(1) **Ferrimagnetism** – A ferrimagnet is a magnetic structure in which there are different types of spins present. Consider a sodium chloride structure in which the A sublattice spins have magnitude S_A and the B sublattice spins have magnitude S_B with $S_B < S_A$ (e.g., $S = 1$ for the A sublattice but $S = \frac{1}{2}$ for the B sublattice). The Hamiltonian is

$$\mathcal{H} = J \sum_{\langle ij \rangle} S_i \cdot S_j + g_A \mu_0 H \sum_{i \in A} S_i^z + g_B \mu_0 H \sum_{j \in B} S_j^z$$

where $J > 0$, so the interactions are antiferromagnetic.

(a) Work out the mean field theory for this model. Assume that the spins on the A and B sublattices fluctuate about the mean values

$$\langle S_A \rangle = m_A \hat{z}, \quad \langle S_B \rangle = m_B \hat{z}$$

and derive a set of coupled mean field equations of the form

$$m_A = F_A(\beta g_A \mu_0 H + \beta J z m_B)$$
$$m_B = F_B(\beta g_B \mu_0 H + \beta J z m_A)$$

where z is the lattice coordination number ($z = 6$ for NaCl) and $F_A(x)$ and $F_B(x)$ are related to Brillouin functions. Show graphically that a solution exists, and fund the criterion for broken symmetry solutions to exist when $H = 0$, i.e., find T_c. Then linearize, expanding for small m_A, m_B, and H, and solve for $m_A(T)$ and $m_B(T)$ and the susceptibility

$$\chi(T) = -\frac{1}{2} \frac{\partial}{\partial H}(g_A \mu_0 m_A + g_B \mu_0 m_B)$$

in the region $T > T_c$. Does your T_c depend on the sign of J? Why or why not?

We apply the mean field Ansatz $\langle S_i \rangle = m_{A,B}$ and obtain the mean field Hamiltonian

$$\mathcal{H}^{MF} = -\frac{1}{2} N J z m_A \cdot m_B + \sum_{i \in A} (g_A \mu_0 H + zJ m_B) \cdot S_i + \sum_{j \in B} (g_B \mu_0 H + zJ m_A) \cdot S_j.$$

Assuming the sublattice magnetizations are collinear, this leads to two coupled mean field equations:

$$m_A(x) = F_{S_A}(\beta g_A \mu_0 H + \beta J z m_B)$$
$$m_B(x) = F_{S_B}(\beta g_B \mu_0 H + \beta J z m_A),$$

where

$$F_S(x) = -S B_S(Sx),$$

and $B_S(x)$ is the Brillouin function,

$$B_S(x) = \left(1 + \frac{1}{2S}\right) \text{ctnh} \left(1 + \frac{1}{2S}\right) x - \frac{1}{2S} \text{ctnh} \frac{x}{2S}.$$
The mean field equations may be solved graphically, as depicted in fig. 1.

Expanding $F_S(x) = -\frac{1}{3}S(S + 1)x + O(x^3)$ for small x, and defining the temperatures $k_B T_{A,B} = \frac{1}{2}S_{A,B}(S_{A,B} + 1) zJ$, we obtain the linear equations,

$$m_A - \frac{T_A}{T} m_B = -\frac{g_A \mu_0}{zJ} H$$
$$m_B - \frac{T_B}{T} m_A = -\frac{g_B \mu_0}{zJ} H,$$

with solution

$$m_A = \frac{g_A T_A - g_B T_A T_B \mu_0 H}{T^2 - T_A T_B \frac{zJ}{zJ}}$$
$$m_B = \frac{g_B T_B T - g_A T_A T_B \mu_0 H}{T^2 - T_A T_B \frac{zJ}{zJ}}.$$
The susceptibility is
\[
\chi = \frac{1}{N} \frac{\partial M}{\partial H} = \frac{1}{2} \frac{\partial}{\partial H} (g_A \mu_0 m_A + g_B \mu_0 m_B)
\]
\[
= \frac{1}{T^2 - \frac{2 g_A g_B T}{T_A T_B}} \frac{\mu_0^2}{2 z J},
\]
which diverges at
\[
T_c = \sqrt{T_A T_B} = \sqrt{S_A S_B (S_A + 1)(S_B + 1)} \frac{2 |J|}{3 k_B}.
\]
Note that \(T_c \) does not depend on the sign of \(J \). Note also that the signs of \(m_A \) and \(m_B \) may vary. For example, let \(g_A = g_B \equiv g \) and suppose \(S_A > S_B \). Then \(T_B < \sqrt{T_A T_B} < T_A \) and while \(m_A < 0 \) for all \(T > T_c \), the B sublattice moment changes sign from negative to positive at a temperature \(T_B > T_c \). Finally, note that at high temperatures the susceptibility follows a Curie \(\chi \propto T^{-1} \) behavior.

