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An introductory review of the central ideas in the modern theory of dynamic critical phenomena is
followed by a more detailed account of recent developments in the field. The concepts of the conventional
theory, mode-coupling, scaling, universality, and the renormalization group are introduced and are
illustrated in the context of a simple example—the phase separation of a symmetric binary fluid. The
renormalization group is then developed in some detail, and applied to a variety of systems. The main
dynamic universality classes are identified and characterized. It is found that the mode-coupling and
renormalization group theories successfully explain available experimental data at the critical point of pure
fluids, and binary mixtures, and at many magnetic phase transitions, but that a number of discrepancies
exist with data at the superfluid transition of “He.
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. INTRODUCTION

When a system is at or close to a critical point, anom-
alies occur in a wide variety of dynamic properties, as
well as in the static properties most commonly dis-
cussed in the theory of critical phenomena. The dynam-
ic properties of a system are quantities such as trans-
port coefficients and relaxation rates, multi-time corre-
lation functions, and the linear response to time-depen-
dent perturbations, all of which depend on the equations
of motion, and are not simply determined by the equilib-
rium distribution of the particles at a given instant of
time. The static properties, by contrast, are quantities
such as thermodynamic coefficients, single-time corre-
lation functions, and the linear response to time-inde-
pendent perturbations, which ave determined by the
single-time equilibrium distribution.

Dynamic properties may be measured by a variety of
experiments. For example, time-dependent correlation
functions are determined by inelastic scattering of neu-
trons or by frequency-resolved light scattering experi-
ments. Relaxation rates may be measured by changing
the temperature or some other parameter, and then
monitoring the rate at which a system relaxes toward
equilibrium. Relaxation rates may also be obtained in-
directly from acoustic attenuation or from magnetic
resonance experiments. Transport coefficients can be
measured directly, or extracted from scattering experi-
ments. .

Over the years, a number of theoretical ideas have
shaped our understanding of dynamic critical phenomena.
We shall discuss in particular (i) the conventional theory
of critical slowing down, (ii) the “mode-coupling” theory
of transport anomalies, (iii) the hypotheses of dynamic
scaling and universality, and (iv) the renormalization
group approach to critical dynamics. [Brief reviews of
these concepts may also be found in Halperin (1973a,
1976).]

The conventional theory of critical slowing down, which
is due to Van Hove (1954) and Landau and Khalatnikov
(1954), assumes that the transport coefficient or kinetic
coefficient (defined below) for the order parameter re-
mains finite at the critical point. Since relaxation rates
are generally determined by the ratio of a transport or
kinetic coefficient to a static susceptibility, and since
the order parameter susceptibility diverges at the tran-
sition, the conventional theory implies that there is at
least one mode whose relaxation vate goes to zevo at the
critical point. This slow relaxation of the order param-
eter can lead to observable anomalies in other transport
coefficients and dynamic properties (Landau and Khalat-
nikov, 1954; Pitaevskii, 1958).

It is now known that the conventional theory is incor-
rect in most cases. Examples will be cited below in
which transport coefficients and kinetic coefficients di-
verge, as well as examples where kinetic coefficients
go to zero at the critical point. In no case, however,
does a transport or kinetic coefficient diverge as strong-
ly as the order parameter susceptibility, -and the phe-
nomenon of critical slowing down is still found in all
cases, at least as applied to the relaxation rate of the
order parameter. :

The modern theories of dynamic critical phenomena
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which will be discussed below, provide a means of un-
derstanding the detailed behavior of relaxation rates in
situations where the conventional theory fails. The
starting point for all of these theories is the identifica-
tion of the various slow modes of the system, i.e., the
modes whose relaxation rates go to zero at long wave-
lengths near the critical point. These modes involve
the conserved densities of the system, which enter the
hydrodynamics, at sufficiently long wavelengths, for any
temperature other than T,. In addition, one must in-
clude the ovder parameter mode, if the order param-
eter is not itself one of the conserved densities.

