured with a
torque-magnetometer. The oscillatory nature of M(H) is called the de Haas-van Alphen effect.
A related periodicity occurs in the magnetoresistance R(H), where it is called the Schubnikov-
de Haas effect. Experimental data for both effects is shown in Fig. 5.9.

7The cyclotron energy ~ωc = ~eH/m∗c is linear in the magnetic field H . For µ ≫ ~ωc ≫ k
B
T , the dominant

contribution to the magnetization comes from differentiating the cosine factor.
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Figure 5.10: Two dimensional oscillations in the energy per unit area e = E/A for a spinless
electron gas in a uniform magnetic field H = H ẑ.

Oscillations at T = 0 : spinless fermions in d = 2 dimensions

Apparently the oscillations do not vanish, even at T = 0. The prefactor of T which multiplies
the oscillating sum in Eqn. 5.61 cancels with the sinh(2π2lk

B
T/~ωc) denominator in the T → 0

limit. Consider the simple case of ballistic spinless electrons in d = 2 dimensions. We know
that each Landau level can accommodate NL = HA/φ0 electrons, where φ0 = hc/e is the Dirac
flux quantum. It is convenient to define the filling fraction ν, as

ν =
N

NL

= 2πℓ2n =
2π~c

eH
n , (5.74)

where ℓ =
√

~c/eH is the magnetic length. The cyclotron energy is

~ωc =
~eH

m∗c
=

2π~2

m∗
n

ν
. (5.75)

We now evaluate the energy per unit area, e = E/A, as a function of n and ν. With the electron
number density n fixed, the magnetization per unit area is given by

m =
∂e

∂H
=

∂ν

∂H

∂e

∂ν
= − ν

H

∂e

∂ν
. (5.76)

Now if ν ∈ [j, j + 1], the total energy is

E = NL · 1
2
~ωc ·

(
1 + 3 + 5 + . . .+ (2j − 1)

)
+ (N − jNL) · (j + 1

2
) ~ωc

= NL · 1
2
~ωc ·

(
j2 + (ν − j)(2j + 1)

)
.

(5.77)
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Thus,

e(n, ν) =
E

A
=
π~2n2

m∗ ·
{
(2j + 1) ν − j(j + 1)

ν2

}
. (5.78)

Defining, e0(n) = π~2n2/m∗, we have that e(n, j) = e(n, j + 1) = e0(n). Furthermore, since

∂e

∂ν

∣∣∣∣
ν=j

=
e0(n)

j2
> 0 and

∂e

∂ν

∣∣∣∣
ν=j+1

= −e0(n)

j2
> 0 , (5.79)

we see that e(n, ν) has a cusp at every integer value of ν. This behavior is depicted in Fig.
5.10. The magnetization density m(n, ν) therefore discontinuously changes sign (from negative
to positive) across all integer values of the filling fraction!8 Note also that the periodicity is
∆ν = 1, hence

∆
( 1

H

)
=

e

hcn
=

1

2πnφ0

. (5.80)

5.4.4 de Haas-von Alphen effect for anisotropic Fermi surfaces

We consider a nontopological band structure, for which the semiclassical equations of motion
in the presence of a uniform magnetic field are

dr

dt
= vn(k) ,

dk

dt
= − e

~c
vn(k)×B . (5.81)

These equations entail the conservation of the band energy En(k):

dEn(k)

dt
=
∂En(k)

∂k
· dk
dt

= ~vn(k) ·
(
− e

~c
vn(k)×B

)
= 0 . (5.82)

Define k⊥ = k − B̂(B̂ · k), the component of k along the direction B̂. We then have k̇⊥ =
− e

~c
vn(k)×B and d

dt
(k · B̂) = 0 . Thus, the orbits k(t) lie in planes perpendicular to B̂ (see the

sketch in Fig. 5.11).

Consider now the differential k-space area element d2k⊥ between transverse (to B̂) slices of
isoenergy surfaces at energies ε and ε+ dε. Clearly

d2k⊥ =
dε dℓ(ε)∣∣∂ε/∂k⊥

∣∣ (5.83)

where dℓ(ε) is the differential path length in the transverse plane along the surface of energy ε.
Note that ∣∣∣∣

∂ε

∂k⊥

∣∣∣∣ =
∣∣~v⊥

∣∣ = ~
∣∣v⊥ × B̂

∣∣ = ~
2c

eB

∣∣k̇⊥
∣∣ . (5.84)

8In the three-dimensional case, m oscillates but usually does not change sign.
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Figure 5.11: Left: Orbit of k(t) in the plane perpendicular to the field B. Right: Geometry of
Fermi surface orbits in the calculation of the de Haas-van Alphen effect.

Thus, the area enclosed by an orbit of energy ε and parallel wavevector component k‖ = k · B̂
is

A(ε, k‖) =

∫
d2k⊥ Θ

(
ε− ε(k⊥, k‖)

)
=

∞∫

−∞

dε′ Θ(ε− ε′)

∮
dℓ(ε′)∣∣∂ε′/∂k⊥

∣∣

=
eB

~2c

∞∫

−∞

dε′ Θ(ε− ε′)

∮
dℓ(ε′)∣∣k̇⊥

∣∣ =
eB

~2c

ε∫

−∞

dε′ T (ε′, k‖) ,

(5.85)

where T (ε, k‖) is the period of the orbit. Note that we have assumed that the surface Sε is
closed, i.e. that there are no “open orbits” which run periodically across the Brillouin zone. We
now have the result

∂A(ε, k‖)

∂ε
=
eB

~2c
T (ε, k‖) . (5.86)

For a free electron in a magnetic field, the orbital period is 2π/ωc. We accordingly define the
cyclotron mass by the relation

T (ε, k‖) =
~
2c

eB

∂A(ε, k‖)

∂ε
≡

2πmcycc

eB
=⇒ mcyc =

~
2

2π

∂A(ε, k‖)

∂ε
. (5.87)

Semiclassical quantization then yields the following relation for the energy level spacing:

εn+1(k‖)− εn(k‖) =
2π~

T
(
εn(k‖), k‖

) =
2πeB

~c

/
∂A(ε, k‖)

∂ε

∣∣∣∣
ε=εn(k‖)

. (5.88)

Note that for free electrons,

A(ε, k‖) = π
(
k2 − k2‖

)
=

2πmε

~2
− πk2‖ , (5.89)
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and so
∂A(ε, k‖)

∂ε
=

2πm

~2
=⇒ εn+1(k‖)− εn(k‖) =

~eB

mc
= ~ωc . (5.90)

If the semiclassical orbit index n is large, we may approximate ∂A/∂ε by a ratio of differences,
viz.

∂A(ε, k‖)

∂ε

∣∣∣∣∣
ε=εn(k‖)

≃
A
(
εn+1(k‖), k‖

)
−A

(
εn(k‖), k‖

)

εn+1(k‖)− εn(k‖)
, (5.91)

and invoking Eqn. 5.88 then gives

A
(
εn+1(k‖), k‖

)
− A

(
εn(k‖), k‖

)
=

2πeB

~c
. (5.92)

We then conclude that the areas of the orbits in the plane transverse to B̂ are quantized accord-
ing to

A
(
εn(k‖), k‖

)
= (n+ α)

2πeB

~c
, (5.93)

where α is a constant, a result first derived by Lars Onsager in 1952.

In the free particle model, the each dH-vA oscillation is associated with a Fermi level crossing
by one of the Landau levels. Neglecting Zeeman splitting, the semiclassical density of states
per unit volume is

g(ε) =
1

2πℓ2

∑

n

∞∫

−∞

dk‖
2π

δ
(
ε− εn(k‖)

)

=
1

2πℓ2

∑

n

∞∫

−∞

dk‖
2π

δ
(
k‖ − ε−1

n (ε)
)

∣∣∂εn/∂k‖
∣∣ ,

(5.94)

where ε−1
n (ε) = k‖ when εn(k‖) = ε, i.e. it is the inverse function. The DOS is peaked when the

denominator vanishes, i.e. when ∂εn/∂k‖ = 0. This entails that the cross sectional Fermi surface
area is at a maximum:

∂

∂k‖
A
(
εn(k‖), k‖

)
=

= 0︷ ︸︸ ︷
∂εn(k‖)

∂k‖
·
∂A(ε, k‖)

∂ε

∣∣∣∣
ε=εn(k‖)

+
∂A(ε, k‖)

∂k‖

∣∣∣∣
ε=εn(k‖)

. (5.95)

Thus, the DOS peaks when the Fermi energy lies on an extremal orbit, i.e. one which extremizes
the cross-sectional Fermi surface area:

(n+ α)
2πeB

~c
= S∗(ε

F
) =⇒ ∆

(
1

B

)
=

2πe

~c

1

S∗(εF)
, (5.96)
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where S∗(ε) is a (possibly multi-valued) function giving the area(s) of the extremal orbits. Since

~ωc

k
B
T

= 1.34× 10−4 · B[T]

T [K]
, (5.97)

(assuming m = me), one needs high fields or low temperatures in order that the oscillations not
be washed out by thermal fluctuations.

5.5 Simple Theory of Electron Transport in Metals

5.5.1 Drude model

Consider a particle of mass m∗ and charge (−e) moving in the presence of an electric field E

and magnetic field B. Newton’s second law says that

dp

dt
= −eE − e

m∗c
p×B − p

τ
, (5.98)

where the last term on the RHS is a phenomenological dissipative (i.e. frictional) force. The
constant τ , which has dimensions of time, is interpreted as the momentum relaxation time due to
scattering off impurities, lattice excitations (i.e. phonons), or sample boundaries. Clearly when
E = B = 0 we have p(t) = p(0) exp(−t/τ), which says that p relaxes on a time scale τ .

When E 6= 0 but B = 0, we have ṗ = −eE − τ−1p, and for time-independent E the steady state
solution, valid at long times, is p = −eτE. is then

j = −nev = −ne p

m∗ =
ne2τ

m∗ E . (5.99)

Thus there is a linear relationship between the current density j and the applied field E. One
writes j = σE, where σ is the electrical conductivity. The above theory says that σ = ne2τ/m∗,
where n is the particle density.

We can extend our analysis to include time-dependent fields of the form E(t) = Re
[
Ê(ω) e−iωt

]
.

In steady state, p oscillates with the same frequency, and writing p(t) = Re
[
p̂(ω) e−iωt

]
, we ob-

tain the relation (τ−1 − iω) p̂(ω) = −eÊ(ω), and thus j(t) = Re
[
σ(ω) Ê(ω) e−iωt

]
, with

σ(ω) =
ne2τ

m∗ · 1

1− iωτ
. (5.100)

The power density j(t) · E(t) then has terms which are constant, as well as terms oscillating
with frequency 2ω. The average power dissipated is obtained by integrating over a period
∆t = 2π/ω, which eliminates the e±2iωt terms, resulting in

j(t) ·E(t) = Re σ(ω)
∣∣Ê(ω)

∣∣2 , (5.101)
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Figure 5.12: Scattering of an electron by impurities in the presence of a uniform electric field E

is an example of a biased random walk.

where the bar denotes time averaging over the period ∆t = π/ω. So it is the real part of the
conductivity which is responsible for power dissipation.

Another way to see it: write ̂(ω) = σ(ω) Ê(ω), which is a complex vector quantity. If we sep-
arate the frequency-dependent conductivity σ(ω) = σ′(ω) + iσ′′(ω) into its real and imaginary
parts, we see that the σ′(ω) term leads to a current component which is in phase with the drive
E(t), while the σ′′(ω) term leads to a current component which is 90◦ out of phase with the
drive E(t). The latter current leads to periodic fluctuations in the local energy density, but no
net dissipation. The real and imaginary parts of σ(ω) are given by

σ′(ω) =
ne2τ

m∗ · 1

1 + ω2τ 2
, σ′′(ω) =

ne2τ

m∗ · ωτ

1 + ω2τ 2
. (5.102)

When we try to apply the above physics to electrons in solids, we are confronted with several
issues. One obvious question is: what do we mean by n? Filled bands carry no current, because
the current density of the nth filled band (accounting for spin),

jn = −2e

∫

Ω̂

d3k

(2π)3

vn(k)︷ ︸︸ ︷
1

~

∂En(k)

∂kα
= 0 , (5.103)

vanishes because En(k) is periodic in the Brillouin zone, and the integral of the derivative of a
periodic function over its period is zero. So the density n must only include contributions from
partially filled bands. In fact, the situation is even more complicated because the scattering
time can vary from band to band, may be energy-dependent, and there can even be interband
scattering of electrons. Another question is how we account for scattering within the semiclassi-
cal model. We can’t just add a term −p/τ to the right hand side of the equation for ~k̇, because
p = ~k is not well-defined in a crystal. A more rigorous approach to transport is based on the
Boltzmann equation, which describes how the distribution f(r, k, t) of electron wave packets
evolves and takes a steady state form.
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The DC conductivity σ = ne2τ/m∗ is proportional to the number of carriers n. Another figure
of merit is the mobility µ = eτ/m∗, which is independent of n. Note that the mobility is the ratio
of the speed of the electron to the magnitude of the applied field: µ = v/E. The conventional
units of mobility are [µ] = cm2/V ·s. Mobility tells us mostly about the scattering time τ . For
highly disordered systems, the scattering time τ is short and consequently µ is small. The
electrons then move slowly as they execute a biased random walk scattering off impurities
in the presence of an electric field (see Fig. 5.12. However, even low mobility systems may
have high conductivity, owing to a large density n of conduction electrons. The highest purity
semiconductors have mobilities on the order of 107 cm2/V·s.

