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Should All Crystals Be bcc? Landau Theory of Solidification and Crystal Nucleation
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Very general symmetry considerations uniquely favor a bcc crystal structure near the
melting line. This agrees with observations that almost all metals on the left-hand side
of the periodic table are bcc at high temperature, and that, even where other structures
are more stable, the first phase nucleated on rapid cooling can be bcc. Furthermore,
icosahedral local symmetries are favored in amorphous solids. Fluctuation effects cause
the transition from isotropic liquid to crystal to be first order in any dimension.

The structures of solids near the melting line
are often different from those predicted by ener-
gy criteria. Furthermore, it is observed that
crystal nucleation is selectively inhibited for
some structures, leading to the formation of
metastable crystals or glasses. For instance,
the high-temperature crystal structures of all
the metallic elements on the left-hand side of the
periodic table (groups IA, IIA, IIIB-VIB) with the
exception of Mg, together with almost all the
lanthanides and actinides are known to be bcc
near the melting line at low pressure. Most,
however, transform to other structures at low
temperature. Altogether there are at least 40
elements with bcc as their high-temperature
phase. ' Friedel' has recently discussed 18 of
these, all close packed at low temperatures, in
terms of a specific vibrational model. Further-
more, Hoover, Young, and Grover' have shown
that interatomic-potential models of the form
r " (n (7) have a stable high-temperature bcc
phase.

Studies of homogeneous crystal nucleation also
indicate that bcc is favored. An elegant series
of experiments by Cech' investigated the rapid
cooling of a Fe-Ni molten alloy and showed that,
although the stable crystalline structure was fcc
at all temperatures, the first phase formed was
always (metastable) bcc. Likewise, recent mo-
lecular-dynamics (MD) studies of freezing of a
Lennard-Jones fluid by Mandell, McTague, and
Hahman' found that, although nucleation occurred
only with difficulty, the initial crystalline phase
was bcc, even though fcc is the stable form for
this potential. More recent MD work' on a pseu-
dopotential for Hb shows that in this case, for
which bcc is the stable structure, nucleation oc-

curs with great ease. There is thus strong evi-
dence that bcc is favored by a universal factor.

There are also indications that noncrystalline
solids, presumably representing situations where
crystal nucleation was inhibited, tend to have ico-
sahedral local structure. Barker, Hoare, and
Finney' have shown that an amorphous Lennard-
J'ones packing has about 32/o of its atoms in ico-
sahedral sites, while Briant and Burton' have not-
ed that the scattering patterns observed in vari-
ous amorphous metals such as NiP, Ni»Pd53Py5,
PdSi, and CuMg are quite similar to those from
icosahedra1 c1usters and qualitatively dissimi1ar
to microcrystalline interference functions.

We show here that these results (and, we be-
lieve, many others) can be understood from very
general symmetry considerations of the liquid-
to solid-phase transition. A straightforward ex-
tension of Landau's analysis' leads to the conclu-
sion that bcc should be favored near the melting
line when the first-order character of the transi-
tion is not too pronounced. This is presumably
the case in the metals which have a small volume
change on crystallization, and a heat of transi-
tion less than itT (~ for the rare gases and other
elements on the right-hand side of the periodic
table is greater than AT; so one does not expect
Landau theory to be reliable for these systems).
It also explains both the preference for bcc in
nucleation and the appeareance of icosahedral ar-
rangements when bcc is inhibited, e.g. , by densi-
ty considerations. In two dimensions the same
analysis predicts triangular (or honeycomb) struc-
tures. This is a necessary conclusion, since
these transitions are at most weakly first order.
Here the results are, of course, less surprising
as this is also the close-packed structure. We
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also show that, because of the Brazovskii effect, "
freezing from a liquid with full rotational sym-
metry is always a first-order transition for any
dimensionality.

Consider the Landau expansion of the free en-
ergy near the isotropic phase:

4 = 42+ 4~+ 44+ ~ ~ ~ .
Here y is the free energy of a system subject to
the constraint of periodic density waves, relative
to the free energy I, of the liquid in the absence
of such constraint. I, includes the naturally oc-
curring short-range correlations of the normal
liquid state.

The quadratic term has the form

~, = fd'V ~,p-„p;, (2)

p~ = fdQQ pop Q, (3)

and is therefore independent of the specific com-
bination of p& .