Van Hove’s original argument asserted that the trans-
port and kinetic coefficients are essentially determined by
interactions between particles on the length scale of
interatomic separations, and that therefore these coeffi-
cients should have the same behavior as short-wave-
length (equal-time) correlation functions, which are
known to remain finite at 7,. The failures of the conven-
tional theory occur because in many systems, there are
important nonlinear interactions between the slow modes
on a scale of wavelengths comparable to the coirrelalion
length £. This length diverges at the critical point, and
is long compared to the interatomic spacing in the criti-
cal region.

The nonlinear interactions between the slow modes
are of two types. The most important ones are nondis-
sipalive or reversible couplings, which have sometimes
been called “convective terms” or “streaming terms”
in the equations of motion. It is these terms which are
responsible for the divergences occurring in various
transport and kinetic coefficients. The magnitudes of the
nondissipative couplings in the limit of long wavelengths
are generally determined by Poisson-bracket relations
(see below) among the various slow variables.

The second type of nonlinear interactions arise from
the coupling terms in the free-energy functional, which
are present in the theory of static critical phenomena,!
and which lead to dissipative couplings of the dynamic
modes. These couplings are responsible for the cases
where a kinetic coefficient vanishes at the critical point.

Effects of the nondissipative interactions have been
calculated (approximately) using a variety of formal-
isms, which we shall group together as coupled-mode
or mode-coupling theories. The first such theory was
proposed by Fixman (1962), and then reformulated in
accordance with static-scaling concepts by Kadanoff and
Swift (1968a), and especially Kawasaki (1967, 1970).
Coupled-mode calculations, by these authors and others
have been successful in many areas of dynamic critical
phenomena, but most notably for the critical points of
simple fluids and binary fluid mixtures (see Kawasaki,
1976). A simplified illustration of the mode-coupling
mechanism, which demonstrates the essential physics,
will be given in Sec. II, below.

Parallel to the formulation of the coupled-mode theo-

b

1An extensive literature exists on the static renormalization
group. Reviews may be found in Wilson and Kogut (1974), Wil-
son (1975), Fisher (1974), Ma (1973, 1976a), Barber (1977),
Patashinskii and Pokrovskii (1977), and the various articles in
Domb and Green (1976).
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ries, a purely phenomenological approach, known as dy-
namic scaling was developed, in analogy with the scaling
laws for static critical phenomena, by Ferrell et al.
(1967,1968) and the present authors (Halperin and Hohen-
berg, 1967,1969a). The dynamic scaling hypotheses
state, for example, that the wave vector- and frequency-
dependent susceptibility of a ferromagnet near its Curie
point may be expressed as a function independent of

|T - T,|, provided that the length and frequency scales,
as well as the magnetization and magnetic field, are
rescaled by appropriate powers of (I' —T,). The impli-
cations and the applicability of the dynamic scaling hy-
potheses, will be discussed further in the following sec-
tions.

A recent development has been the application of 7re-
normalization group methods to dynamic critical phe-
nomena (Halperin el al., 1972), These techniques, which
are generalizations of the methods developed by Wilson
and others for static critical phenomena,' permit a pro-
per treatment of both the dissipative and the nondissipa-
tive interactions. One may thus handle situations not
correctly treated by the coupled-mode approach, and
also justify dynamic scaling and mode coupling more
systematically, where these are adequate. As in the
static case, most of the practical calculations using the
renormalization group have been performed as an expan-
sion in the parameter € =4 — d, where d is the spatial
dimensionality. For d greater than 4, the conventional
theory holds in most systems, because the phase space
for diverging long-wavelength fluctuations is too small
to cause divergent renormalization of the transport and
kinetic coefficients. In the case of the Heisenberg ferro-
magnet, however, the critical dimensionality below
which divergences occur is d=6, and renormalization
group expansions involve the parameter 6 — d (see be-
low). The renormalization group approach will be out-
lined in Sec. IV in the context of some simple relaxa-
tional models, where only disspative couplings are pres-
ent. The results of renormalization group calculations
for a variety of other systems will be discussed in the
subsequent sections.