5.5.2 Magnetoresistance and magnetoconductance

Now let’s introduce a uniform magnetic field B. In component notation, Newton’s second law
gives (

1

τ
δαβ +

e

m∗c
εαβγ B

γ

)
pβ = −eEα . (5.104)

The current density is j = −nev = −nep/m∗, hence p = −m∗j/ne, and we thus have

Eα =

ραβ︷ ︸︸ ︷
1

ne2

(
m∗

τ
δαβ +

e

c
εαβγ B

γ

)
jβ . (5.105)

The resistivity matrix ραβ(B) defines the linear relationship between the electric field E and the
current density j. At finite frequency, it is easy to see that τ−1 must be replaced by τ−1 − iω,
hence, taking B = Bẑ, the T = 0 resistivity tensor is

ραβ(ω,B) =
m∗

ne2τ



1− iωτ ωcτ 0
−ωcτ 1− iωτ 0
0 0 1− iωτ


 , (5.106)

with ωc = eB/m∗c the cyclotron frequency, as before. Note that the diagonal elements are
independent of B, which says that the magnetoresistance

∆ρxx(B) = ρxx(B)− ρxx(0) (5.107)

vanishes: ∆ρxx(B) = 0.

The magnetoconductance, however, does not vanish! Recall that

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
, (5.108)
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from which we have

σαβ =



σxx σxy 0
σyx σyy 0
0 0 σzz


 , (5.109)

with

σxx(ω,B) = σyy(ω,B) =
ne2τ

m∗ · 1− iωτ

(1− iωτ)2 + (ωcτ)
2

σyx(ω,B) = −σxy(ω,B) =
ne2τ

m∗ · ωcτ

(1− iωτ)2 + (ωcτ)
2

σzz(ω,B) =
ne2τ

m∗ · 1

1− iωτ
.

(5.110)

Note that σxx is field-dependent, unlike ρxx.

Thus far we have assumed that the effective mass tensor m∗
αβ is isotropic. In the general

anisotropic case, m∗
αβ , which is a symmetric matrix, will have three orthogonal principal axes,

which we denote as x̂, ŷ, and ẑ. In this case, the resistivity tensor assumes the more general
form

ραβ(ω,B) =
1

ne2



(τ−1 − iω)m∗

x ±eBz/c ∓eBy/c
∓eBz/c (τ−1 − iω)m∗

y ±eBx/c

±eBy/c ∓eBx/c (τ−1 − iω)m∗
z


 , (5.111)

where (m∗
x, m

∗
y, m

∗
z) are the three eigenvalues of m∗

αβ. The ± sign in the off-diagonal term dis-
tinguishes the case where the Fermi level is just above a quadratic minimum (+ sign), versus
where it is just below quadratic maximum (− sign). The latter case is described in terms of holes
in a filled band, as opposed to electrons in an empty band. The effective mass tensors are then
defined as

(
m∗)−1

αβ
= ± 1

~2

∂2En(k)

∂kα ∂kβ
, (5.112)

where the top sign corresponds to electrons and the bottom sign to holes.

Note that the diagonal elements in Eqn. 5.111 are still independent of B and there is no mag-
netoresistance. Taking B along ẑ, the corresponding elements of σαβ are

σxx(ω,B) =
ne2τ

m∗
x

· 1− iωτ

(1− iωτ)2 + (ωcτ)
2

σyy(ω,B) =
ne2τ

m∗
y

· 1− iωτ

(1− iωτ)2 + (ωcτ)
2

σyx(ω,B) =± ne2τ

m∗
⊥

· ωcτ

(1− iωτ)2 + (ωcτ)
2

σzz(ω,B) =
ne2τ

m∗
z

· 1

1− iωτ
,

(5.113)

where ωc = eB/m∗
⊥c and m∗

⊥ =
√
m∗

xm
∗
y .



5.5. SIMPLE THEORY OF ELECTRON TRANSPORT IN METALS 29

5.5.3 Hall effect in high fields

In the high field limit, we have that the resistivity and conductivity tensors are purely off-
diagonal, with

ρxy(B) = ± B

nec
, σxy(B) = ∓nec

B
(5.114)

where the upper sign is again for conduction electrons, and the bottom sign for valence holes.
Thus, the high field Hall effect may be used to determine the carrier concentration:

n = ± lim
B→∞

B

ecρxy(B)
. (5.115)

5.5.4 Cyclotron resonance in semiconductors

A typical value for the effective mass in semiconductors is m∗ ∼ 0.1me. From

e

me c
= 1.75× 107Hz/G , (5.116)

we find that eB/m∗c = 1.75× 1011 Hz in a field of B = 1 kG. In metals, the disorder is such that
even at low temperatures ωcτ typically is small. In semiconductors, however, the smallness of
m∗ and the relatively high purity (sometimes spectacularly so) mean that ωcτ can get as large
as 103 at modest fields. This allows for a measurement of the effective mass tensor using the
technique of cyclotron resonance.

The absorption of electromagnetic radiation is proportional to the dissipative (i.e. real) part of

the diagonal elements of σαβ(ω,B), which, again taking B along ẑ, is given by

σ′
xx(ω,B) =

ne2τ

m∗
x

1 + (λ2 + 1)s2

1 + 2(λ2 + 1)s2 + (λ2 − 1)2s4
, (5.117)

where λ = B/Bω, with Bω = m∗
⊥c ω/e, and s = ωτ . For fixed ω, the conductivity σ′

xx(B) is
then peaked at B = B∗. When ωτ ≫ 1 and ωcτ ≫ 1, B∗ approaches Bω, where σ′

xx(ω,Bω) =
ne2τ/2m∗

x. By measuring Bω one can extract the quantity m∗
⊥ = eBω/ωc. Varying the direction

of the magnetic field, the entire effective mass tensor may be determined.

For finite ωτ , we can differentiate the above expression to obtain the location of the cyclotron
resonance peak. One finds B = (1 + α)1/2Bω , with

α =
−(2s2 + 1) +

√
(2s2 + 1)2 − 1

s2

= − 1

4s4
+

1

8s6
+O(s−8) .

As depicted in Fig. 5.13, the resonance peak shifts to the left of Bω for finite values of ωτ . The
peak collapses to B = 0 when ωτ 6 1/

√
3 = 0.577.
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Figure 5.13: Theoretical cyclotron resonance peaks as a function of B/Bω for different values
of ωτ .

5.5.5 Magnetoresistance in a two band model

For a semiconductor with both electrons and holes present – a situation not uncommon to
metals either (e.g. Aluminum) – each band contributes to the conductivity. The individual band
conductivities are additive because the electron and hole conduction processes occur in parallel,
i.e.

σαβ(ω) =
∑

n

σ
(n)
αβ (ω) , (5.118)

where σ(n)
αβ is the conductivity tensor for band n, which may be computed in either the electron

or hole picture (whichever is more convenient). We assume here that the two bands c and v
may be treated independently, i.e. there is no interband scattering to account for.

The resistivity tensor of each band, ρ
(n)
αβ exhibits no magnetoresistance, as we have found. How-

ever, if two bands are present, the total resistivity tensor ρ is obtained from ρ−1 = ρ−1
c + ρ−1

v ,
and

ρ =
(
ρ−1
c + ρ−1

v

)−1
(5.119)

will in general exhibit the phenomenon of magnetoresistance.

Explicitly, then, let us consider a model with isotropic and nondegenerate conduction band
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minimum and valence band maximum. Taking B = Bẑ, we have

ρc =
(1− iωτc)mc

nce2τc
I+

B

ncec




0 1 0
−1 0 0
0 0 0


 =



αc βc 0
−βc αc 0
0 0 αc




ρv =
(1− iωτv)mv

nve2τv
I− B

nvec




0 1 0
−1 0 0
0 0 0


 =



αv −βv 0
βv αv 0
0 0 αv


 ,

(5.120)

where

αc =
(1− iωτc)mc

nce2τc
βc =

B

ncec

αv =
(1− iωτv)mv

nve2τv
βv =

B

nvec
,

(5.121)

we obtain for the upper left 2× 2 block of ρ:

ρ⊥ =

[(
αv

α2
v + β2

v

+
αc

α2
c + β2

c

)2
+

(
βv

α2
v + β2

v

+
βc

α2
c + β2

c

)2 ]−1

×




αv

α2
v+β2

v
+ αc

α2
c+β2

c

βv

α2
v+β2

v
+ βc

α2
c+β2

c

− βv

α2
v+β2

v
− βc

α2
c+β2

c

αv

α2
v+β2

v
+ αc

α2
c+β2

c


 ,

(5.122)

from which we compute the magnetoresistance,

ρxx(B)− ρxx(0)

ρxx(0)
=

γc γv

(
γc

ncec
− γv

nvec

)2
B2

(γc + γv)2 + (γc γv)2
(

1
ncec

+ 1
nvec

)2
B2

, (5.123)

where

γc ≡ α−1
c =

nce
2τc

mc
· 1

1− iωτc

γv ≡ α−1
v =

nve
2τv

mv

· 1

1− iωτv
.

Note that the magnetoresistance is positive within the two band model, and that it saturates in
the high field limit:

ρxx(B → ∞)− ρxx(0)

ρxx(0)
=

γc γv

(
γc

ncec
− γv

nvec

)2

(γc γv)2
(

1
ncec

+ 1
nvec

)2 . (5.124)
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The longitudinal resistivity is found to be

ρzz = (γc + γv)
−1 , (5.125)

and is independent of B.

In an intrinsic semiconductor, nc = nv ∝ exp(−Eg/2kB
T ), and ∆ρxx(B)/ρxx(0) is finite even

as T → 0. In the extrinsic (i.e. doped) case, one of the densities (say, nc in a p-type material)
vanishes much more rapidly than the other, and the magnetoresistance vanishes with the ratio
nc/nv.

5.5.6 Optical reflectivity of metals and semiconductors

What happens when an electromagnetic wave is incident on a metal? Inside the metal we have
Maxwell’s equations:

∇×H =
4π

c
j +

1

c

∂D

∂t
=⇒ ik ×B =

(
4πσ

c
− iω

c

)
E (5.126)

and

∇×E = −1

c

∂B

∂t
=⇒ ik × E =

iω

c
B (5.127)

and
∇ ·E = ∇ ·B = 0 =⇒ ik ·E = ik ·B = 0 , (5.128)

where we’ve assumed µ = ǫ = 1 inside the metal, ignoring polarization due to virtual interband
transitions (i.e. from core electrons). Hence,

k2 =
ω2

c2
+

4πiω

c2
σ(ω)

=
ω2

c2
+
ω2
p

c2
iωτ

1− iωτ
≡ ǫ(ω)

ω2

c2
,

(5.129)

where ωp =
√
4πne2/m∗ is the plasma frequency for the conduction band. The dielectric function,

ǫ(ω) = 1 +
4πiσ(ω)

ω
= 1 +

ω2
p

ω2

iωτ

1− iωτ
(5.130)

determines the complex refractive index, N(ω) =
√
ǫ(ω), leading to the electromagnetic dis-

persion relation k = N(ω)ω/c.

Consider a wave normally incident upon a metallic surface normal to ẑ. In the vacuum (z < 0),
we write

E(r, t) = E1 x̂ e
iωz/ce−iωt + E2 x̂ e

−iωz/ce−iωt

B(r, t) =
c

iω
∇×E = E1 ŷ e

iωz/ce−iωt − E2 ŷ e
−iωz/ce−iωt

(5.131)
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while in the metal (z > 0),

E(r, t) = E3 x̂ e
iNωz/ce−iωt

B(r, t) =
c

iω
∇×E = NE3 ŷ e

iNωz/ce−iωt .
(5.132)

Continuity of E × n̂ gives E1 + E2 = E3. Continuity of H × n̂ gives E1 −E2 = NE3. Thus,

E2

E1

=
1−N

1 +N
,

E3

E1

=
2

1 +N
(5.133)

and the reflection and transmission coefficients are

R(ω) =

∣∣∣∣
E2

E1

∣∣∣∣
2

=

∣∣∣∣
1−N(ω)

1 +N(ω)

∣∣∣∣
2

T (ω) =

∣∣∣∣
E3

E1

∣∣∣∣
2

=
4∣∣1 +N(ω)

∣∣2 .

(5.134)

We’ve now solved the electromagnetic boundary value problem.

Typical values – For a metal with n = 1022 cm3 and m∗ = me, the plasma frequency is ωp =
5.7 × 1015 s−1. The scattering time varies considerably as a function of temperature. In high
purity copper at T = 4K, τ ≈ 2 × 10−9 s and ωpτ ≈ 107. At T = 300K, τ ≈ 2 × 10−14 s and
ωpτ ≈ 100. In either case, ωpτ ≫ 1. There are then three regimes to consider:

Low frequencies : ωτ ≪ 1 ≪ ωpτ

We may approximate 1− iωτ ≈ 1, hence

N2(ω) = 1 +
i ω2

pτ

ω(1− iωτ)
≈
i ω2

pτ

ω

N(ω) ≈ 1 + i√
2

(
ω2
pτ

ω

)1/2

=⇒ R ≈ 1− 2
√
2ωτ

ωpτ
.