(b) Work out the spin wave theory and compute the spin wave dispersion. (You should treat the NaCl structure as an FCC lattice with a two element basis.) Assume a classical ground state \(\langle N \rangle \) in which the spins are up on the A sublattice and down on the B sublattice, and choose

\[
\begin{align*}
S_A^+ &= a^\dagger (2 S_A^0 - a a^\dagger)^{1/2} \\
S_A^- &= (2 S_A^0 - a a^\dagger)^{1/2} a \\
S_A^z &= a^\dagger a - S_A
\end{align*}
\]

\[
\begin{align*}
S_B^+ &= -(2 S_B^0 - b b^\dagger)^{1/2} b \\
S_B^- &= -(2 S_B^0 - b b^\dagger)^{1/2} b \\
S_B^z &= S_B - b b^\dagger
\end{align*}
\]

How does the spin wave dispersion behave near \(k = 0 \)? Show that the spectrum crosses over from quadratic to linear when \(|k a| \approx |S_A - S_B|/\sqrt{S_A S_B} \).

Now let’s work out the spin wave theory. Consider a bipartite lattice, i.e. one formed from two interpenetrating Bravais lattices. The A sublattice sites are located at \(\{ R \} \) and the B sublattice sites at \(\{ R + \delta \} \). For the NaCl structure, A and B are FCC lattices, and we may take
\[
\begin{align*}
a_1 &= a (\hat{y} + \hat{z}) \quad a_2 &= a (\hat{x} + \hat{z}) \quad a_3 &= a (\hat{x} + \hat{y}) \quad \delta = a \hat{z}
\end{align*}
\]
where \(a \) is the Na-Cl separation. Immediately, we know our spin-wave spectrum will exhibit two excitation branches. We assume the classical ground state is a Néel state where all of the A sublattice spins are pointing down \((S^z = -S) \) and all the B sublattice spins are pointing up \((S^z = +S) \). The most general Hamiltonian which is isotropic in spin-space and composed of bilinear operators is
\[
\mathcal{H} = \sum_{R, R'} \left\{ J_{AA} (|R - R'|) S_A(R) \cdot S_A(R') + J_{BB} (|R - R'|) S_B(R) \cdot S_B(R') \right. \\
+ \left. J_{AB} (|R - R' - \delta|) S_A(R) \cdot S_B(R') \right\} + \mu_0 H \sum_{R} \left\{ g_A S_A^z(R) + g_B S_B^z(R) \right\}.
\]
In our case, \(J_{AA} = J_{BB} = 0 \) and \(J_{AB}(\|R - R' - \delta\|) = J \delta_{\|R-R'\|,0} \), but it is instructive to consider the more general case in which all pairs of spins potentially interact. Even more generally, let’s consider the \textit{anisotropic} case, with the field directed along the direction of anisotropy:

\[
\mathcal{H} = \sum_{R, R'} \left\{ J_{AA} \left(\|R - R'\| \right) \left(S^x_A(R) S^x_A(R') + S^y_A(R) S^y_A(R') \right) + \Delta_{AA} S^z_A(R) S^z_A(R') \right\} \\
+ J_{BB} \left(\|R - R'\| \right) \left(S^x_B(R) S^x_B(R') + S^y_B(R) S^y_B(R') \right) + \Delta_{BB} S^z_B(R) S^z_B(R') \\
+ J_{AB} \left(\|R - R'\| \right) \left(S^x_A(R) S^x_B(R') + S^y_A(R) S^y_B(R') \right) + \Delta_{AB} S^z_A(R) S^z_B(R') \right\} \\
+ \mu_0 H \sum_R \left\{ g_A S^z_A(R) + g_B S^z_B(R) \right\} .
\]