An important contribution of the renormalization group
approach to static and dynamic critical behavior has
been the elucidation of the concept of universality.?
Since the study of critical phenomena concerns the be-
havior of a system whose correlation length £ is very
large compared to interatomic spacings, it is natural to
suppose that many details of the microscopic Hamilton-
ian will be unimportant for the critical behavior. It
follows that systems showing critical phenomena can be
divided into broad groups known as universality classes,
such that all members of a given class have “identical”
critical properties. In this context, one may pose a

’Early discussions of universality may be found in Fisher
(1966), Jasnow and Wortis (1968), and Watson (1969). Pheno-
menological formulations were given by Griffiths (1970), Kad-
anoff (1971), Betts et al. (1971), Stanley et al. (1971), and
Stauffer et al. (1972). The mathematical mechanism for uni-
versality in static critical phenomena is explained in the ref-
erences in footnote 1. See also Hohenberg et al. (1976a). Dy-
namic universality classes were discussed phenomenologically
by Halperin and Hohenberg (1969a).
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number of fundamental questions, to which any theory of '
dynamic critical phenomena should address itself:

+ What are the different universality classes for dynam-
ic critical phenomena, and on what properties of the
system do these depend?

» Within a given universality class, what are the numer-
ical values of the exponents which characterize the sin-
gular behavior of various static and dynamic properties?

 Are there simple numerical relations (scaling laws)
between the dynamic critical exponents and the various
static exponents? Do scaling laws completely determine
the dynamic critical exponents?

+In addition to exponents, one can construct various
dimensionless functions or ratios of coefficients de-
scribing dynamic critical properties. Which of these
are universal, within a given class? What are the nu-
merical values of the universal functions (scaling func-
tions) and ratios?

Beyond describing the asymptotic critical behavior,
one may investigate the form of the leading corrections,
as one moves away from T,, or away from long wave-
lengths and low frequencies. These corrections may
turn out to be very important in experimental situations.

Corrections to the asymptotic critical behavior are
particularly interesting in the vicinity of a multicritical
point, a special point at which a phase transition changes
from one universality class to another, as a function of
some parameter p in the Hamiltonian. When p is suffi-
ciently close to its multicritical value p,,, there will be
a regime of temperature in which properties are deter-
mined by the universality class of the multicritical point,
followed by a regime of crossover to the asymptotic cri-
tical behavior, which is finally reached only very close
to T,. Modern theories of critical phenomena attempt
to calculate properties in all of these regimes, when
|p =Pl and |T - T,| are simultaneously small.

Let us mention briefly the properties which determine
the dynamic universality classes. The remaining ques-
tions will be treated in later sections, as the individual
classes are reviewed. It is known' that static critical
phenomena depend on the spatial dimensionality d as well
as on the symmetry of the order parameter (i.e., on the
component number 7, on the presence or absence of
cubic anisotropies, etc.). Also, the statics will depend
on whether or not long-range forces are present, wheth-
er impurities are present, and so forth. However, the
dynamic properties will depend upon additional proper-
ties of the system which do not affect the statics. We
know that conservation laws play an important role in
determining the hydrodynamic behavior of a system
away from T,, as do “Poisson-bracket relations” (see
below) among the conserved quantities. Naturally, we
expect that these properties will also affect the long-
wavelength low-frequency behavior at the critical point.
We have already remarked that nondissipative couplings
between the slow modes, which enter the coupled-mode
calculations, depend on Poisson-bracket relations be-
tween the slow variables. It is hypothesized that the
conservation laws and the Poisson-bracket relations
among the order parameter and the conserved densities,
together with the dimensionality, order parameter sym-
metry, and any other properties that affect the static



438

Hohenberg and Halperin: Theory of dynamic critical phenomena

TABLE I. Some dynamical models treated by renormalization-group methods.