(5.135)

Hence R ≈ 1 and the metal reflects.

Intermediate frequencies : 1 ≪ ωτ ≪ ωpτ

In this regime,

N2(ω) ≈ 1−
ω2
p

ω2
+
i ω2

p

ω3τ
(5.136)

which is almost purely real and negative. Hence N is almost purely imaginary and R ≈ 1. (To
lowest nontrivial order, R = 1− 2/ωpτ .) Still high reflectivity.
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High frequencies : 1 ≪ ωpτ ≪ ωτ

Here we have

N2(ω) ≈ 1−
ω2
p

ω2
=⇒ R =

ωp

2ω
(5.137)

and R≪ 1 – the metal is transparent at frequencies large compared to ωp.

Optical reflectivity of semiconductors

In our analysis of the electrodynamics of metals, we assumed that the dielectric constant due
to all the filled bands was simply ǫ = 1. This is not quite right. We should instead have written

k2 = ǫ∞
ω2

c2
+

4πiωσ(ω)

c2

ǫ(ω) = ǫ∞

{
1 +

ω2
p

ω2

iωτ

1− iωτ

}
,

(5.138)

where ǫ∞ is the dielectric constant due to virtual transitions to fully occupied (i.e. core) and
fully unoccupied bands, at a frequency small compared to the interband frequency. The plasma
frequency is now defined as

ωp =

(
4πne2

m∗ ǫ∞

)1/2

(5.139)

where n is the conduction electron density. Note that ǫ(ω → ∞) = ǫ∞, although again this is
only true for ω smaller than the gap to neighboring bands. It turns out that for insulators one
can write

ǫ∞ ≃ 1 +
ω2
pv

ω2
g

(5.140)

where ωpv =
√

4πnve2/me, with nv the number density of valence electrons, and ωg is the energy
gap between valence and conduction bands. In semiconductors such as Si and Ge, ωg ∼ 4 eV,
while ωpv ∼ 16 eV, hence ǫ∞ ∼ 17, which is in rough agreement with the experimental values
of ∼ 12 for Si and ∼ 16 for Ge. In metals, the band gaps generally are considerably larger.

There are some important differences to consider in comparing semiconductors and metals:

• The carrier density n typically is much smaller in semiconductors than in metals, ranging
from n ∼ 1016 cm−3 in intrinsic (i.e. undoped, thermally excited at room temperature)
materials to n ∼ 1019 cm−3 in doped materials.

• ǫ∞ ≈ 10 − 20 and m∗/me ≈ 0.1. The product ǫ∞m
∗ thus differs only slightly from its free

electron value.
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Since nsemi
<∼ 10−4 nmetal, one has

ωsemi
p ≈ 10−2 ωmetal

p ≈ 10−14 s . (5.141)

In high purity semiconductors the mobility µ = eτ/m∗>∼ 105 cm2/vs the low temperature scat-
tering time is typically τ ≈ 10−11 s. Thus, for ω>∼ 3 × 1015 s−1 in the optical range, we have
ωτ ≫ ωpτ ≫ 1, in which case N(ω) ≈ √

ǫ∞ and the reflectivity is

R =

∣∣∣∣
1−√

ǫ∞
1 +

√
ǫ∞

∣∣∣∣
2

. (5.142)

Taking ǫ∞ = 10, one obtains R = 0.27, which is high enough so that polished Si wafers appear
shiny.

5.5.7 Theory for Bloch wavepackets

But then how do we implement the semiclassical equations of motion for Bloch wavepackets,

dr

dt
= vn(k)−

dk

dt
×Ωn(k)

~
dk

dt
= −eE(r, t)− e

c

dr

dt
×B(r, t) ?

(5.143)

In particular, how do we account for scattering within the semiclassical model? In what fol-
lows, we shall assume that the topological density Ωn(k) = 0.

A more rigorous approach to this issue is based on the Boltzmann equation, which describes
how the distribution f(r, k, t) of electron wave packets evolves and takes a steady state form.
Here we will opt for a more callow treatment which yields equivalent results. The most naı̈ve
generalization of the semiclassical equations would involve adding the ‘scattering’ term −p/τ
to the right hand side of the equation for ṗ = ~k̇, i.e.

M(k)
dv(k)

dt
= −eE(r, t)− e

c

dr

dt
×B(r, t)− 1

τ
M(k) v(k) , (5.144)

where

Mαβ(k) = ~
∂kα

∂vβ
⇐⇒ M−1

αβ (k) =
1

~2

∂2E(k)

∂kα ∂kβ
. (5.145)

However, while k̇ is well-defined, k itself, and hence p = ~k, is not, because it is defined only
modulo a reciprocal lattice vector.
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5.6 Boltzmann Equation in Solids

5.6.1 Semiclassical dynamics and distribution functions

The semiclassical dynamics of a wavepacket in a solid are described by the equations9

dr

dt
=

1

~

∂εn(k)

∂k
− dk

dt
×Ωn(k) (5.146)

dk

dt
= − e

~
E(r, t)− e

~c

dr

dt
×B(r, t)− e

2~mc
∇(σ ·B) . . (5.147)

Here n is the band index and εn(k) is the dispersion relation for band n. The Zeeman contri-
bution to the Hamiltonian is HZ = (e~/2mc)σ · B, and we will typically choose the internal ẑ
axis as the spin quantization axis, in which case HZ = (e~/2mc)σBz. The wavevector is k (~k
is the ‘crystal momentum’), and εn(k) is periodic under k → k + G, where G is any reciprocal
lattice vector. The second term on the RHS of Eqn. 5.146 is the so-called Karplus-Luttinger
term, defined by

Aµ
n(k) = i

〈
un(k)

∣∣ ∂

∂kµ
∣∣ un(k)

〉
(5.148)

Ωµ
n(k) = ǫµνλ

∂Aλ
n(k)

∂kν
, (5.149)

arising from the Berry phases generated by the one-particle Bloch cell functions |un(k)〉. These
formulae are valid only at sufficiently weak fields. They neglect, for example, Zener tunneling
processes in which an electron may change its band index as it traverses the Brillouin zone.
We assume Ωn(k) = 0 in our discussion, i.e. we assume the Bloch bands are non topological.
Finally, we neglect the orbital magnetization of the Bloch wavepacket and contributions from
the spin-orbit interaction. When the orbital moment of the Bloch electrons is included, we must
substitute

εn(k) → εn(k)−Mn(k) ·B(r, t) (5.150)

where

Mµ
n (k) = e ǫµνλ Im

〈
∂un
∂kν

∣∣∣∣ εn(k)−H0(k)

∣∣∣∣
∂un
∂kλ

〉
, (5.151)

where Ĥ0(k) = eik·r Ĥ0 e
−ik·r and Ĥ0 = p2

2m
+ V (r) is the one-electron Hamiltonian in the crys-

talline potential V (r) = V (r + R), where R is any direct lattice vector. Note Ĥ0(k) |un(k)〉 =
εn(k) |un(k)〉 and that un(k, r +R) = un(k, r) is periodic in the direct lattice.

9See G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
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We are of course interested in more than just a single electron, hence to that end let us consider
the distribution function fn(r, k, t), defined such that10

fnσ(r, k, t)
d3r d3k

(2π)3
≡ # of electrons of spin σ in band n with positions within

d3r of r and wavevectors within d3k of k at time t.
(5.152)

Note that the distribution function is dimensionless. By performing integrals over the distri-
bution function, we can obtain various physical quantities. For example, the current density at
r is given by

j(r, t) = −e
∑

n,σ

∫

Ω̂

d3k

(2π)3
fnσ(r, k, t) vn(k) . (5.153)

The symbol Ω̂ in the above formula is to remind us that the wavevector integral is performed
only over the first Brillouin zone.

We now ask how the distribution functions fnσ(r, k, t) evolve in time. To simplify matters, we
will consider a single band and drop the indices n and σ. It is clear that in the absence of
collisions, the distribution function must satisfy the continuity equation,

∂f

∂t
+∇ · (uf) = 0 . (5.154)

This is just the condition of number conservation for electrons. Take care to note that ∇ and u

are six-dimensional phase space vectors:

u = ( ẋ , ẏ , ż , k̇x , k̇y , k̇z )

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂kx
,
∂

∂ky
,
∂

∂kz

)
.

(5.155)

Now note that as a consequence of the dynamics (5.146,5.147) that, provided Ωn(k) = 0, we
have ∇ ·u = 0, i.e. phase space flow is incompressible, provided that ε(k) is a function of k alone,
and not of r. Thus, in the absence of collisions, we have

∂f

∂t
+ u ·∇f = 0 . (5.156)

The differential operator Dt ≡ ∂t + u ·∇ is sometimes called the ‘convective derivative’.

When Ωn(k) 6= 0, we found in §4.5.2 that ∇ · u = −d lnDn/dt, with

Dn(r, k, t) = 1 +
e

~c
B(r, t) ·Ω(k) . (5.157)

10We will assume three space dimensions. The discussion may be generalized to quasi-two dimensional and
quasi-one dimensional systems as well.
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In this case, we must redefine the phase space measure as

dµ =
d3r d3k

(2π)3
−→ dµ̃ ≡ Dn(r, k, t)

d3r d3k

(2π)3
. (5.158)

This means that the expectation of any local observable O is given by

〈O〉(r′, t) =
∑

n

∫

Ω̂

dµ̃ fn(r, k, t) 〈 unk | O | unk 〉 δ(r − r
′)

=
∑

n

∫

Ω̂

d3k

(2π)3
Dn(r,

′ k, t) fn(r
′, k, t) 〈 unk | O | unk 〉 ,

(5.159)

Thus, for example

j(r, t) =
∑

n

∫

Ω̂

d3k

(2π)3
Dn(r, k, t) fn(r, k, t) (−eṙ)

= −e
∫

Ω̂

d3k

(2π)3

{
vn +

e

~c
(vn ·Ωn)B +

e

~
E ×Ωn

}
fn(r, k, t) .

(5.160)

Throughout the rest of this chapter, we will assume Ωn(k) = 0. Here we have absorbed the spin
polarization index σ into the band index, so there are twice as many n values as before. This
notation is more appropriate when spin-orbit interaction terms are present, which can lead to
cell functions |unk〉 which have internal spin space structure.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical
dynamics. In a collision process, an electron with wavevector k and one with wavevector k′

can instantaneously convert into a pair with wavevectors k+ q and k′ − q (modulo a reciprocal
lattice vector G), where q is the wavevector transfer. Note that the total wavevector is preserved
(mod G). This means that Dtf 6= 0. Rather, we should write

∂f

∂t
+ ṙ · ∂f

∂r
+ k̇ · ∂f

∂k
=

(
∂f

∂t

)

coll

≡ Ik[f ] (5.161)

where the right side is known as the collision integral. The collision integral is in general a
function of r, k, and t and a functional of the distribution f . As the k-dependence is the most
important for our concerns, we will write Ik in order to make this dependence explicit. Some
examples should help clarify the situation.

First, let’s consider a very simple model of the collision integral,

Ik[f ] = −f(r, k, t)− f 0(r, k)

τ(ε(k))
. (5.162)
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This model is known as the relaxation time approximation. Here, f 0(r, k) is a static distribution
function which describes a local equilibrium at r. The quantity τ(ε(k)) is the relaxation time, which
may be energy-dependent. Note that the collision integral indeed depends on the variables
(r, k, t), and has a particularly simple functional dependence on the distribution f .

A more sophisticated model might invoke Fermi’s golden rule, Consider elastic scattering from
a static potential U(r) which induces transitions between different momentum states. We can
then write

Ik[f ] =
2π

~

∑

k′∈Ω̂

|
〈
k′ ∣∣U

∣∣k
〉
|2 (fk′ − fk) δ(εk − εk′)

=
2π

~V

∫

Ω̂

d3k′

(2π)3
| Û(k − k′)|2 (fk′ − fk) δ(εk − εk′) ,

(5.163)

where we abbreviate fk ≡ f(r, k, t). In deriving the last line we’ve used plane wave wavefunc-

tions11 ψk(r) = exp(ik · r)/
√
V , as well as the result

∑

k∈Ω̂

A(k) = V

∫

Ω̂

d3k

(2π)3
A(k) (5.164)

for smooth functions A(k). Note the factor of V −1 in front of the integral in Eqn. 5.163. What
this tells us is that for a bounded localized potential U(r), the contribution to the collision inte-
gral is inversely proportional to the size of the system. This makes sense because the number of
electrons scales as V but the potential is only appreciable over a region of volume ∝ V 0. Later

on, we shall consider a finite density of scatterers, writing U(r) =
∑Nimp

i=1 U(r −Ri), where the

impurity density nimp = Nimp/V is finite, scaling as V 0. In this case Û(k − k′) apparently scales
as V , which would mean Ik{f} scales as V , which is unphysical. As we shall see, the random

positioning of the impurities means that the O(V 2) contribution to |Û(k−k′)|2 is incoherent and
averages out to zero. The coherent piece scales as V , canceling the V in the denominator of
Eqn. 5.163, resulting in a finite value for the collision integral in the thermodynamic limit (i.e.
neither infinite nor infinitesimal).