Writing \([S_i \cdot S_j]_A \equiv \frac{1}{2} S^+_i S^-_j + \frac{1}{2} S^+_j S^-_i + \Delta S^z_i S^z_j\), and expanding the radicals in the Bogoliubov transformation, we obtain

\[
[S_A(R) \cdot S_A(R')]_{\Delta_{AA}} = \Delta_{AA} S^2_A - \Delta_{AA} S_A \left(a_R^\dagger a_R + a_R^\dagger a_R \right) + S_A \left(a_R^\dagger a_R a_R^\dagger a_R + a_R^\dagger a_R a_R \right) + \ldots \\
[S_B(R) \cdot S_B(R')]_{\Delta_{BB}} = \Delta_{BB} S^2_B - \Delta_{BB} S_B \left(b_R^\dagger b_R + b_R^\dagger b_R \right) + S_B \left(b_R^\dagger b_R b_R^\dagger b_R + b_R^\dagger b_R b_R \right) + \ldots \\
[S_A(R) \cdot S_B(R')]_{\Delta_{AB}} = -\Delta_{AB} S_A S_B + \Delta_{AB} \left(S_B a_R^\dagger a_R + S_A b_R^\dagger b_R \right) \\
- \sqrt{S_A S_B} \left(a_R^\dagger b_R^\dagger + a_R b_R \right) + \ldots .
\]

The spin-wave Hamiltonian is then

\[
\mathcal{H} = S_A \sum_{R, R'} J_{AA} \left(\|R - R'\| \right) \left\{ a_R^\dagger a_R^\dagger a_R + a_R^\dagger a_R^\dagger a_R - \Delta_{AA} a_R^\dagger a_R a_R - \Delta_{AA} a_R^\dagger a_R a_R \right\}
\\
+ S_B \sum_{R, R'} J_{BB} \left(\|R - R'\| \right) \left\{ b_R^\dagger b_R^\dagger b_R + b_R^\dagger b_R^\dagger b_R - \Delta_{BB} b_R^\dagger b_R b_R - \Delta_{BB} b_R^\dagger b_R b_R \right\}
\\
+ \sum_{R, R'} J_{AB} \left(\|R - R' - \delta\| \right) \left\{ - S_A S_B \left(a_R^\dagger b_R^\dagger + a_R b_R \right) \\
+ \Delta_{AB} S_B a_R^\dagger a_R + \Delta_{AB} S_A b_R^\dagger b_R - \Delta_{AB} S_A S_B \right\} .
\]

We now Fourier transform, with

\[
a_R \equiv \frac{1}{\sqrt{N_A}} \sum_k e^{i k \cdot R} a_k \quad , \quad b_R \equiv \frac{1}{\sqrt{N_B}} \sum_k e^{i k \cdot (R + \delta)} a_k \quad ,
\]

and

\[
\mathbf{J}_{AA}(R) = \sum_R J_{AA}(\|R\|) e^{-i k \cdot R} \\
\mathbf{J}_{BB}(R) = \sum_R J_{BB}(\|R\|) e^{-i k \cdot R} \\
\mathbf{J}_{AB}(R) = \sum_R J_{AB}(\|R + \delta\|) e^{-i k \cdot (R + \delta)} .
\]
Here, \(N_A = N_B = \frac{1}{2}N\) is half the total number of lattice sites. This leads to

\[
\mathcal{H} = E_0 + \sum_k \left\{ \omega_A(k) a_k^\dagger a_k + \omega_B(k) b_k^\dagger b_k - \nu(k) a_k^\dagger b_k - \nu^*(k) a_k b_k^\dagger \right\}
\]

with

\[
\omega_A(k) = +g_A\mu_0 H + 2S_A \left(\hat{J}_{AA}(k) - \Delta_{AA} \right) + \Delta_{AB} S_B \hat{J}_{AB}(k)
\]

\[
\omega_B(k) = -g_B\mu_0 H + 2S_B \left(\hat{J}_{BB}(k) - \Delta_{BB} \right)
\]

\[
\nu(k) = \sqrt{S_A S_B} \hat{J}_{AB}(k)
\]

Note that \(\hat{J}_{AA}(k)\) and \(\hat{J}_{BB}(k)\) are both real, but not necessarily \(\hat{J}_{AB}(k)\). All three satisfy \(\hat{J}(-k) = \hat{J}^*(k)\), since they are Fourier transforms of real functions \(J(R)\).\(^1\)

OK, now we do the Bogoliubov thang, and write

\[
a_k = u_k \alpha_k + v_k^* \beta^\dagger_{-k} \quad \quad \quad b_{-k} = u_k \beta_{-k} + v_k^* \alpha^\dagger_k
\]

\[
a_k^\dagger = u_k^* \alpha_k^\dagger + v_k \beta_{-k} \quad \quad \quad b_{-k}^\dagger = u_k^* \beta_{-k}^\dagger + v_k \alpha_k
\]

This preserves the bosonic commutation relations:

\[
[a_k, \alpha_{k'}^\dagger] = [\beta_k, \beta_{k'}^\dagger] = [a_k^\dagger, a_{k'}] = [b_k, b_{k'}^\dagger] = \delta_{kk'}
\]

\[
[a_k, \alpha_{k'}^\dagger] = [\alpha_k, \beta_{k'}^\dagger] = [a_k^\dagger, b_{k'}] = [a_{k'}^\dagger, b_k] = 0
\]