Dimension Non-vanishing
order of Non-conserved Conserved Poisson
Model Designation System parameter fields fields bracket
A Kinetic Ising n P None None
anisotropic magnets
Relaxational B Kinetic Ising n ( None P None
uniaxial ferromagnet
C Anisotropic magnets n P m None
structural transition
Fluid H Gas-liquid 1 None b g {,3
binary fluid
Symmetric planar E Easy-plane magnet, 2,=0 2 P m {,m}
magnet
Asymmetric planar F Easy-plane magnet, h,= 0 2 ) m {, m}
magnet superfluid helium
Isotropic G Heisenberg 3 P m {¢, m}
antiferromagnet antiferromagnet
Isotropic J Heisenberg 3 None P {0, 9}
ferromagnet ferromagnet
critical behavior, suffice to determine the universality starting from interparticle potentials. Fortunately,

class for critical dynamics. The extent to which this
univevsality hypothesis has been tested by theory and
experiment will be discussed below.

If one accepts the universality hypothesis then it suf-
fices to study the simplest dynamical model consistent
with the known static behavior and with a given set of
conservation laws, Poisson-bracket relations, symme-
try, etc. If we can solve that model for its critical be-
havior, then we know the critical behavior of all mem-
bers of the class. In order to fes! the universality as-
sumption, one may add all possible perturbations to the
model, consistent with the conservation laws, etc., and
try to convince oneself that these perturbations are
“irrelevant” at the critical point. In practice, it has
only been possible to study small perturbations from the
simple systems, for both static and dynamic behavior.?

The field-theoretic models generally studied with
coupled-mode or renormalization group methods are
semimicroscopic, in that they describe the behavior of
the variables remaining after one has first integrated
over all variations with wavelengths short compared to
a cutoff A™', The scale of length A™! is intermediate be-
tween the microscopic scale a=1 f&, and the macroscopic
scale defined by the correlation length £ near T,. The
transition from a microscopic Hamiltonian to the semi-
microscopic models has not been carried out explicitly
for either the statics or the dynamics in most cases.
Indeed, the difficulties involved in such a microscopic
devivalion are comparable to the problem of calculating
the transport coefficients and short-wavelength spec-
trum of a dense liquid away from the critical point,

3It has never been rigorously demonstrated, for example, that
the static critical behavior of the four-dimensional Ising model
is necessarily the same as that of the weakly interacting four--
dimensional continum field theory, for which the renormaliza-
tion group analysis is carried out.
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however, this information does not seem to be needed to
obtain the critical behavior, at least insofar as one is
concerned with “universal” properties. The steps lead-
ing from a microscopic Hamiltonian to the corresponding
semimicroscopic representation will be discussed fur-
ther in Sec. IV.D, for a model of a displacive transition
in an interacting phonon system.

Some semimicroscopic models belonging to different
universality classes are listed in Table I, along with
physical systems to which they correspond. These mod-
els will be described, and their dynamic critical behav-
ior will be examined, in Secs. IV-VII below. Some key
results of the renormalization group treatment of the
models are summarized in Table II,

Il. THE SYMMETRIC BINARY FLUID—A SIMPLE
EXAMPLE

A. Hydrodynamics

Many of the physical ideas mentioned in the Introduc-
tion, can be illustrated with a simple example—the cri-
tical point for phase separation (consolute point) in a
hypothetical binary fluid whose properties are symmetric
with regard to interchange of the two constituents A and
B. We shall consider the properties of this system for
T =T,, at the critical concentration which is ¢ =3 by
symmetry.

The binary fluid has six conserved densities,* viz., the
energy density e, the mass densities p, and py for the
two constituents A and B, respectively, and the three
components of the momentum density j. Small, long-
wavelength deviations of these densities from their con-

4A conserved density is a quantity whose spatial integral over
the whole system is a constant of the motion. If @ is a con-
served density we can write its time derivative as the diver-
gence of a current, 9Q/d¢t=-V +§9,
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TABLE II. Some representative results of renormalization group calculations in d=4 — ¢ dimensions.?