Later on we will discuss electron-phonon scattering, which is inelastic. An electron with wavevec-
tor k′ can scatter into a state with wavevector k = k′ − q mod G by absorption of a phonon of
wavevector q or emission of a phonon of wavevector −q. Similarly, an electron of wavevector
k can scatter into the state k′ by emission of a phonon of wavevector −q or absorption of a
phonon of wavevector q. The matrix element for these processes depends on k, k′, and the
polarization index of the phonon. Overall, energy is conserved. These considerations lead us

11Rather than plane waves, we should use Bloch waves ψnk(r) = exp(ik · r)unk(r), where cell function unk(r)
satisfies unk(r+R) = unk(r), where R is any direct lattice vector. Plane waves do not contain the cell functions,
although they do exhibit Bloch periodicity ψnk(r +R) = exp(ik ·R)ψnk(r).
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Figure 5.14: Electron-phonon vertices.

to the following collision integral:

Ik[f, n] =
2π

~V

∑

k′,λ

|gλ(k, k′)|2
{
(1− fk) fk′ (1 + nq,λ) δ(εk + ~ωqλ − εk′) (5.165)

+ (1− fk) fk′ n−qλ δ(εk − ~ω−qλ − εk′)− fk (1− fk′) (1 + n−qλ) δ(εk − ~ω−qλ − εk′)

− fk (1− fk′)nqλ δ(εk + ~ωqλ − εk′)
}
δq,k′−k mod G ,

which is a functional of both the electron distribution fk as well as the phonon distribution nqλ.
The four terms inside the curly brackets correspond, respectively, to cases (a) through (d) in
Fig. 5.14.

Collisional invariants

While collisions will violate crystal momentum conservation, they do not violate conservation
of particle number. Hence we should have12

∫
d3r

∫

Ω̂

d3k

(2π)3
Ik[f ] = 0 . (5.166)

12If collisions are purely local, then
∫

Ω̂

d3k
(2π)3 Ik[f ] = 0 at every point r in space.
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The total particle number,

N =

∫
d3r

∫

Ω̂

d3k

(2π)3
f(r, k, t) (5.167)

is a collisional invariant - a quantity which is preserved in the collision process. Other collisional
invariants include energy (when all sources are accounted for), spin (total spin), and crystal
momentum (if there is no breaking of lattice translation symmetry)13. Consider a function
F (r, k) of position and wavevector. Its average value is

F̄ (t) =

∫
d3r

∫

Ω̂

d3k

(2π)3
F (r, k) f(r, k, t) . (5.168)

Taking the time derivative,

dF̄

dt
=
∂F̄

∂t
=

∫
d3r

∫

Ω̂

d3k

(2π)3
F (r, k)

{
− ∂

∂r
· (ṙf)− ∂

∂k
· (k̇f) + Ik[f ]

}

=

∫
d3r

∫

Ω̂

d3k

(2π)3

{[
∂F

∂r
· dr
dt

+
∂F

∂k
· dk
dt

]
f + F Ik[f ]

}
.

(5.169)

Hence, if F is preserved by the dynamics between collisions, then

dF̄

dt
=

∫
d3r

∫

Ω̂

d3k

(2π)3
F Ik[f ] , (5.170)

which says that F̄ (t) changes only as a result of collisions. If F is a collisional invariant, then
˙̄F = 0. This is the case when F = 1, in which case F̄ is the total number of particles, or when
F = ε(k), in which case F̄ is the total energy.

5.6.2 Local equilibrium

The equilibrium Fermi distribution,

f 0(k) =

{
exp

(
ε(k)− µ

k
B
T

)
+ 1

}−1

(5.171)

is a space-independent and time-independent solution to the Boltzmann equation. Since colli-
sions act locally in space, they act on short time scales to establish a local equilibrium described

13Note that the relaxation time approximation violates all such conservation laws. Within the relaxation time
approximation, there are no collisional invariants.
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by a distribution function

f 0(r, k, t) =

{
exp

(
ε(k)− µ(r, t)

k
B
T (r, t)

)
+ 1

}−1

. (5.172)

This is, however, not a solution to the full Boltzmann equation due to the ‘streaming terms’
ṙ · ∂r + k̇ · ∂k in the convective derivative. These, though, act on longer time scales than those
responsible for the establishment of local equilibrium. To obtain a solution, we write

f(r, k, t) = f 0(r, k, t) + δf(r, k, t) (5.173)

and solve for the deviation δf(r, k, t). We will assume µ = µ(r) and T = T (r) are time-
independent. We first compute the differential of f 0,

df 0 = k
B
T
∂f 0

∂ε
d

(
ε− µ

k
B
T

)

= k
B
T
∂f 0

∂ε

{
− dµ

k
B
T

− (ε− µ) dT

k
B
T 2

+
dε

k
B
T

}

= −∂f
0

∂ε

{
∂µ

∂r
· dr + ε− µ

T

∂T

∂r
· dr − ∂ε

∂k
· dk
}

,

(5.174)

from which we read off

∂f 0

∂r
=

{
∂µ

∂r
+
ε− µ

T

∂T

∂r

}(
−∂f

0

∂ε

)

∂f 0

∂k
= ~v

∂f 0

∂ε
.

(5.175)

We thereby obtain

∂δf

∂t
+v ·∇ δf − e

~

[
E +

1

c
v ×B

]
· ∂ δf
∂k

+v ·
[
eE +

ε− µ

T
∇T

](
−∂f

0

∂ε

)
= Ik

[
f 0+ δf

]
, (5.176)

where E = −∇(φ−µ/e) is the gradient of the ‘electrochemical potential’; we’ll henceforth refer
to E as the electric field. Eqn (5.176) is a nonlinear integrodifferential equation in δf , with the
nonlinearity coming from the collision integral. (In some cases, such as impurity scattering, the
collision integral may be a linear functional.) We will solve a linearized version of this equation,
assuming the system is always close to a state of local equilibrium.

Note that the inhomogeneous term in (5.176) involves the electric field and the temperature
gradient ∇T . This means that δf is proportional to these quantities, and if they are small then
δf is small. The gradient of δf is then of second order in smallness, since the external fields
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φ − µ/e and T are assumed to be slowly varying in space. To lowest order in smallness, then,
we obtain the following linearized Boltzmann equation:

∂δf

∂t
− e

~c
v ×B · ∂ δf

∂k
+ v ·

[
eE +

ε− µ

T
∇T

](
−∂f

0

∂ε

)
= L δf , (5.177)

where L δf is the linearized collision integral; L is a linear operator acting on δf (we suppress
denoting the k dependence of L). Note that we have not assumed that B is small. Indeed later
on we will derive expressions for high B transport coefficients.

Note also that we also have dropped the term

∂f 0

∂t
= −∂f

0

∂ε

{
∂µ

∂t
+
ε− µ

T

∂T

∂t

}
(5.178)

from the LHS of the linearized Boltzmann equation. This is because we assume that the spa-
tially uniform components of µ(r, t) and T (r, t) are time-independent, which means that the
nonzero contributions to ∂µ/∂t and ∂T/∂t involve at least one space derivative as well as one
time derivative, and are thus doubly small and therefore negligible.

5.7 Conductivity of Normal Metals

5.7.1 Relaxation time approximation

Consider a normal metal in the presence of an electric field E . We’ll assume B = 0, ∇T = 0,
and also that E is spatially uniform as well. This in turn guarantees that δf itself is spatially
uniform. The Boltzmann equation then reduces to

∂ δf

∂t
− ∂f 0

∂ε
ev · E = Ik

[
f 0 + δf

]
. (5.179)

We’ll solve this by adopting the relaxation time approximation for Ik[f ]:

Ik[f ] = −f − f 0

τ
= −δf

τ
, (5.180)

where τ , which may be k-dependent, is the relaxation time. In the absence of any fields or tem-

perature and electrochemical potential gradients, the Boltzmann equation becomes δ̇f = −δf/τ ,
with the solution δf(t) = δf(0) exp(−t/τ). The distribution thereby relaxes to the equilibrium
one on the scale of τ . In fact, this result is wrong, because the total particle number is a col-
lisional invariant. Electrons can’s simply disappear! Rather, the local number density must
relax to the equilibrium value via the slower mechanism of diffusion. While the fact that colli-
sional invariants are not respected is a defect of the relaxation time approximation, this won’t
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much affect the validity of our conclusions regarding various transport coefficients, such as the
electrical conductivity.

Writing E(t) = E e−iωt, we solve

∂ δf(k, t)

∂t
− e v(k) · E e−iωt ∂f

0

∂ε
= −δf(k, t)

τ(ε(k))
(5.181)

and obtain

δf(k, t) =
eE · v(k) τ(ε(k))
1− iωτ(ε(k))

∂f 0

∂ε
e−iωt . (5.182)

The equilibrium distribution f 0(k) results in zero current, since f 0(−k) = f 0(k). Thus, the
current density is given by the expression

jα(r, t) = −2e

∫

Ω̂

d3k

(2π)3
δf vα

= 2e2 Eβ e−iωt

∫

Ω̂

d3k

(2π)3
τ(ε(k)) vα(k) vβ(k)

1− iωτ(ε(k))

(
−∂f

0

∂ε

)
.

(5.183)

In the above calculation, the factor of two arises from summing over spin polarizations. The
conductivity tensor is defined by the linear relation jα(ω) = σαβ(ω) Eβ(ω). We have thus de-
rived an expression for the conductivity tensor,

σαβ(ω) = 2e2
∫

Ω̂

d3k

(2π)3
τ(ε(k)) vα(k) vβ(k)

1− iωτ(ε(k))

(
−∂f

0

∂ε

)
. (5.184)

Note that the conductivity is a property of the Fermi surface. For k
B
T ≪ εF, we have −∂f 0/∂ε ≈

δ(εF − ε(k)) and the above integral is over the Fermi surface alone. Explicitly, we change vari-
ables to energy ε and coordinates along a constant energy surface, writing

d3k =
dε dSε

|∂ε/∂k| =
dε dSε

~|v| , (5.185)

where dSε is the differential area on the constant energy surface ε(k) = ε, and v(k) = ~
−1∇k ε(k)

is the velocity. For T ≪ TF, then,

σαβ(ω) =
e2

4π3~

τ(εF)

1− iωτ(εF)

∫
dSF

vα(k) vβ(k)

|v(k)| . (5.186)

For free electrons in a parabolic band, we write ε(k) = ~
2k2/2m∗, so vα(k) = ~kα/m∗. To further

simplify matters, let us assume that τ is constant, or at least very slowly varying in the vicinity
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of the Fermi surface. We find

σαβ(ω) = δαβ
2

3m∗
e2τ

1− iωτ

∞∫

−∞

dε g(ε) ε

(
−∂f

0

∂ε

)
, (5.187)

where g(ε) is the density of states,

g(ε) = 2

∫

Ω̂

d3k

(2π)3
δ (ε− ε(k)) . (5.188)

The (three-dimensional) parabolic band density of states is found to be

g(ε) =
(2m∗)3/2

2π2~3

√
εΘ(ε) , (5.189)

where Θ(x) is the step function. In fact, integrating (5.187) by parts, we only need to know
about the

√
ε dependence in g(ε), and not the details of its prefactor:

∫
dε ε g(ε)

(
−∂f

0

∂ε

)
=

∫
dε f 0(ε)

∂

∂ε
(ε g(ε)) = 3

2

∫
dε g(ε) f 0(ε) = 3

2
n , (5.190)

where n = N/V is the electron number density for the conduction band. The final result for the
conductivity tensor is

σαβ(ω) =
ne2τ

m∗
δαβ

1− iωτ
. (5.191)

We have recovered the the Drude theory of electrical conduction in metals.

5.7.2 Optical conductivity and the Fermi surface

At high frequencies, when ωτ ≫ 1, our expression for the conductivity, Eqn. (5.184), yields

σ(ω) =
ie2

12π3~ω

∫
dε

(
−∂f

0

∂ε

)∫
dSε

∣∣v(k)
∣∣ , (5.192)

where we have presumed sufficient crystalline symmetry to guarantee that σαβ = σ δαβ is di-
agonal. In the isotropic case, and at temperatures low compared with TF, the integral over the

Fermi surface gives 4πk2
F
vF = 12π3

~n/m∗, whence σ = ine2/m∗ω, which is the large frequency
limit of our previous result. For a general Fermi surface, we can define

σ(ω ≫ τ−1) ≡ ine2

moptω
(5.193)
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Figure 5.15: Frequency-dependent conductivity of liquid sodium by T. Inagaki et al, Phys. Rev.
B 13, 5610 (1976).

where the optical mass mopt is given by

1

mopt

=
1

12π3~n

∫
dε

(
−∂f

0

∂ε

)∫
dSε

∣∣v(k)
∣∣ . (5.194)

Note that at high frequencies σ(ω) is purely imaginary. What does this mean? If

E(t) = E cos(ωt) = 1
2
E
(
e−iωt + e+iωt

)
(5.195)

then

j(t) = 1
2
E
{
σ(ω) e−iωt + σ(−ω) e+iωt

}
=

ne2

moptω
E sin(ωt) , (5.196)

where we have invoked σ(−ω) = σ∗(ω). The current is therefore 90◦ out of phase with the
voltage, and the average over a cycle 〈j(t) · E(t)〉 = 0. Recall that we found metals to be
transparent for ω ≫ ωp ≫ τ−1.