Substituting into \(\mathcal{H}\), we find \(\mathcal{H} = \sum_k \mathcal{H}_k\) with

\[
\mathcal{H}_k = \left\{ \omega_A(k) |u_k|^2 + \omega_B(k) |v_k|^2 - \nu(k) u_k v_k^* - \nu^*(k) u_k^* v_k \right\} \alpha_k^\dagger \alpha_k
\]

\[
+ \left\{ \omega_A(k) |v_k|^2 + \omega_B(k) |u_k|^2 - \nu(k) u_k^* v_k - \nu^*(k) u_k v_k^* \right\} \beta_{-k}^\dagger \beta_{-k}
\]

\[
+ \left\{ (\omega_A(k) + \omega_B(k)) u_k v_k - \nu(k) u_k^2 - \nu^*(k) v_k^2 \right\} \alpha_k \beta_{-k}
\]

\[
+ \left\{ (\omega_A(k) + \omega_B(k)) u_k^* v_k^* - \nu^*(k) u_k^2 - \nu(k) v_k^2 \right\} \alpha_k^\dagger \beta_{-k}^\dagger + \text{const.}
\]

We now write \(\nu(k) \equiv |\nu(k)| e^{i\varphi(k)}\) and use the freedom to choose \(\{u_k, v_k\}\) to eliminate the \(\alpha_k \beta_{-k}\) and \(\alpha_k^\dagger \beta_{-k}^\dagger\) terms in \(\mathcal{H}_k\):

\[
u_k = \cosh \theta_k e^{-i\varphi(k)/2}
\]

\[
v_k = \sinh \theta_k e^{+i\varphi(k)/2}
\]

where

\[
\tanh 2\theta_k = \frac{2 |\nu(k)|}{\omega_A(k) + \omega_B(k)}
\]

\(^1\)For the NaCl structure, \(\hat{J}_{AB}(k)\) as defined is real.
This leads to the dispersions

\[E_+(k) = +\omega_-(k) + \sqrt{\omega_+^2(k) - \nu^2(k)} \]

\[E_-(k) = -\omega_-(k) + \sqrt{\omega_+^2(k) - \nu^2(k)} \]

where

\[\omega_\pm(k) \equiv \frac{1}{2} \left\{ \omega_A(k) \pm \omega_B(k) \right\} \]

and where \(E_+(k) \) is the \(\alpha \)-boson dispersion, and \(E_-(k) \) is the \(\beta \)-boson dispersion:

\[\mathcal{H} = \sum_k \left\{ E_+(k) \alpha_k \alpha_k^\dagger + E_-(k) \beta_k \beta_k^\dagger \right\} \]

Let’s check our dispersion in some simple cases. For the NaCl structure, we take \(J_{AA}(R) = J_{BB}(R) = 0 \) and \(\delta J_{AB}(R + \delta) = \delta |R + \delta|a \). Then

\[\delta J_{AB}(k) = 2J \left(\cos k_x a + \cos k_y a + \cos k_z a \right) \]

In order for the spin-wave Hamiltonian to be stable, we must have \(E_{\alpha,\beta}(k) \geq 0 \) for all \(k \) in the Brillouin zone. Otherwise, the ground state energy can be lowered by adding \(\alpha \) or \(\beta \) excitations, and at the level of the spin-wave Hamiltonian there is nothing to prevent us from adding an infinite number of such excitations (i.e. there is no spin-wave repulsion) in order to keep lowering the energy. At the zone center, the energy gap is \(E_g(H = 0) = r \delta J_{AB}(0) \), where

\[r = \frac{1}{2} \sqrt{(S_A + S_B)^2 - 4S_A S_B} - \frac{1}{2} |S_A - S_B| \Delta_{AB} \]