System Quantity Formula € expansion
Model A
kinetic Ising Relaxation rate wy(k=0)cc £7% c=0.7261(1 —1.69¢+ ***)
anisotropic magnets z=2+cT

Model B

kinetic Ising Transport coefficient

wy (k)= O\/Xq,)kz

uniaxial ferromagnet A=const Agrees
Model C (z=1)

anisotropic magnets Relaxation rate wylk=0)cc £72

structural transitions Scaling law z=2+0a/v Agrees

Amplitude ratio (T>T,)

p=228 ey

u=1+0.5004€+ "

wy (K)
Model H
gas—liquid - Thermal conductivity Aoc EXa _18 .
(binary fluid) (concentration conductivity) H=1g€ 1 —0.033€+ )
Viscosity noc X x,—,=11—9€(1+ 0.238€+°+*)
Scaling law Xyt xz=€+M Agrees
. . _Nge®? _ . 19 ...
Amplitude ratio = %5TC, R=K, i (1+0.06€ + )
Model F
superfluid ‘He Scaling law z=%d+a/v) Agrees
' & = max(a,0)
Thermal conductivity, A E¥
T>T,
Scaling law H=5+a/v) Agrees

Amplitude ratio

Ry=2\,/ (12, C}/?)

Ry= (Kg/e)V/2(1+0.6e++ )

Second-sound damping
T<T,

Lz
DsoC ETZ

Scaling law

x2=%(€ —a/V)

Agrees

Amplitude ratio

Ry=D,/ (24 1)

R%™® = (Ky/e)[1+0.31e+**]

Model G

isotropic antiferromagnet Scaling law

1
z=3d

Agrees

Amplitude ratio

Rrp=grlogl/ XL/?

Rr=(3K,/e)1/2(1 —0.6e+"**)

Amplitude ratio

Rl__:go-ixmg:l/zx:’}/Z

Ry= (Ky/3e)1/2(1+0.27c + * * *)

Model J

isotropic ferromagnet Scaling law

z=§(d+2 -7)

Agrees for e=6-d

Amplitude ratio

Ry= gy AEd-0 /2172

#The quantities w,(k) and w ,,(k) are characteristic frequencies for the order parameter and the auxiliary conserved density, re-
spectively, x, and X,, are the corresponding static susceptibilities, and A, is the transport coefficient for ». The transport coef-
ficient for § when it is conserved is denoted as A. The correlation length is written as £ both above and below T, except for mod-
els with continuous broken symmetry (F, G, and J), where it is written as £, above, -and £ below T,. In the case of helium (mod-
el F) ¢ denotes the second-sound velocity and C,=X,, is the specific heat. All results listed are for k£ —0, T— T,.

stant equilibrium values may be described by the equa-
tions of linearized hydrodynamics (Landau and Lifshitz,
1959). Solution of these equations leads to the five hy-
drodynamic modes—four diffusive modes with relaxation
rates proportional to #2, and a propagating sound wave,
whose complex frequency is '

w=xck - i(D/2)k? + O(k3). : @2.1)

(Here ¢ and D are the sound velocity and damping con-
stant, respectively.) The diffusive modes consist of a
thermal diffusion mode, a concentration diffusion mode,
and the viscous relaxation modes for the two transverse

Rev. Mod. Phys., Vol. 49, No. 3, July 1977

components of the momentum density. The variables
e, p,, and py appear in various proportions in the ther-
mal diffusion and concentration diffusion modes, as well

as in the sound wave.