At zero temperature, the optical mass is given by

1

mopt

=
1

12π3~n

∫
dS

F

∣∣v(k)
∣∣ . (5.197)
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m∗
opt/me m∗

th/me

Metal thy expt thy expt

Li 1.45 1.57 1.64 2.23
Na 1.00 1.13 1.00 1.27
K 1.02 1.16 1.07 1.26

Rb 1.08 1.16 1.18 1.36
Cs 1.29 1.19 1.75 1.79
Cu - - 1.46 1.38
Ag - - 1.00 1.00
Au - - 1.09 1.08

Table 5.1: Optical and thermodynamic effective masses of monovalent metals. (Taken from
Smith and Jensen).

The density of states, g(εF), is

g(ε
F
) =

1

4π3~

∫
dS

F

∣∣v(k)
∣∣−1

, (5.198)

from which one can define the thermodynamic effective mass m∗
th, appealing to the low tem-

perature form of the specific heat,

cV =
π2

3
k2

B
T g(ε

F
) ≡ m∗

th

me
c0V , (5.199)

where

c0V ≡ me k
2
B
T

3~2
(3π2n)1/3 (5.200)

is the specific heat for a free electron gas of density n. Thus,

m∗
th =

~

4π(3π2n)1/3

∫
dS

F

∣∣v(k)
∣∣−1

(5.201)

5.8 Calculation of the Scattering Time

5.8.1 Potential scattering and Fermi’s golden rule

Let us go beyond the relaxation time approximation and calculate the scattering time τ from
first principles. We will concern ourselves with scattering of electrons from crystalline impuri-
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ties. We begin with Fermi’s Golden Rule14,

Ik[f ] =
2π

~

∑

k′

∣∣〈k′ ∣∣U
∣∣ k
〉∣∣2 (fk′ − fk) δ(ε(k)− ε(k′)) , (5.202)

where U(r) is a sum over individual impurity ion potentials, U(r) =
∑Nimp

j=1 U(r −Rj). Thus,

∣∣〈 k′ ∣∣U
∣∣ k
〉∣∣2 = V −2 |Û(k− k′)|2 ·

∣∣∣∣
Nimp∑

j=1

ei(k−k′)·Rj

∣∣∣∣
2

, (5.203)

where V is the volume of the solid and

Û(q) =

∫
d3r U(r) e−iq·r (5.204)

is the Fourier transform of the impurity potential. Note that we are assuming a single species
of impurities; the method can be generalized to account for different impurity species.

To make progress, we assume the impurity positions are random and uncorrelated, and we
average over them. Using

∣∣∣∣
Nimp∑

j=1

eiq·Rj

∣∣∣∣
2

= Nimp +Nimp(Nimp − 1) δq,0 , (5.205)

we obtain
∣∣〈 k′

∣∣U
∣∣ k
〉∣∣2 = Nimp

V 2
|Û(k − k′)|2 + Nimp(Nimp − 1)

V 2
|Û(0)|2 δkk′ . (5.206)

EXERCISE: Verify Eqn. (5.205).

We will neglect the second term in Eqn. 5.206 arising from the spatial average (q = 0 Fourier
component) of the potential. As we will see, in the end it will cancel out. Writing f = f 0 + δf ,
we have

Ik[f ] =
2πnimp

~

∫

Ω̂

d3k′

(2π)3
|Û(k − k′)|2 δ

(
~
2k2

2m∗ − ~
2k′2

2m∗

)
(δfk′ − δfk) , (5.207)

where nimp = Nimp/V is the number density of impurities. Note that we are assuming a
parabolic band. We next make the Ansatz

δfk = τ(ε(k)) eE · v(k) ∂f
0

∂ε

∣∣∣∣
ε(k)

(5.208)

14We’ll treat the scattering of each spin species separately. We assume no spin-flip scattering takes place.
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and solve for τ(ε(k)). The (time-independent) Boltzmann equation is

−eE · v(k) ∂f
0

∂ε
=

2π

~
nimp eE ·

∫

Ω̂

d3k′

(2π)3
|Û(k− k′)|2 δ

(
~
2k2

2m∗ − ~
2k′2

2m∗

)

×
(
τ(ε(k′)) v(k′)

∂f 0

∂ε

∣∣∣∣
ε(k′)

− τ(ε(k)) v(k)
∂f 0

∂ε

∣∣∣∣
ε(k)

)
.

(5.209)

Due to the isotropy of the problem, we must have τ(ε(k)) is a function only of the magnitude
of k. We then obtain15

~k

m∗ =
nimp

4π2~
τ(ε(k))

∞∫

0

dk′ k′
2

∫
dk̂′ |Û(k− k′)|2 δ(k − k′)

~2k/m∗
~

m∗ (k− k′) , (5.210)

whence
1

τ(εF)
=
m∗ kF nimp

4π2~3

∫
dk̂′ |U(k

F
k̂ − k

F
k̂′)|2 (1− k̂ · k̂′) . (5.211)

If the impurity potential U(r) itself is isotropic, then its Fourier transform Û(q) is a function of
q2 = 4k2

F
sin2 1

2
ϑ where cosϑ = k̂ · k̂′ and q = k′ − k is the transfer wavevector. Recalling the

Born approximation for differential scattering cross section,

σ(ϑ) =

(
m∗

2π~2

)2

|Û(k − k′)|2 , (5.212)

we may finally write

1

τ(εF)
= 2πnimpvF

π∫

0

dϑ σ
F
(ϑ) (1− cosϑ) sinϑ , (5.213)

where vF = ~kF/m
∗ is the Fermi velocity16. The mean free path is defined by ℓ = vFτ .

Notice the factor (1 − cosϑ) in the integrand of (5.213). This tells us that forward scattering
(ϑ = 0) doesn’t contribute to the scattering rate, which justifies our neglect of the second term

in Eqn. (5.206). Why should τ be utterly insensitive to forward scattering? Because τ(εF) is
the transport lifetime, and forward scattering does not degrade the current. Therefore, σ(ϑ = 0)

does not contribute to the ‘transport scattering rate’ τ−1(εF). Oftentimes one sees reference in
the literature to a ‘single particle lifetime’ as well, which is given by the same expression but
without this factor:

{
τ−1
sp

τ−1
tr

}
= 2πnimpvF

π∫

0

dϑ σ
F
(ϑ)

{
1

(1− cos ϑ)

}
sin ϑ . (5.214)

15We assume that the Fermi surface is contained within the first Brillouin zone.
16The subscript on σF(ϑ) is to remind us that the cross section depends on kF as well as ϑ.
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Note that τsp = (nimp vF σF,tot)
−1, where σF,tot is the total scattering cross section at energy εF, a

formula familiar from elementary kinetic theory.

The Boltzmann equation defines an infinite hierarchy of lifetimes classified by the angular mo-
mentum scattering channel. To derive this hierarchy, one can examine the linearized time-
dependent Boltzmann equation with E = 0,

∂ δfk
∂t

= nimp vF

∫
dk̂′ σ(ϑkk′) (δfk′ − δfk) , (5.215)

where v = ~k/m∗ is the velocity, and where the kernel is ϑkk′ = cos−1(k̂ · k̂′). We now expand
in spherical harmonics, writing

σ(ϑkk′) ≡ σtot
∑

L,M

νL YLM(k̂) Y ∗
LM(k̂′) , (5.216)

where as before

σtot = 2π

π∫

0

dϑ sinϑσ(ϑ) , (5.217)

which fixes νL=0 = 1. Expanding

δfk(t) =
∑

L,M

ALM(t) YLM(k̂) , (5.218)

the linearized Boltzmann equation simplifies to

∂ALM

∂t
+ (1− νL)nimpvF

σtot ALM = 0 , (5.219)

whence one obtains a hierarchy of relaxation rates,

τ−1
L = (1− νL)nimpvF

σtot , (5.220)

which depend only on the total angular momentum quantum number L. These rates describe
the relaxation of nonuniform distributions when δfk(t = 0) is proportional to some spherical
harmonic YLM(k). Note that τ−1

L=0 = 0, which reflects the fact that the total particle number is a
collisional invariant. The single particle lifetime is identified as

τsp ≡ τL→∞ =
(
nimpvF

σtot
)−1

, (5.221)

corresponding to a point distortion of the uniform distribution. The transport lifetime is then

τtr = τL=1.
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5.8.2 Screening and the transport lifetime

For a Coulomb impurity, with U(r) = −Ze2/r we have Û(q) = −4πZe2/q2. Consequently,

σ
F
(ϑ) =

(
Ze2

4εF sin
2 1
2
ϑ

)2
, (5.222)

and there is a strong divergence as ϑ → 0, with σF(ϑ) ∝ ϑ−4. The transport lifetime diverges
logarithmically! What went wrong?

What went wrong is that we have failed to account for screening. Free charges will rearrange
themselves so as to screen an impurity potential. At long range, the effective (screened) poten-
tial decays exponentally, rather than as 1/r. The screened potential is of the Yukawa form, and
its increase at low q is cut off on the scale of the inverse screening length λ−1. There are two
types of screening to consider:

• Thomas-Fermi Screening : This is the typical screening mechanism in metals. A weak

local electrostatic potential φ(r) will induce a change in the local electronic density ac-

cording to δn(r) = eφ(r) g(εF), where g(εF) is the density of states at the Fermi level. This
charge imbalance is again related to φ(r) through the Poisson equation. The result is a
self-consistent equation for φ(r),

∇2φ = 4πe δn

= 4πe2g(ε
F
)φ ≡ λ−2

TF φ .
(5.223)

The Thomas-Fermi screening length is λTF =
(
4πe2g(εF)

)−1/2
.

• Debye-Hückel Screening : This mechanism is typical of ionic solutions, although it may

also be of relevance in solids with ultra-low Fermi energies. From classical statistical
mechanics, the local variation in electron number density induced by a potential φ(r) is

δn(r) = n eeφ(r)/kBT − n ≈ neφ(r)

k
B
T

, (5.224)

where we assume the potential is weak on the scale of k
B
T/e. Poisson’s equation now

gives us

∇2φ = 4πe δn =
4πne2

k
B
T

φ ≡ λ−2
DH φ . (5.225)

A screened test charge Ze at the origin obeys

∇2φ = λ−2 φ− 4πZe δ(r) , (5.226)
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the solution of which is

U(r) = −eφ(r) = −Ze
2

r
e−r/λ =⇒ Û(q) = − 4πZe2

q2 + λ−2
. (5.227)

The differential scattering cross section is now

σ
F
(ϑ) =

(
Ze2

4εF
· 1

sin2 1
2
ϑ+ (2kFλ)−2

)2
(5.228)

and the divergence at small angle is cut off. The transport lifetime for screened Coulomb scat-
tering is therefore given by

1

τ(εF)
= 2πnimpvF

(
Ze2

4εF

)2 π∫

0

dϑ sinϑ (1− cosϑ)

(
1

sin2 1
2
ϑ+ (2kFλ)−2

)2

= 2πnimpvF

(
Ze2

2εF

)2{
ln(1 + πζ)− πζ

1 + πζ

}
,

(5.229)

with ζ = 4
π
k2

F
λ2, In the case of Thomas-Fermi screening, from g(εF) = m∗kF/π

2
~
2, and we have

ζ =
4

π
k2

F
λ2 =

~
2kF

m∗e2
= k

F
a∗

B
. (5.230)

Here a∗
B
= ǫ∞ ~

2/m∗e2 is the effective Bohr radius (restoring the ǫ∞ factor). The resistivity is
therefore given by

ρ =
m∗

ne2τ
=

h

e2
Z2 a∗

B
(nimp/n)F (kF

a∗
B
) , (5.231)

where

F (ζ) =
1

ζ3

{
ln(1 + πζ)− πζ

1 + πζ

}
. (5.232)

With h/e2 = 25, 813Ω and a∗
B
≈ a

B
= 0.529 Å, we have

ρ = 1.37× 10−4Ω · cm × Z2 (nimp/n)F (kF
a

B
) . (5.233)

In Tab. 5.2, we show the observed residual resistivity per percent impurity for various ions in
copper at low temperatures.

5.9 Dynamics of Holes

5.9.1 Properties of holes

Since filled bands carry no current, we have that the current density from band n is

jn(r, t) = −2e

∫

Ω̂

d3k

(2π)3
fn(r, k, t) vn(k) = +2e

∫

Ω̂

d3k

(2π)3
f̄n(r, k, t) vn(k) , (5.234)
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Figure 5.16: Residual resistivity per percent impurity.

where f̄ ≡ 1− f . Thus, we can regard the current to be carried by fictitious particles of charge
+e with a distribution f̄(r, k, t). These fictitious particles are called holes.