The gap vanishes when \(r = 0 \), which occurs at the isotropic point \(\Delta_{AB} = 1 \). For \(\Delta_{AB} < 1 \), \(E_g(H = 0) < 0 \) and the spectrum is unstable. Precisely at \(\Delta_{AB} = 1 \), the spectrum is unstable in an infinitesimal field. The system would prefer to enter the spin flop phase, in which the spins lie predominantly in the \(x - y \) plane with some small component parallel to the \(z \)-axis. If we further restrict \(\Delta_{AB} = 1 \), then the spin-wave dispersion for \(H = 0 \) becomes

\[E_\pm(k) = \pm \frac{1}{2} (S_B - S_A) \delta J_{AB}(0) + \frac{1}{2} \delta J_{AB}(0) \sqrt{(S_A - S_B)^2 + S_A S_B k^2 R^2 + \mathcal{O}(k^4)} \]

where

\[R^2 = \frac{\sum_R R^2 J_{AB}(R)}{d \sum_R J_{AB}(R)} \]

with \(d \) the dimension of space. For the NaCl structure, \(R_e = a/\sqrt{3} \). If both \(S_A \) and \(S_B \) are large, but their difference is of order unity, then a separation of scales develops. For \(k \ll |S_A - S_B|/\sqrt{S_A S_B} \), the low-lying spin-wave branch disperses quadratically, as in the case of the ferromagnet. For \(|S_A - S_B|/\sqrt{S_A S_B} \ll k \ll \pi/a \), the dispersion is linear, as in the case of the antiferromagnet. At very long wavelengths, then, the ferrimagnet behaves as a ferromagnet, with a net spin \(|S_A - S_B| \) per unit cell. At somewhat longer wavelengths
(but still large compared with the lattice spacing), this quadratic dispersion crosses over to a linear one, typical of an antiferromagnet.

(2) In real solids crystal field effects often lead to anisotropic spin-spin interactions. Consider the anisotropic Heisenberg antiferromagnet in a uniform magnetic field,

$$\mathcal{H} = J \sum_{\langle ij \rangle} (S_i^x S_j^x + S_i^y S_j^y + \Delta S_i^z S_j^z) + h \sum_i S_i^z$$

where the field is parallel to the direction of anisotropy. Assume $\delta \geq 0$ and a bipartite lattice.

(a) Think first about classical spins. In a small external field, show that if the anisotropy Δ is not too large that the lowest energy configuration has the spins on the two sublattices lying predominantly in the (x, y) plane and antiparallel, with a small parallel component along the direction of the field. This is called a canted, or ‘spin-flop’ structure. What is the angle θ_c by which the spins cant out of the (x, y) plane? What do I mean by not too large? (You may assume that the lowest energy configuration is a two sublattice structure, rather than something nasty like a four sublattice structure or an incommensurate one.)

We start by assuming a two-sublattice structure in which the spins lie in the $x-z$ plane. (Any two-sublattice structure is necessarily coplanar.) Let the A sublattice spins point in the direction $(\theta = \theta_A, \phi = 0)$ and the B sublattice spins point in the direction $(\theta = \theta_B, \phi = \pi)$. The classical energy per bond is then

$$\varepsilon(\theta_A, \theta_B) = -JS^2 \sin \theta_A \sin \theta_B + JS^2 \Delta \cos \theta_A \cos \theta_B - \frac{hS_z}{z} (\cos \theta_A + \cos \theta_B)$$

Note that in computing the energy per bond, we must account for the fact that for each site there are $\frac{1}{2}z$ bonds, where z is the coordination number. The total number of bonds is thus $N_{\text{bonds}} = \frac{1}{2}Nz$, where N is the number of sites. Note also the competition between Δ and h. Large Δ makes the spins antialign along \hat{z}, while large h prefers alignment along \hat{z}.

Let us first assume $\theta_A = \theta_B = \theta_c$ and determine θ_c. Let $\varepsilon(\theta_A, \theta_B) \equiv \varepsilon(\theta_A, \theta_B)/JS^2$:

$$\varepsilon(\theta_c) \equiv \varepsilon(\theta_A = \theta_c, \theta_B = \theta_c) = -\sin^2 \theta_c + \Delta \cos^2 \theta_c - \frac{2h}{zSJ} \cos \theta_c$$

$$\frac{\partial \varepsilon}{\partial \theta_c} = \sin \theta_c \cdot \left\{ 2(1 + \Delta) \cos \theta_c - \frac{2h}{zSJ} \right\}$$

Thus, the extrema of $\varepsilon(\theta_c)$ occur at $\sin \theta_c = 0$ and at

$$\cos \theta_c = \frac{h}{zSJ(1 + \Delta)}$$

The latter solution is present only when $\Delta > \frac{|h|}{zSJ} - 1$. The energy of this state is

$$\varepsilon = -\left\{ 1 + \frac{1}{1 + \Delta} \left(\frac{h}{zSJ} \right)^2 \right\}$$
per bond.