5

Consider, however, the third-order term 4,.
On the sphere it must be of the form

where pq is the Fourier component of the densi-
ty. In an isotropic system A, can depend only
on the magnitude of q. Near a phase transition
A, will have a minimum at some wave vector Q;
so the order parameter is associated with an ir-
reducible representation of the rotational group
described by the sphere of radius Q. Clearly the
contribution of the order parameter to 4, de-
pends only on the magnitude of

(4)C, =Bo(T,P) fffdQ, dQ, dQ, (6Q, +Q, +Q, )pg pQ pQ,
constraining the Q, to form an equilateral triangle. ' Thus, since p Q--PQt a nonvanishing contribution
to 4, requires at least three pQ. (and three p Q.) in the order paramete~

PQ( )r~p Zl [PQ .(r)+ P Q ~ ()
5=1 5

(5)
r have the relationship

In order to maximize 4, at fixed r por' one re-
quires equal amplitudes of the n (~ 3) pairs Q, ,

The number of terms in 4, is 2n/3 if each Q,. ap-
pears once and 4n/3 if it appears twice. Thus we

pz(r) =+(-', ) '[cosQX+ 2 cos-,' QXcos-'v 3QY],

giving

e, -p~'n ~',

and only closed configurations with finite n are of
interest. One can use standard group-theoretical
methods to find the point groups which are consis-
tent with this; a more graphic method is to ex-
amine the regular polyhedra formed from identi-
cal equilateral-triangular faces.

The simplest case is the triangle itself, n=3.
Here the order parameter is

r
@I " "r = 2/p ~/3v 3 (9)

This is the only two-dimensional case and, depending on the sign in pz(r), corresponds to either a
(positive) triangular structure or its (negative) conjugate, the honeycomb lattice. In three-dimensional
space these give rodlike structures with two-dimensional periodicities, as observed for lyotropic
mesophases.

With n= 6 the triangles can be arranged to form an octahedron, with

and

pz(r) = pz[cos-,'v 2QXcos-,'v 2QY+ cos-,'V 2 QXcos-,'v 2QZ+ cos-,'v 2QYcos-,'v 2QZ],Q 3 Q

4 = 4BP /3V'6.0 (&&)

The reciprocal lattice formed by the six pairs of Q,. is face-centered cubic, with a body-centered di-
rect lattice. Note also that the coefficient of Bp@' is larger for bcc than for the two-dimensional lat-
tice, favoring the former structure.
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There is only one structure that displays a
more intricate symmetry than the cubic group,
namely the icosahedron (and its conjugate the
dodecahedron). The Q; are then parallel to the
edges of the icosahedron, giving n = 15, and

leos 4flp 3/3/15 (12)

Thus, 4, '"'/C', "=(-',)+'
~ Of course, the regular

icosahedron, with its fivefold axis, cannot form
a periodic structure. " We thus conclude that the
bcc structure is uniquely favored by the third-
order terms. Note that, e.g. , fcc fluctuations
(n =4) have no O',. Specific structures other than
bcc (or loca.l icosahedral) require higher-order
terms.

We consider then C4, which is of the general
form

e, = f [IId'q, c(Q,)g,p-, p-, p-,&K;Q;),

with IQ;I =Q.

Since the Q; must form a closed (in general non-
pla. nar) quadrangle C(Q;) can then depend only on
the two independent internal angles, say ~y2

(=&„)and &„(=&»). Because of these degrees of
freedom 4 4 can depend on specific features, such
as bond angles, packing considerations, and band
structure. For sufficiently large pz these effects
can, of course, dominate. The mechanism favor-
ing the bcc and icosahedral structures is, how-
ever, universal, model independent, and quali-
tatively different from those which favor other
phases. Now, the only universal thermodynamic
quantity in the problem is the entropy of order-
ing. It thus follows that entropy considerations
will quite generally favor the bcc phase over all
other crystal classes. This symmetry is the
"natural" solid structure and should dominate
near the isotropic liquid phase as long as speci-
fic forces are not too strong. This is a general-
ization of the conclusion of Friedel' and of Hoov-
er, Young, and Grover' for specific dynamical
models.