The Four Laws of Holes

1. Under the influence of an applied electromagnetic field, the unoccupied levels of a band
evolve as if they were occupied by real electrons of charge −e. That is, whether or not a
state is occupied is irrelevant to the time evolution of that state, which is described by the
semiclassical dynamics of eqs. (5.146, 5.147).

2. The current density due to a hole of wavevector k is +e vn(k)/V .

3. The crystal momentum of a hole of wavevector k is P = −~k.

4. Any band can be described in terms of electrons or in terms of holes, but not both simul-
taneously. A “mixed” description is redundant at best, wrong at worst, and confusing
always. However, it is often convenient to treat some bands within the electron picture
and others within the hole picture.

It is instructive to consider the exercise of Fig. 5.17. The two states to be analyzed are

∣∣ΨA

〉
= ψ†

c,k ψv,k

∣∣Ψ0

〉
= e†k h

†
k

∣∣ 0
〉

∣∣ΨB

〉
= ψ†

c,k ψv,−k

∣∣Ψ0

〉
= e†k h

†
−k

∣∣ 0
〉

,
(5.235)
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Impurity ∆ρ per % Impurity ∆ρ per %
Ion (µΩ-cm) Ion (µΩ-cm)

Be 0.64 Si 3.2
Mg 0.60 Ge 3.7
B 1.4 Sn 2.8
Al 1.2 As 6.5
In 1.2 Sb 5.4

Table 5.2: Observed residual resistivity of copper per percent impurity. (From Smith and
Jensen.)

Figure 5.17: Two states:
∣∣ΨA

〉
= e†k h

†
k

∣∣ 0
〉

and
∣∣ΨB

〉
= e†k h

†
−k

∣∣ 0
〉
. Which state carries more

current? What is the crystal momentum of each state?

where e†k ≡ ψ†
c,k is the creation operator for electrons in the conduction band, and h†k ≡ ψv,k is

the creation operator for holes (and hence the destruction operator for electrons) in the valence

band. The state
∣∣Ψ0

〉
has all states below the top of the valence band filled, and all states above

the bottom of the conduction band empty. The state
∣∣ 0
〉

is the same state, but represented now
as a vacuum for conduction electrons and valence holes. The current density in each state is

given by j = e(vh − ve)/V , where V is the volume (i.e. length) of the system. The dispersions
are taken to be εc,v(k) = ±1

2
Eg ± ~

2k2/2m∗, where Eg is the energy gap.
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• State
∣∣ΨA

〉
:

The electron velocity is ve = ~k/m∗; the hole velocity is vh = −~k/m∗. The total current

density is j = x−2e~k/m∗V and the total crystal momentum is P = pe+ph = ~k−~k = 0.

• State
∣∣ΨB

〉
:

The electron velocity is ve = ~k/m∗; the hole velocity is vh = −~(−k)/m∗. The total current

density is j = 0, and the total crystal momentum is P = pe + ph = ~k − ~(−k) = 2~k.

Consider next the dynamics of electrons near the bottom of the conduction band and holes near
the top of the valence band. (We’ll assume a ‘direct gap’, i.e. the conduction band minimum is
located directly above the valence band maximum, which we take to be at the Brillouin zone
center k = 0, otherwise known as the Γ point.) Expanding the dispersions about their extrema
to second order,

εv(k) = εv0 − 1
2
~
2(mv)−1

αβ k
α kβ

εc(k) = εc0 +
1
2
~
2(mc)−1

αβ k
α kβ .

(5.236)

The velocity is

vα(k) =
1

~

∂ε

∂kα
= ±~m−1

αβ k
β , (5.237)

where the + sign is used in conjunction with mc and the − sign with mv. We compute the
acceleration a = r̈ via the chain rule,

aα =
∂vα

∂kβ
· dk

β

dt

= ∓em−1
αβ

[
Eβ +

1

c
(v ×B)β

]

F α = mαβ a
β = ∓e

[
Eβ +

1

c
(v ×B)β

]
.

(5.238)

Thus, the hole wavepacket accelerates as if it has charge +e but a positive effective mass. Note
that we have above presumed a direct band gap, i.e. that the conduction band minimum lies
directly above the valence band maximum, at the same value of k (typically the Γ point in the
Brillouin zone). However, many materials have an indirect band gap in which case

εv(k) = εv0 − 1
2
~
2(mv)−1

αβ (k
α −Kα

v ) (k
β −Kβ

v )

vαv (k) = −(mv)−1
αβ (k

β −Kβ
v )

(5.239)

and

εc(k) = εc0 +
1
2
~
2(mc)−1

αβ (k
α −Kα

c ) (k
β −Kβ

c )

vαc (k) = +(mc)−1
αβ (k

β −Kβ
c ) .

(5.240)
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5.9.2 Boltzmann equation for holes

Finally, what form does the Boltzmann equation take for holes? Starting with the Boltzmann
equation for electrons,

∂f

∂t
+ ṙ · ∂f

∂r
+ k̇ · ∂f

∂k
= Ik[f ] , (5.241)

we recast this in terms of the hole distribution f̄ = 1− f , and obtain

∂f̄

∂t
+ ṙ · ∂f̄

∂r
+ k̇ · ∂f̄

∂k
= −Ik

[
1− f̄

]
. (5.242)

This then is the Boltzmann equation for the hole distribution f̄ . Recall that we can expand the
collision integral functional as

Ik

[
f 0 + δf

]
= L δf + . . . (5.243)

where L is a linear operator, and the higher order terms are formally of order (δf)2. Note that
the zeroth order term Ik

[
f 0
]

vanishes due to the fact that f 0 represents a local equilibrium.
Thus, after writing f̄ = f̄ 0 + δf̄

− Ik

[
1− f̄

]
= −Ik

[
1− f̄ 0 − δf̄

]
= L δf̄ + . . . (5.244)

and the linearized collisionless Boltzmann equation for holes is

∂δf̄

∂t
− e

~c
v ×B · ∂ δf̄

∂k
− v ·

[
eE +

ε− µ

T
∇T

]
∂f̄ 0

∂ε
= L δf̄ , (5.245)

which is of precisely the same form as the electron case in Eqn. (5.177). Note that the local
equilibrium distribution for holes is given by

f̄ 0(r, k, t) =

{
exp

(
µ(r, t)− ε(k)

k
B
T (r, t)

)
+ 1

}−1

. (5.246)

5.10 Magnetoresistance and Hall Effect

5.10.1 Boltzmann theory for ραβ(ω,B)

In the presence of an external magnetic field B, the linearized Boltzmann equation takes the
form17

∂δf

∂t
− e v · E ∂f 0

∂ε
− e

~c
v ×B · ∂δf

∂k
= L δf . (5.247)

17For holes, we replace f0 → f̄0 and δf → δf̄ .
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We will obtain an explicit solution within the relaxation time approximation L δf = −δf/τ and
the effective mass approximation,

ε(k) = ±1
2
~
2m−1

αβ k
α kβ =⇒ vα = ± ~m−1

αβ k
β , (5.248)

where the top sign applies for electrons and the bottom sign for holes. With E(t) = E e−iωt, we
try a solution of the form

δf(k, t) = k ·A(ε) e−iωt ≡ δf(k) e−iωt (5.249)

where A(ε) is a vector function of ε to be determined. Each component Aα is a function of k

through its dependence on ε = ε(k). We now have

(τ−1 − iω) kµAµ − e

~c
ǫαβγ v

αBβ ∂

∂kγ
(kµAµ) = e v · E ∂f 0

∂ε
, (5.250)

where ǫαβγ is the Levi-Civita tensor. Note that

ǫαβγ v
αBβ ∂

∂kγ
(kµAµ) = ǫαβγ v

αBβ

(
Aγ + kµ

∂Aµ

∂kγ

)

= ǫαβγ v
αBβ

(
Aγ + ~ kµ vγ

∂Aµ

∂ε

)
= ǫαβγ v

αBβAγ ,

(5.251)

owing to the asymmetry of the Levi-Civita tensor: ǫαβγ v
α vγ = 0. We now invoke the identity

~ kα = ±mαβ v
β and match the coefficients of vα in each term of the Boltzmann equation. This

yields,
[
(τ−1 − iω)mαβ ±

e

c
ǫαβγ B

γ
]
Aβ = ± ~ e

∂f 0

∂ε
Eα . (5.252)

Defining

Γαβ ≡ (τ−1 − iω)mαβ ±
e

c
ǫαβγ B

γ , (5.253)

we obtain the solution

δf = ±e vαmαβ Γ
−1
βγ Eγ ∂f

0

∂ε
. (5.254)

From this, we can compute the current density and the conductivity tensor. The electrical
current density is

jα = ∓2e

∫

Ω̂

d3k

(2π)3
vα δf = +2e2 Eγ

∫

Ω̂

d3k

(2π)3
vα vν mνβ Γ

−1
βγ (ε)

(
−∂f

0

∂ε

)
, (5.255)
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where we allow for an energy-dependent relaxation time τ(ε). Note that Γαβ(ε) is energy-
dependent due to its dependence on τ . The conductivity is then

σαβ(ω,B) = 2~2e2m−1
αµ

{∫

Ω̂

d3k

(2π)3
kµ kν

(
−∂f

0

∂ε

)
Γ−1
νβ (ε)

}

= 2
3
e2

∞∫

−∞

dε ε g(ε)Γ−1
αβ (ε)

(
−∂f

0

∂ε

)
,

(5.256)

where the chemical potential is measured with respect to the band edge. Thus,

σαβ(ω,B) = ne2 〈Γ−1
αβ 〉 , (5.257)

where averages denoted by angular brackets are defined by

〈Γ−1
αβ 〉 ≡

∞∫
−∞
dε ε g(ε)

(
−∂f0

∂ε

)
Γ−1
αβ (ε)

∞∫
−∞
dε ε g(ε)

(
−∂f0

∂ε

) . (5.258)

The quantity n is the carrier density,

n =

∞∫

−∞

dε g(ε)×
{
f 0(ε) (electrons)[
1− f 0(ε)

]
(holes)

(5.259)

EXERCISE: Verify Eqn. (5.256).

For the sake of simplicity, let us assume an energy-independent scattering time, or that the tem-

perature is sufficiently low that only τ(εF) matters, and we denote this scattering time simply
by τ . Putting this all together, then, we obtain

σαβ = ne2 Γ−1
αβ

ραβ =
1

ne2
Γαβ =

1

ne2

[
(τ−1 − iω)mαβ ±

e

c
ǫαβγ B

γ
]

.
(5.260)

We thereby recover the results of §5.5.2.

5.10.2 Hall effect in high fields

In the high field limit, one may neglect the collision integral entirely, and write (at ω = 0)

− e v · E ∂f 0

∂ε
− e

~c
v ×B · ∂δf

dk
= 0 . (5.261)
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Figure 5.18: Energy bands in aluminum.

We’ll consider the case of electrons, and take E = E ŷ and B = Bẑ, in which case the solution is

δf =
~cE
B

kx
∂f 0

∂ε
. (5.262)

Note that kx is not a smooth single-valued function over the Brillouin-zone due to Bloch pe-
riodicity. This treatment, then, will make sense only if the derivative ∂f 0/∂ε confines k to a
closed orbit within the first Brillouin zone. In this case, we have

jx = 2ec
E
B

∫

Ω̂

d3k

(2π)3
kx

∂ε

∂kx

∂f 0

∂ε
= 2ec

E
B

∫

Ω̂

d3k

(2π)3
kx
∂f 0

∂kx
. (5.263)

Now we may integrate by parts, if we assume that f 0 vanishes on the boundary of the Brillouin
zone. We obtain

jx = −2ecE
B

∫

Ω̂

d3k

(2π)3
f 0 = −nec

B
E . (5.264)

We conclude that
σxy = −σyx = −nec

B
, (5.265)

independent of the details of the band structure. “Open orbits” – trajectories along Fermi sur-
faces which cross Brillouin zone boundaries and return in another zone – pose a subtler prob-
lem, and generally lead to a finite, non-saturating magnetoresistance. For holes, we have f̄ 0 =
1− f 0 and

jx = −2ecE
B

∫

Ω̂

d3k

(2π)3
kx
∂f̄ 0

∂kx
= +

nec

B
E (5.266)
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Figure 5.19: Fermi surfaces for electron (pink) and hole (gold) bands in Aluminum.

and σxy = +nec/B, where n is the hole density.

We define the Hall coefficient RH = −ρxy/B and the Hall number

zH ≡ − 1

nionecRH

, (5.267)

where nion is the ion density. For high fields, the off-diagonal elements of both ραβ and σαβ
are negligible, and ρxy ≈ −1/σxy. Hence RH ≈ ∓1/nec, and zH ≈ ±n/nion. The high field Hall
coefficient is used to determine both the carrier density as well as the sign of the charge carriers;

zH is a measure of valency.