To assess stability, we’ll need the second derivatives,

\[
\frac{\partial^2 e}{\partial \theta_A^2} \bigg|_{\theta_A^c = \theta_c} = \frac{\partial^2 e}{\partial \theta_B^2} \bigg|_{\theta_B^c = \theta_c} = \sin^2 \theta_c - \Delta \cos^2 \theta_c + \frac{h}{z S J} \cos \theta_c
\]

\[
\frac{\partial^2 e}{\partial \theta_A \partial \theta_B} \bigg|_{\theta_A^c = \theta_c, \theta_B^c = \theta_c} = -\cos^2 \theta_c + \Delta \sin^2 \theta_c ,
\]

from which we obtain the eigenvalues of the Hessian matrix,

\[
\lambda_+ = (1 + \Delta)(1 - 2 \cos^2 \theta_c) + \frac{h}{z S J} \cos \theta_c
\]

\[
= (1 + \Delta) \left\{ 1 - \left(\frac{h}{z S J (1 + \Delta)} \right)^2 \right\}
\]

\[
\lambda_- = (1 - \Delta) + \frac{h}{z S J} \cos \theta_c
\]

\[
= \frac{1}{1 + \Delta} \left\{ 1 - \Delta^2 + \left(\frac{h}{z S J} \right)^2 \right\} .
\]

Assuming \(\Delta > 0 \), we have that \(\lambda_+ > 0 \) requires

\[
\Delta > \frac{|h|}{z S J} - 1 ,
\]

which is equivalent to \(\cos^2 \theta_c < 1 \), and \(\lambda_- > 0 \) requires

\[
\Delta < \sqrt{1 + \left(\frac{h}{z S J} \right)^2} .
\]

This is the meaning of “not too large.”

The other extrema occur when \(\sin \theta_c = 0 \), i.e. \(\theta_c = 0 \) and \(\theta_c = \pi \). The eigenvalues of the Hessian at these points are:

\[
\theta_c = 0 : \quad \lambda_+ = -(1 + \Delta) + \frac{h}{z S J}
\]

\[
\lambda_- = 1 - \Delta + \frac{h}{z S J}
\]

\[
\theta_c = \pi \quad \lambda_+ = -(1 + \Delta) - \frac{h}{z S J}
\]

\[
\lambda_- = 1 - \Delta - \frac{h}{z S J} .
\]

Without loss of generality we may assume \(h \geq 0 \), in which case the \(\theta_c = \pi \) solution is always unstable. This is obvious, since the spins are anti-aligned with the field. For \(\theta_c = 0 \),
the solution is stable provided $\Delta < (h/zJS) - 1$. For general h, the stability condition is $\Delta < |h|/zJS - 1$. The other possibility is that Δ is so large that neither of these solutions is stable, in which case we suspect $\theta_A = 0$ and $\theta_B = \pi$ or vice versa.

Thus, for $h < zJS(1 + \Delta)$, the solution with $\theta_c = \cos^{-1} \left(\frac{h}{zJS(1 + \Delta)} \right)$ is stable. The Hessian matrix in this case is

$$
\begin{pmatrix}
\frac{\partial^2 e}{\partial \theta_A^2} & \frac{\partial^2 e}{\partial \theta_A \partial \theta_B} \\
\frac{\partial^2 e}{\partial \theta_B \partial \theta_A} & \frac{\partial^2 e}{\partial \theta_B^2}
\end{pmatrix}_{\theta_A=0, \theta_B=\pi} = \begin{pmatrix}
\Delta + \frac{h}{zSJ} & 1 \\
1 & \Delta - \frac{h}{zSJ}
\end{pmatrix}
$$

whose eigenvalues are

$$
\lambda_{\pm} = \Delta \pm \sqrt{1 + \left(\frac{h}{zSJ} \right)^2}.
$$

Thus, this configuration is stable only if

$$
\Delta > \sqrt{1 + \left(\frac{h}{zSJ} \right)^2}.
$$

(b) Now work out the quantum spin wave theory. To do this, you’ll have to rotate the quantization axes of the spins to their classical directions. This means taking

$$
S^x \rightarrow \cos \theta S^x + \sin \theta S^z \\
S^y \rightarrow S^y \\
S^z \rightarrow -\sin \theta S^x + \cos \theta S^z
$$

with $\theta = \pm \theta_0$, depending on the sublattice in question. How is θ_0 related to θ_c above? This may seem like a pain in the neck, but really it isn’t so bad. Besides, you shouldn’t complain so much. And stand up straight – you’re slouching. And brush your teeth.