One can now construct a generalized phase dia-
gram. It is clear that the Landau expansion fa-
vors the bcc phase in the region of the melting
line so long as the first-order character of the
transition is sufficiently weak. These considera-
tions can be made more concrete by considering
the vicinity of the Landau critical point where,
in mean-field approximation, the liquid-solid
transition would be predicted to be second order.
This point, denoted (C) in Fig. 1, is defined by
the conditions A.@ =B+ =0, and @4&0 for all solid

B=O

Si

Pressure (or some other thermodynamic variable)

FIG. 1. Schematic generalized phase diagram in the
vicinity of a Landau solid-liquid critical point C. Below
the solid line R, phases SI and SI& are stable, while in
mean field, bcc is stable relative to the liquid, below
P. When fluctuations are taken into account, the line P
is lowered to P, eliminating the critical point.

structures. In the vicinity of C the (mean-field)
phase diagram will then have the general form
shown in Fig. 1, where the two conjugate bcc
phases correspond to B& 0, and SI and SII are
two other specific phases (favored by O, ) which
may or may not differ in symmetry when the sign
of B changes. B & 0 gives the normal bcc struc-
ture, with atoms at cube corners and center,
while B (0 has atoms at the interstices of this.
The unfavorably low density of the latter (for
given nearest-neighbor separation) makes it un-
likely that this region of the phase diagram can
be reached with realistic thermodynamic param-
eters. In mean field, then, a continuous transi-
tion from the liquid (L ) to S is possible at C, but
not in its immediate vicinity, because there B
& 0 but c'4 is still positive. The bcc 8 phase
boundary (R) can, however, cross the (bcc) melt-
ing curve E at points D far from C, where the
transition is strongly first order. In mean field,
one thus predicts stable bcc pockets if at least
one of the points D is within the physically acces-
sible range. On the melting line RDCDA the bcc
is stable only between D~ and DII. Thus, despite
the fact that small bcc fluctuations are always
favored in the liquid, mean-field theory predicts
that these fluctuations cannot nucleate a meta-
stable bcc phase in the regions ABP, where only
S is stable. One can, of course, still nucleate
the bcc phase if one supercools the liquid to be-
low the line F, where bcc becomes stable with
respect to the liquid, but only metastable rela-
tive to S.
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The phase diagram is modified in an important
way when fluctuations'are taken into account.
For a rotationally symmetric liquid the fluctua-
tions in p-„above the transition depend only on the
magnitude of q and thus have a one-dimensional
dispersion. They depend only on

~ q~ —Q. As
shown by Brazovskii, " it follows that the continu-
ous transition (predicted a.t C or in two dimen-
sions) does not occur, because it would imply
diverging fluctuations (p') as the transition is ap-
proached from above. As a result the transition
is shifted downwards and is always first order,
independent of dimensionality, provided that there
is a divergent susceptibility for the field conju-
gate to the order parameter. The possibility of
a liquid-solid critical point is thus eliminated.
We have drawn the shifted phase boundary (I")
schematically as a dash-dotted line in Fig. 1.
Note that the single point C is now replaced by a
segment (along this line I") of weakly first order
I -S transitions. Below this line the bcc phase
is essentially stable, compared to the liquid (but
of course less stable than 8). If the downward
shift is sufficiently large the bcc pockets would

completely disappear as thermodynamically stable
phases. Thus one could have a segment of the
phase boundary where one can nucleate metasta-
ble bcc structures even where there are no sta-
ble bcc phases and without drastic supercooling.
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For isotropic three-dimensional ferromagnets, neutron- scattering and hyperfine-inter-
action experiments yield 2.5 and 2.0, respectively, for the dynamical critical exponents.
This apparent contradiction is removed by two hypotheses. (1) The effective value of z
depends on the wave-vector region sampled, and for small q approaches z =2.0. (2) Hy-
perfine-interaction experiments are asymptotic in q, while present neutron-scatterirg
experiments are not.

Near a magnetic critical point, the spin-spin
correlation function for the ith spin component,
S"(q, &u), depends on three critical exponents,
v, and z. According to current theory, the static
exponents g and v are universal within a class of

systems having the same lattice dimensionality,
d, and spin dimensionality, N; the dynamic expo-
nent, z, depends in addition on the conservation
laws describing the motions of the spins. ' Since
8"(q, u) is proportional to the cross section for
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