In Al, the high field Hall coefficient saturates at zH = −1. Why is zH negative? As it turns out,
aluminum has both electron and hole bands. Its valence is 3; two electrons go into a filled band,

leaving one valence electron to split between the electron and hole bands. Thus n = 3nion The

Hall conductivity is σxy = (nh−ne) ec/B. The difference nh−ne is determined by the following

argument. The electron density in the hole band is n′
e = 2nion − nh, i.e. the total density of

levels in the band (two states per unit cell) minus the number of empty levels in which there

are holes. Thus, nh − ne = 2nion − (ne + n′
e) = nion, where we’ve invoked ne + n′

e = nion, since
precisely one electron from each ion is shared between the two partially filled bands. Thus,

σxy = nionec/B = nec/3B and zH = −1. At lower fields, zH = +3 is observed, which is what one
would expect from the free electron model. Interband scattering, which is suppressed at high
fields, leads to this result.
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5.11 Thermal Transport

5.11.1 Boltzmann theory

Consider a small region of solid with a fixed volume ∆V . The first law of thermodynamics
applied to this region gives T∆S = ∆E − µ∆N . Dividing by ∆V gives

dq ≡ T ds = dε− µ dn , (5.268)

where s is the entropy density, ε is energy density, and n the number density. This can be
directly recast as the following relation among current densities:

jq = T js = jε − µ jn , (5.269)

where jn = j/(−e) is the number current density, jε is the energy current density,

jε = 2

∫

Ω̂

d3k

(2π)3
ε v δf , (5.270)

and js is the entropy current density. Accordingly, the thermal (heat) current density jq is
defined as

jq ≡ T js = jε +
µ

e
j = 2

∫

Ω̂

d3k

(2π)3
(ε− µ) v δf . (5.271)

In the presence of a time-independent temperature gradient and electric field, linearized Boltz-
mann equation in the relaxation time approximation has the solution

δf = −τ(ε) v ·
(
eE +

ε− µ

T
∇T

)(
−∂f

0

∂ε

)
. (5.272)

We now consider both the electrical current j as well as the thermal current density jq. One
readily obtains

j = −2e

∫

Ω̂

d3k

(2π)3
v δf ≡ L11 E − L12 ∇T

jq = 2

∫

Ω̂

d3k

(2π)3
(ε− µ) v δf ≡ L21 E − L22 ∇T

(5.273)
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where the transport coefficients L11 etc. are matrices:

Lαβ
11 =

e2

4π3~

∞∫

−∞

dε τ(ε)

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v|

Lαβ
21 = TLαβ

12 = − e

4π3~

∞∫

−∞

dε τ(ε) (ε− µ)

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v|

Lαβ
22 =

1

4π3~ T

∞∫

−∞

dε τ(ε) (ε− µ)2
(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v| .

(5.274)

If we define the hierarchy of integral expressions

J αβ
n ≡ 1

4π3~

∞∫

−∞

dε τ(ε) (ε− µ)n
(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v| (5.275)

then we may write

Lαβ
11 = e2J αβ

0 Lαβ
21 = TLαβ

12 = −eJ αβ
1 Lαβ

22 =
1

T
J αβ

2 . (5.276)

The linear relations in Eqn. (5.273) may be recast in the following form:

E = ρ j +Q∇T

jq = ⊓ j − κ∇T ,
(5.277)

where the matrices ρ, Q, ⊓, and κ are given by

ρ = L−1
11 Q = L−1

11 L12 (5.278)

⊓ = L21 L
−1
11 κ = L22 − L21 L

−1
11 L12 ,

or, in terms of the Jn,

ρ =
1

e2
J −1

0 Q = − 1

e T
J −1

0 J1 (5.279)

⊓ = −1

e
J1 J −1

0 κ =
1

T

(
J2 − J1J −1

0 J1

)
,

The names and physical interpretation of these four transport coefficients is as follows:

• ρ is the resistivity: E = ρj under the condition of zero thermal gradient (i.e. ∇T = 0).



5.11. THERMAL TRANSPORT 63

Figure 5.20: A thermocouple is a junction formed of two dissimilar metals. With no electri-
cal current passing, an electric field is generated in the presence of a temperature gradient,
resulting in a voltage V = VA − VB.

• Q is the thermopower: E = Q∇T under the condition of zero electrical current (i.e. j = 0).
Q is also called the Seebeck coefficient.

• ⊓ is the Peltier coefficient: jq = ⊓j when ∇T = 0.

• κ is the thermal conductivity: jq = −κ∇T when j = 0 .

One practical way to measure the thermopower is to form a junction between two dissimilar
metals, A and B. The junction is held at temperature T1 and the other ends of the metals are
held at temperature T0. One then measures a voltage difference between the free ends of the
metals – this is known as the Seebeck effect. Integrating the electric field from the free end of A
to the free end of B gives

VA − VB = −
B∫

A

E · dl = (QB −QA)(T1 − T0) . (5.280)

What one measures here is really the difference in thermopowers of the two metals. For an
absolute measurement of QA, replace B by a superconductor (Q = 0 for a superconductor). A
device which converts a temperature gradient into an emf is known as a thermocouple.

The Peltier effect has practical applications in refrigeration technology. Suppose an electrical
current I is passed through a junction between two dissimilar metals, A and B. Due to the
difference in Peltier coefficients, there will be a net heat current into the junction of W = (⊓A −
⊓B) I . Note that this is proportional to I , rather than the familiar I2 result from Joule heating.
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Figure 5.21: A sketch of a Peltier effect refrigerator. An electrical current I is passed through
a junction between two dissimilar metals. If the dotted line represents the boundary of a ther-
mally well-insulated body, then the body cools when ⊓B > ⊓A, in order to maintain a heat
current balance at the junction.

The sign of W depends on the direction of the current. If a second junction is added, to make
an ABA configuration, then heat absorbed at the first junction will be liberated at the second18.

5.11.2 The heat equation

We begin with the continuity equations for charge density ρ and energy density ε:

∂ρ

∂t
+∇ · j = 0 ,

∂ε

∂t
+∇ · jε = j · E , (5.281)

where E is the electric field19. Now we invoke local thermodynamic equilibrium and write

∂ε

∂t
=
∂ε

∂n

∂n

∂t
+
∂ε

∂T

∂T

∂t
= −µ

e

∂ρ

∂t
+ cV

∂T

∂t
, (5.282)

where n is the electron number density (n = −ρ/e) and cV is the specific heat. We may now write

cV
∂T

∂t
=
∂ε

∂t
+
µ

e

∂ρ

∂t

= j · E −∇ · jε −
µ

e
∇ · j = j · E −∇ · jq .

(5.283)

18To create a refrigerator, stick the cold junction inside a thermally insulated box and the hot junction outside the
box.

19Note that it is E · j and not E · j which is the source term in the energy continuity equation.
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Invoking jq = ⊓ j− κ∇T , we see that if there is no electrical current (j = 0), we obtain the heat
equation

cV
∂T

∂t
= καβ

∂2T

∂xα ∂xβ
. (5.284)

This results in a time scale τT for temperature diffusion τT = CL2cV /κ, where L is a typical
length scale and C is a numerical constant. For a cube of size L subjected to a sudden external
temperature change, L is the side length and C = 1/3π2 (solve by separation of variables).

5.11.3 Calculation of transport coefficients

We will henceforth assume that sufficient crystalline symmetry exists (e.g. cubic symmetry) to
render all the transport coefficients multiples of the identity matrix. Under such conditions, we
may write J αβ

n = Jn δαβ with

Jn =
1

12π3~

∞∫

−∞

dε τ(ε) (ε− µ)n
(
−∂f

0

∂ε

)∫
dSε |v| . (5.285)

The low-temperature behavior is extracted using the Sommerfeld expansion (see §5.3.2),

I ≡
∞∫

−∞

dεH(ε)

(
−∂f

0

∂ε

)
= πD csc(πD)H(ε)

∣∣∣
ε=µ

= H(µ) +
π2

6
(k

B
T )2H ′′(µ) + . . . (5.286)

where D ≡ k
B
T ∂

∂ε
is a dimensionless differential operator.20

Let us now perform some explicit calculations in the case of a parabolic band with an energy-
independent scattering time τ . In this case, one readily finds

Jn =
σ0
e2
ε
−3/2
F πD csc πD ε3/2 (ε− µ)n

∣∣∣
ε=µ

, (5.287)

where σ0 = ne2τ/m∗. Note that

n =
1

3π2

(
2m∗εF
~2

)3/2
(5.288)

and that εF and µ are related by

ε
3/2
F = πD csc πD ε3/2

∣∣∣
ε=µ

. (5.289)

20Remember that physically the fixed quantities are temperature and total carrier number density (or charge den-
sity, in the case of electron and hole bands), and not temperature and chemical potential. An equation of state
relating n, µ, and T is then inverted to obtain µ(n, T ), so that all results ultimately may be expressed in terms of
n and T .
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Figure 5.22: QT product for p-type and n-type Ge, from T. H. Geballe and J. W. Hull, Phys.
Rev. 94, 1134 (1954). Samples 7, 9, E, and F are distinguished by different doping properties, or
by their resistivities at T = 300K: 21.5Ω-cm (7), 34.5Ω-cm (9), 18.5Ω-cm (E), and 46.0Ω-cm (F).

Thus,

J0 =
σ0
e2

, J1 =
σ0
e2
π2

2

(k
B
T )2

εF
+ . . . , J2 =

σ0
e2
π2

3
(k

B
T )2 + . . . , (5.290)

from which we obtain the low-T results ρ = σ−1
0 ,

Q = −π
2

2

k2
B
T

e εF
, κ =

π2

3

nτ

m∗ k
2
B
T , (5.291)

and of course ⊓ = TQ. The predicted universal ratio

κ

σT
=
π2

3
(k

B
/e)2 = 2.45× 10−8V2K−2 , (5.292)

is known as the Wiedemann-Franz law. Note also that our result for the thermopower is un-
ambiguously negative. In actuality, several nearly free electron metals have positive low-
temperature thermopowers (Cs and Li, for example). What went wrong? We have neglected
electron-phonon scattering!
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5.11.4 Onsager relations

Transport phenomena are described in general by a set of linear relations,

Ji = Lik Fk , (5.293)

where the {Fk} are generalized forces and the {Ji} are generalized currents. Moreover, to each force
Fi corresponds a unique conjugate current Ji, such that the rate of internal entropy production
is

Ṡ =
∑

i

Fi Ji =⇒ Fi =
∂Ṡ

∂Ji
. (5.294)

The Onsager relations (also known as Onsager reciprocity) states that

Lik(B) = ηi ηk Lki(−B) , (5.295)

where ηi describes the parity of Ji under time reversal:

T Ji = ηi Ji . (5.296)

We shall not prove the Onsager relations.

The Onsager relations have some remarkable consequences. For example, they require, for

B = 0, that the thermal conductivity tensor κij of any crystal must be symmetric, independent
of the crystal structure. In general,this result does not follow from considerations of crystalline
symmetry. It also requires that for every ‘off-diagonal’ transport phenomenon, e.g. the Seebeck
effect, there exists a distinct corresponding phenomenon, e.g. the Peltier effect.

For the transport coefficients studied, Onsager reciprocity means that in the presence of an
external magnetic field,

ραβ(B) = ρβα(−B)

καβ(B) = κβα(−B)

⊓αβ(B) = T Qβα(−B) .

(5.297)

Let’s consider an isotropic system in a weak magnetic field, and expand the transport coeffi-
cients to first order in B:

ραβ(B) = ρ δαβ + ν ǫαβγ B
γ

καβ(B) = κ δαβ +̟ ǫαβγ B
γ

Qαβ(B) = Qδαβ + ζ ǫαβγ B
γ

⊓αβ(B) = ⊓ δαβ + θ ǫαβγB
γ .

(5.298)
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Onsager reciprocity requires ⊓ = T Q and θ = T ζ . We can now write

E = ρ j + ν j ×B +Q∇T + ζ∇T ×B

jq = ⊓ j + θ j ×B − κ∇T −̟∇T ×B .
(5.299)

There are several new phenomena lurking!

• Hall Effect (∂T
∂x

= ∂T
∂y

= jy = 0)

An electrical current j = jx x̂ and a field B = Bz ẑ yield an electric field E . The Hall
coefficient is RH = Ey/jxBz = −ν.

• Ettingshausen Effect (∂T
∂x

= jy = jq,y = 0)

An electrical current j = jx x̂ and a field B = Bz ẑ yield a temperature gradient ∂T
∂y

. The

Ettingshausen coefficient is P = ∂T
∂y

/
jxBz = −θ/κ.

• Nernst Effect (jx = jy =
∂T
∂y

= 0)

A temperature gradient ∇T = ∂T
∂x

x̂ and a field B = Bz ẑ yield an electric field E . The
Nernst coefficient is Λ = Ey

/
∂T
∂x
Bz = −ζ .

• Righi-Leduc Effect (jx = jy = Ey = 0)

A temperature gradient ∇T = ∂T
∂x

x̂ and a field B = Bz ẑ yield an orthogonal temperature
gradient ∂T

∂y
. The Righi-Leduc coefficient is L = ∂T

∂y

/
∂T
∂x
Bz = ζ/Q.

5.12 Electron-Phonon Scattering

5.12.1 Introductory remarks

We begin our discussion by recalling some elementary facts about phonons in solids:

• In a crystal with r atoms per unit cell, there are 3(r − 1) optical modes and 3 acoustic
modes, the latter guaranteed by the breaking of the three generators of space translations.