We will perform the spin-wave analysis for the case

$$
\frac{|h|}{zSJ} - 1 < \Delta < \sqrt{1 + \left(\frac{h}{zSJ} \right)^2}.
$$

We begin the analysis by rotating they spins in each sublattice by an angle $\pm \theta$ in the $x - z$ plane. Thus,

$$
S^x(\theta) = \cos \theta S^x + \sin \theta S^z \\
S^y(\theta) = S^y \\
S^z(\theta) = -\sin \theta S^x + \cos \theta S^z.
$$
In terms of the S^\pm operators,
\[
S^+ (\theta) = \frac{1}{2} (\cos \theta + 1) S^+ + \frac{1}{2} (\cos \theta - 1) S^- + \sin \theta S^z
\]
\[
S^- (\theta) = \frac{1}{2} (\cos \theta - 1) S^+ + \frac{1}{2} (\cos \theta + 1) S^- + \sin \theta S^z
\]
\[
S^z (\theta) = -\frac{1}{2} \sin \theta S^+ - \frac{1}{2} \sin \theta S^- + \cos \theta S^z .
\]

The Holstein-Primakoff transformation is given by
\[
S^+ = a^\dagger (2S - a^\dagger a)^{1/2} , \quad S^- = (2S - a^\dagger a)^{1/2} a , \quad S^z = a^\dagger a - S ,
\]
in which case we have
\[
S^+ (\theta) = \sqrt{\frac{S}{2}} (\cos \theta + 1) a^\dagger + \sqrt{\frac{S}{2}} (\cos \theta - 1) a + \sin \theta (a^\dagger a - S) + \ldots
\]
\[
S^- (\theta) = \sqrt{\frac{S}{2}} (\cos \theta - 1) a^\dagger + \sqrt{\frac{S}{2}} (\cos \theta + 1) a + \sin \theta (a^\dagger a - S) + \ldots
\]
\[
S^z (\theta) = -\sqrt{\frac{S}{2}} \sin \theta a^\dagger - \sqrt{\frac{S}{2}} \sin \theta a + \cos \theta (S - a^\dagger a) + \ldots ,
\]
where the \ldots stands for terms of higher order in the expansion of $(2S - a^\dagger a)^{1/2}$. The Hamiltonian may be written as a sum over links,
\[
\mathcal{H} = J \sum_{\langle ij \rangle} \mathcal{H}_{ij} ,
\]
where
\[
\mathcal{H}_{ij} = \frac{1}{2} S_{ij}^+ S_{ij}^- + \frac{1}{2} S_{ij}^+ S_{ij}^- + S_{ij}^z S_{ij}^z - \frac{h}{zJ} (S_{ij}^z + S_{ij}^z) .
\]
We assume that $i \in A$ and $j \in B$. Remembering that the spins are rotated by $\pm \theta$ on alternate sublattices, we obtain
\[
\mathcal{H}_{ij} = (\cos^2 \theta - \sin^2 \theta) (a_i^\dagger a_i - S) (a_j^\dagger a_j - S)
\]
\[
+ \sqrt{\frac{S}{2}} (1 + \Delta) \sin \theta \cos \theta \left\{ (a_i^\dagger a_i - S) (a_j + a_j^\dagger) - (a_j^\dagger a_j - S) (a_i - a_i^\dagger) \right\}
\]
\[
+ \frac{1}{2} S \cos^2 \theta \left(a_i^\dagger + a_i^\dagger a_j a_j + a_j^\dagger (a_j + a_j^\dagger) - \frac{1}{2} S (a_i - a_i^\dagger) (a_j - a_j^\dagger) \right)
\]
\[
+ \frac{h}{zJ} \sqrt{\frac{S}{2}} \sin \theta (a_i - a_i^\dagger - a_j + a_j^\dagger) - \frac{h}{zJ} \cos \theta (a_i^\dagger a_i + a_j^\dagger a_j - 2S) .
\]

The spin-wave Hamiltonian is obtained by dropping terms which contain more than two boson operators:
\[
\mathcal{H}_{ij} = S \left\{ (\sin^2 \theta - \Delta \cos^2 \theta) - \frac{h}{zJS} \cos \theta \right\} (a_i^\dagger a_i + a_j^\dagger a_j)
\]
\[
+ \frac{1}{2} S \cos^2 \theta - \Delta \sin^2 \theta) (a_i + a_i^\dagger) (a_j + a_j^\dagger) - \frac{1}{2} S (a_i - a_i^\dagger) (a_j - a_j^\dagger)
\]
\[
+ \frac{1}{\sqrt{2}} S^{3/2} \sin \theta \left\{ (1 + \Delta) \cos \theta + \frac{h}{zSJ} \right\} (a_i + a_j^\dagger - a_j - a_j^\dagger)
\]
\[
+ S^2 \left\{ \Delta \cos^2 \theta - \sin^2 \theta + \frac{2h}{zJS} \cos \theta \right\} .
\]
The third line above contains bare a and a^\dagger operators, and is also formally of order $S^{3/2}$. We can eliminate it by choosing θ such that

$$\cos \theta = -\frac{1}{1+\Delta} \frac{h}{zSJ} .$$

Note the minus sign, which is due to the fact that the vacuum state $|0\rangle$ for the bosons, prior to rotation, is directed along $-\hat{z}$.