In the special case of the symmetric binary fluid at
50-50 concentration, there is a simplification in that the
energy density e and the total mass density p =p, +pp do
not appear in the concentration diffusion mode, while

the density difference

szpB—pA’

2.2)

does not appear in the thermal diffusion or sound modes.
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In order to study the dynamics of concentration fluc-
tuations it is useful to introduce a fictitious potential &,
coupled to the difference in densities of the two compo-
nents. We may then write the Hamiltonian as

H=H0+f¢(x,z)zp(x,t)ddx, @.3)
where H, is the Hamiltonian in the absence of ®, i.e.,
the sum of the kinetic energy and the potential energy of
interaction of the atoms. Let us first imagine an infinite
system in thermal equilibrium with ¢ =0 at time £ =0,
and let us apply a potential ®(x)=—F-x for £>0. There
is an applied force F per unit mass on each B atom in
the fluid, and an equal and opposite force on each A
atom. In the symmetric fluid there will be no net force
per unit volume, and there will be no acceleration of the
fluid as a whole. After a short time, a steady state will
be reached in which there are equal and opposite cur-
rents of A and B atoms, with a net concentration current
parallel to F, of magnitude

i =32 3% =24". @2.4)

For small values of the applied force F, we must have
j‘” proportional to F, so we may write

j¥ =AF, 2.5)

where A is the transport coefficient for the density dif-
ference .

Next consider a situation where there is no external
force F, but there are small gradients in the concentra-
tion. In this case the driving force for diffusion is the
gradient of the chemical potential difference pu=pg—p,,
and we may write

iV =-AVL ==(V/xy)VY,

where the susceptibility X, is defined by a derivative at
constant temperature and pressure

Y
oplr,p’

The coefficient A must be the same in Egs. (2.5) and
(2.6), because if one has a long-wavelength spatial varia-
tion of both ¢(x) and ®(x), one must reach a thermal
equilibrium state with V *j¥ =0 when u(x) =% (x) +con-
stant, Equation (2.6) is just Fick’s law for diffusion. In
the symmetric binary fluid we need not worry about the
coupling of j“ to any temperature gradients in the sys-
tem, which would otherwise introduce additional terms
in (2.6) (Landau and Lifshitz, 1959).

If we now combine (2.6) with the conservation law
dy/dt =-V +j¥, we see that the concentration relaxes at
a rate

(2.6)

Xy = 2.7

ww=Dck2’ (2'8)
where the concentration diffusion constant D, is given by
Dc=7\/xw, (2.9)

In a similar manner we have for the thermal and viscous
diffusion constants, respectively,
Dr=x;/Cy, (2.10)

D,=7/p, (2.11)

Rev. Mod. Phys., Vol. 49, No. 3, July 1977

Hohenberg and Halperin: Theory of dynamic critical phenomena

where A is the thermal conductivity, C, is the constant-
pressure specific heat per unit volume, and 7 is the
shear viscosity., We may remark that 7 is the transport
coefficient for momentum, and, because of Galilean in-
variance for a system with velocity-independent forces,
p is the susceptibility for the momentum density, i.e.,
p~! is the second derivative of the free energy per unit
volume with respect to the momentum density.

B. Static critical behavior

The density difference ¢ is the order parameter for
the consolute point in the symmetric binary fluid. Ac-
cording to the scaling theory of static critical phenom-
ena (see Stanley, 1971; Fisher, 1967) we must have

Xy < £ (2.12)
where £ is the correlation length which diverges accord-
ing to the power law

Eoc (T =T,)". (2.13)

The exponents v and 71 have been calculated by static re-
normalization group methods® and other means (Fisher,
1967), and are believed to be roughly v=0.62,17=0.04
for the three-dimensional binary fluid (d=3,n=1),

C. Critical dynamics

If the conventional theory (Van Hove, 1954) held for
the binary fluid, so that the transport coefficient A was
finite at the critical point, the diffusion constant D,
would be predicted to vanish proportional to £72%", At
sufficiently long wavelengths, therefore, the order pa-
rameter relaxation rate w, would go to zero as

wy = ETA(RE), (2.14)
with
z=4-1. (2.15)

For wavelengths shorter than £, however, we know that
the wave vector-dependent susceptibility X ,(k) varies as
£72*7 rather than £2°". In the spirit of the conventional
theory one would expect the transport coefficient A to

be independent of wave vector, as long as the wavelength
was large compared to the interatomic spacing. For
k>£71, therefore, we would expect the order parameter
relaxation rate to vary as

(J.)w o kz 5 (2» 1 6)
with z given by (2.15).