We write the phonon dispersion as ω = ωλ(q), where λ ∈ {1, . . . , 3r} labels the phonon

branch, and q ∈ Ω̂. If j labels an acoustic mode, ωj(q) = cj(q̂) q as q → 0.

• Phonons are bosonic particles with zero chemical potential. The equilibrium phonon
distribution is

n0
qλ =

1

exp(~ωλ(q)/kB
T )− 1

. (5.300)

• The maximum phonon frequency is roughly given by the Debye frequency ωD. The Debye
temperature ΘD = ~ωD ∼ 100K – 1000K in most solids.
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At high temperatures, equipartition gives 〈(δRi)
2〉 ∝ k

B
T , hence the effective scattering cross-

section σtot increases as T , and τ >∼ 1/nionvFσtot ∝ T−1. From ρ = m∗/ne2τ , then, we deduce
that the high temperature resistivity should be linear in temperature due to phonon scattering:

ρ(T ) ∝ T . Of course, when the mean free path ℓ = vFτ becomes as small as the Fermi wave-

length λF, the entire notion of coherent quasiparticle transport becomes problematic, and rather

than continuing to grow we expect that the resistivity should saturate: ρ(T → ∞) ≈ h/kFe
2,

known as the Ioffe-Regel limit. For kF = 108 cm−1, this takes the value 260µΩcm.

5.12.2 Electron-phonon interaction

Let Ri = R0
i + δRi denote the position of the ith ion, and let U(r) = −Ze2 exp(−r/λTF)/r be the

electron-ion interaction. Expanding in terms of the ionic displacements δRi,

Hel−ion =
∑

i

U(r −R0
i )−

∑

i

δRi ·∇U(r −R0
i ) , (5.301)

where i runs from 1 to Nion
21. The deviation δRi may be expanded in terms of the vibrational

normal modes of the lattice, i.e. the phonons, as

δRα
i =

1√
Nion

∑

qλ

(
~

2ωλ(q)

)1/2
êαλ(q) e

iq·R0
i (aqλ + a†−qλ) . (5.302)

The phonon polarization vectors satisfy êλ(q) = ê∗λ(−q) as well as the generalized orthonor-
mality relations

∑

α

êαλ(q) ê
α
λ′(−q) =M−1 δλλ′

∑

λ

êαλ(q) ê
β
λ(−q) =M−1δαβ ,

(5.303)

where M is the ionic mass. The number of unit cells in the crystal is Nion = V/Ω, where Ω
is the Wigner-Seitz cell volume. Again, we approximate Bloch states by plane waves ψk(r) =

exp(ik · r)/
√
V , in which case

〈
k′ ∣∣∇U(r −R0

i )
∣∣ k
〉
= − i

V
ei(k−k′)·R0

i
4πZe2 (k − k′)

(k− k′)2 + λ−2
TF

. (5.304)

The sum over lattice sites gives

Nion∑

i=1

ei(k−k′+q)·R0
i = Nion δk′,k+q mod G , (5.305)

21We assume a Bravais lattice, for simplicity.
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Figure 5.23: Transverse and longitudinal phonon polarizations. Transverse phonons do not
result in charge accumulation. Longitudinal phonons create local charge buildup and therefore
couple to electronic excitations via the Coulomb interaction.

so that

Hel−ph =
1√
V

∑

kk′σ
qλG

gλ(k, k
′) (a†qλ + a−qλ)ψ

†
kσ ψk′σ δk′,k+q+G , (5.306)

with

gλ(k, k + q +G) = −i
(

~

2Ω ωλ(q)

)1/2
4πZe2

(q +G)2 + λ−2
TF

(q +G) · ê∗λ(q) . (5.307)

In an isotropic solid22 (‘jellium’), the phonon polarization at wavevector q either is parallel to q

(longitudinal waves), or perpendicular to q (transverse waves). We see that only longitudinal
waves couple to the electrons. This is because transverse waves do not result in any local
accumulation of charge density, and it is to the charge density that electrons couple, via the
Coulomb interaction.

Restricting our attention to the longitudinal phonon, we have êL(q) = q̂/
√
M and hence, for

small q = k′ − k,

g
L
(k, k + q) = −i

(
~

2MΩ

)1/2
4πZe2

q2 + λ−2
TF

c
−1/2
L q1/2 , (5.308)

where cL is the longitudinal phonon velocity. Thus, for small q we that the electron-longitudinal

phonon coupling gL(k, k + q) ≡ gq satisfies

|gq|2 = λel−ph ·
~cLq

g(εF)
, (5.309)

22The jellium model ignores G 6= 0 Umklapp processes.
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Metal Θs ΘD λel−ph Metal Θs ΘD λel−ph

Na 220 150 0.47 Au 310 170 0.08
K 150 100 0.25 Be 1940 1000 0.59
Cu 490 315 0.16 Al 910 394 0.90
Ag 340 215 0.12 In 300 129 1.05

Table 5.3: Electron-phonon interaction parameters for some metals. Temperatures are in
Kelvins.

where g(εF) is the electronic density of states, and where the dimensionless electron-phonon
coupling constant is

λel−ph =
Z2

2Mc2
L
Ωg(εF)

=
2Z

3

m∗

M

(
εF
k

B
Θs

)2
, (5.310)

with Θs ≡ ~cLkF/kB
. Table 5.3 lists Θs, the Debye temperature ΘD, and the electron-phonon

coupling λel−ph for various metals.

EXERCISE: Derive Eqn. (5.310).

5.12.3 Boltzmann equation for electron-phonon scattering

Earlier we had quoted the result for the electron-phonon collision integral,

Ik[f, n] =
2π

~V

∑

k′,λ

|gλ(k, k′)|2
{
(1− fk) fk′ (1 + nq,λ) δ(εk + ~ωqλ − εk′) (5.311)

+ (1− fk) fk′ n−qλ δ(εk − ~ω−qλ − εk′)− fk (1− fk′) (1 + n−qλ) δ(εk − ~ω−qλ − εk′)

− fk (1− fk′)nqλ δ(εk + ~ωqλ − εk′)
}
δq,k′−k mod G .

The four terms inside the curly brackets correspond, respectively, to cases (a) through (d) in
Fig. 5.14. The (1+n) factors in the phonon emission terms arise from both spontaneous as well
as stimulated emission processes. There is no spontaneous absorption.

EXERCISE: Verify that in equilibrium Ik{f 0, n0} = 0.

In principle we should also write down a Boltzmann equation for the phonon distribution nqλ

and solve the two coupled sets of equations. The electronic contribution to the phonon collision
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integral is written as Jqλ[f, n], with

Jqλ[f, n] ≡
(
∂nqλ

∂t

)

coll

=
4π

~V

∣∣gqλ
∣∣2∑

k∈Ω̂

{
(1 + nqλ) fk+q (1− fk)

− nqλ fk (1− fk+q)

}
× δ(εk+q − εk − ~ωqλ) .

(5.312)

Phonon equilibrium can be achieved via a number of mechanisms we have not considered
here, such as impurity or lattice defect scattering, anharmonic effects (i.e. phonon-phonon scat-
tering), or grain boundary scattering. At low temperatures,

1

τ(ω)
=





Aω2 impurity scattering

B ω2 T 3 anharmonic phonon scattering

C/L boundary scattering (L = grain size)

(5.313)

where A, B, and C are constants.

Of course phonons and electrons scatter from each other – this is the process we are studying

– and in principle we should write fk = f 0
k + δfk and nqλ = n0

qλ + δnqλ, and linearize the
two Boltzmann equations for the electron and phonon distributions in order to study how
each species comes to equilibrium. To compute the phonon lifetime due to electron-phonon
scattering, we adopt the simplifying assumption that the electrons are in equilibrium at T = 0
and linearize in δnqλ. This gives a phonon scattering rate of

1

τqλ
=

4π

~
|gqλ|2 ·

1

V

∑

k∈Ω̂

(
f 0
k+q − f 0

k

)
δ(εk+q − εk − ~ωqλ)

=
4π

~2
|gqλ|2

∫

Ω̂

d3k

(2π)3

[
Θ
(
k

F
− |k + q|

)
−Θ

(
k − k

F

)]
δ

(
ωqλ −

~q2

2m∗ − ~k · q
m∗

)

=
4π

~2
|gqλ|2 S

(
q, ωqλ

)
,

(5.314)

where we assume a spherical Fermi surface and isotropic effective mass m∗. Here, S(q, ω) is
the dynamic structure factor (dsf) of the filled Fermi sphere – we will compute this in detail in
chapter three. For now, all we need to know is that

S(q, ω) = g(ε
F
)
πω

2vFq
for ω < v

F
q
(
1− q

2kF

)
. (5.315)

We then obtain, for longitudinal acoustic phonons,

1

τ
L,q

= 2π2λel−ph

c2
L

vF

q , (5.316)
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where c
L

is the acoustic phonon velocity. Thus, τ−1
L

(ω) = 2π2λel−ph (cL/vF)ω.

To compute the electron lifetime due to electron-phonon scattering, we first make the simplify-

ing assumption that the phonons are in equilibrium, i.e. nqλ = n0
qλ. We then write fk = f 0

k + δfk
and linearize Ik[f ], to obtain

L δf =
2π

~V

∑

qλ

∣∣gqλ
∣∣2
{[

(1− f 0
k + n0

qλ)δfk+q − (f 0
k+q + n0

qλ)δfk

]
δ(εk+q − εk − ~ωqλ)

−
[
(1− f 0

k+q + n0
−qλ)δfk − (f 0

k + n0
−qλ)δfk+q

]
δ(εk+q − εk + ~ω−qλ)

}
.

(5.317)

This integral operator must be inverted in order to solve for δfk in

L δf = e v · E
(
−∂f

0

∂ε

)
. (5.318)

Unfortunately, the inversion is analytically intractable – there is no simple solution of the form

δfk = eτkvk · E (∂f 0/∂ε) as there was in the case of isotropic impurity scattering. However, we

can still identify the coefficient of −δfk in L δf as the scattering rate τ−1
k . As before, τk in fact is

a function of the energy ε(k):

1

τ(ε)
=

1

4π2~2

∫
dε′
∫
dSε′

|gk′−k|2
|vk′|

{ [
f 0(ε′) + n0

k′−k

]
δ(ε′ − ε− ~ωk′−k)

+
[
1 + f 0(ε′) + n0

k−k′

]
δ(ε′ − ε+ ~ωk−k′)

} (5.319)

In an isotropic system, τ(ε(k)) is independent of k̂. This means we can take k =
√

2m∗ε/~2 ẑ in
performing the above integral.

It is convenient to define the dimensionless function

α2F (ω) ≡ 1

8π3~2

∫
dSε′

|gk′−k|2
|vk′| δ(ω − ωk′−k) . (5.320)

For parabolic bands, one obtains

α2F (ω) =
1

8π3~2

λel−ph ~ω

m∗kF/π2~2

m∗

~kF

k2
F

∫
dk̂′ δ

(
ω − c

L
k

F
|k̂′ − ẑ|

)

= λel−ph

(
~ω

k
B
Θs

)2
Θ(2k

B
Θs − ~ω) .

(5.321)

The scattering rate is given in terms of α2F (ω) as

1

τ(ε)
= 2π

∞∫

0

dω α2F (ω)
{
f 0(ε+ ~ω)− f 0(ε− ~ω) + 2n0(ω) + 1

}
. (5.322)
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At T = 0 we have f 0(ε) = Θ(εF − ε) and n0(ω) = 0, whence

1

τ(ε)
= 2π

∞∫

0

dω α2F (ω)
{
Θ(ε

F
− ε− ~ω)−Θ(ε

F
− ε+ ~ω) + 1

}

=





λel−ph

12
2π
~
· |ε−ε

F
|3

(k
B
Θs)2

if |ε− εF| < 2k
B
Θs

2λel−ph

3
2π
~
· (k

B
Θs) it |ε− εF| > 2k

B
Θs .

(5.323)

Note that τ(εF) = ∞, unlike the case of impurity scattering. This is because at T = 0 there are
no phonons! For T 6= 0, the divergence is cut off, and one obtains

1

τ(µ)
=

2πλel−ph

~

k
B
T 3

Θ2
s

G

(
2Θs

T

)
(5.324)

with

G(y) =

y∫

0

dx
x2

2 sinhx
=





7
4
ζ(3) if y = ∞

1
4
y if y ≪ 1 .

(5.325)

Thus,

1

τ(µ)
=





7πζ(3)
2~

k
B
T 3

Θ2
s
λel−ph if T ≪ Θs

2π
~
k

B
T λel−ph if T ≫ Θs .

(5.326)

This calculation predicts that τ ∝ T−3 at low temperatures. This is correct if τ is the thermal
lifetime. However, a more sophisticated calculation shows that the transport lifetime behaves as

τtr ∝ T−5 at low T . The origin of the discrepancy is our neglect of the (1− cosϑ) factor present
in the average of the momentum relaxation time. At low T , there is only small angle scattering
from the phonons, and 〈ϑ2〉 ∝ 〈q2/k2

F
〉 ∝ T 2. The Wiedemann-Franz law, τσ = τκ, is valid for

k
B
T >∼ ~cLkF, as well as at low T in isotropic systems, where impurity scattering is the dominant

mechanism. It fails at intermediate temperatures.
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