We next substitute for θ and obtain the bond Hamiltonian

$$H_{ij} = \frac{1}{2} S \left\{ \frac{1}{1+\Delta} \left(\frac{h}{zSJ} \right)^2 - \Delta - 1 \right\} (a_i a_j + a_i^\dagger a_j^\dagger)$$

$$+ \frac{1}{2} S \left\{ \frac{1}{1+\Delta} \left(\frac{h}{zSJ} \right)^2 - \Delta + 1 \right\} (a_i^\dagger a_j + a_j^\dagger a_i)$$

$$+ S (a_i^\dagger a_i + a_j^\dagger a_j) - S^2 \left\{ 1 + \frac{1}{1+\Delta} \left(\frac{h}{zSJ} \right)^2 \right\} .$$

Note that the last term is the classical ground state energy. Fourier transforming,

$$\sum_{(ij)} (a_i^\dagger a_i + a_j^\dagger a_j) = \frac{1}{2z} \sum_k (a_k^\dagger a_k + a_{-k}^\dagger a_{-k})$$

$$\sum_{(ij)} (a_i a_j + a_i^\dagger a_j^\dagger) = \frac{1}{2z} \sum_k \gamma_k (a_k a_{-k} + a_{-k}^\dagger a_k^\dagger)$$

$$\sum_{(ij)} (a_i^\dagger a_j + a_j^\dagger a_i) = \frac{1}{2z} \sum_k \gamma_k (a_{-k}^\dagger a_k + a_{-k} a_k^\dagger)$$

where

$$\gamma_k = \frac{1}{z} \sum_{\delta} e^{ik\cdot\delta}$$

is a sum over nearest neighbor vectors δ. On the square lattice, we have $\gamma_k = \frac{1}{2} \{ \cos(k_x a) + \cos(k_y a) \}$. We then obtain

$$\mathcal{H} = \frac{1}{2} JS^2 \sum_k \left\{ \omega_k (a_k^\dagger a_k + a_{-k}^\dagger a_{-k}) + \nu_k (a_k a_{-k} + a_{-k}^\dagger a_k^\dagger) \right\} ,$$

with

$$\omega_k = 1 + \gamma_k - \frac{1}{2} r \gamma_k$$

$$\nu_k = \frac{1}{2} r \gamma_k$$

$$r = 1 + \Delta - \frac{1}{1+\Delta} \left(\frac{h}{zSJ} \right)^2 .$$
We now invoke the Bogoliubov transformation,

\[a_k = \cosh \beta_k \alpha_k - \sinh \beta_k \alpha_k^\dagger \]
\[a_{-k} = \cosh \beta_k \alpha_{-k} - \sinh \beta_k \alpha_{-k}^\dagger, \]

with

\[\tanh(2\beta_k) = \frac{\nu_k}{\omega_k} \]

to obtain the spin-wave Hamiltonian

\[\mathcal{H} = JS^2 \sum_k E_k a_k^\dagger a_k + \frac{1}{2} JS^2 \sum_k (E_k - \omega_k) \]

with

\[E_k = \sqrt{\omega_k^2 - \nu_k^2} = \sqrt{(1 + \gamma_k) (1 + \gamma_k - r \gamma_k)} \]

The second (constant) term in \(\mathcal{H} \) is the shift of the ground state energy due to quantum fluctuations. This term is negative, since \(E_k \leq \omega_k \).

(c) Compute the spin wave dispersion and find under what conditions the theory is unstable.

The spin-wave theory is stable provided \(E_k \) is real and nonnegative for all \(k \). Since \(\gamma_k \in [-1, 1] \), we have instabilities at \(r = 0 \) (zone corner, \(\gamma_k = -1 \)) and at \(r = 2 \) (zone center, \(\gamma_k = +1 \)). These are precisely the classical instabilities we found earlier:

\[r = 0 \quad \Rightarrow \quad \Delta = \frac{|h|}{zSJ} - 1 \]
\[r = 2 \quad \Rightarrow \quad \Delta = \sqrt{1 + \left(\frac{h}{zSJ} \right)^2}. \]