We shall argue below that the conventional theory is
incorrect for this system, and that A diverges as T —T.,.
The order parameter relaxation rate in the regions
k<& and k> £ still has a homogeneous scaling form

wy (k) =k*Q(kE), (2.17)

which generalizes (2.14) and (2.16), but the exponent z

is now smaller than 4 —n. Equation (2.17) is the dyramic
scaling assumption for the order parameter relaxation
rate.



Hohenberg and Halperin: Theory of dynamic critical phenomena 441

D. The coupled-mode theory

The reason for the divergence of A can be understood
by a simple coupled-mode argument, adapted from
Arcovito et al, (1969). Let us consider the contribution
‘to the transport coefficient A, from a region of the fluid
whose diameter is equal to the correlation length £, Let
us define ¥ as the value of ¢ averaged over the region
in question, at some given instant of time. According
to the equipartition theorem, the expectation value of
9? is given by

@) ~kyTxy/E, (2.18)

where £ is the approximate volume of the region. In the
presence of the field F, introduced in Sec. II.A, there
will be a net applied force on the region, of strength

£,,=EYF. (2.19)

If we assume that the region in question moves approxi-
mately as a rigid body, it will accelerate until £, is
balanced by the viscous drag of the surrounding fluid,

£, ~-viE?, _ ‘ (2.20)

where v is the velocity of motion. The net current den-
sity in the region of diameter £ is therefore

i =ov, (2.21a)
~J? (1 /A)F. (2.21b)

Note that the contribution to j¥ is independent of the sign
of J. Taking account of (2.18), we see that the contribu-
tion to A coming from fluctuations on the scale of £ is
given by

A= (B /Y Ty 20 & (1/)E44-7 (2.22)

where R is a dimensionless constant whose magnitude
cannot be determined by our crude arguments. If we
assume that the viscosity 7 is finite at T,, then we pre-
dict that A diverges roughly as £*”¢, for any d<4. [Re-
call that the exponent 1 is small, and vanishes® as
(4 - dy for d—4.] For d>4, fluctuations on the scale of
£ make a vanishing contribution to A, The value of A
is then determined by fluctuations on the interatomic
distance scale, and A will be finite at 7, as in the Van
Hove theory.

We must now examine more closely the behavior of
7 in the vicinity of 7,. A coupled-mode argument similar
to the above gives a divergence for 7 proportional to
g%""/x, [Indeed, the first mode-coupling calculation
of Fixman (1962) was a prediction of this effect.] The
two mode-coupling arguments therefore show that the
product of the transport coefficients A diverges as
£72=7 (Kadanoff and Swift, 1968a), but these arguments
do not determine the precise exponents for the separate
divergences of the two coefficients. As will be discussed
below, more careful mode-coupling analyses, as well
as renormalization group expansions in (4 — d), show that
most of the divergence is in A, while 77 diverges relative-
ly weakly at T,. Thus A diverges roughly as £ in three
dimensions, and z =3 for this system [see Eqs. (2.14)-
217 ‘

Several aspects of the above derivation are worthy of
comment. First we may note the important role of
dimensionality in the divergence of A, At sufficiently
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large d, the phase space for fluctuations with wave vec-
tors on the order of £7! is so small as to eliminate the
contributions of these fluctuations as £—~«<, Second, we
may note the importance of conservation laws for the
divergence of A, Expression (2.20) for the viscous drag
depends on the fact that the viscous force on an element
of fluid is proportional to V2 (x), a consequence of the
conservation of momentum., If the momentum were not
conserved (e.g., if the fluid were embedded in a porous
medium with channels of microscopic size), then viscous
forces would be proportional to v rather than VZv, and
f,;, would be proportional to & rather than £72, This
would remove a factor of £2 from the right-hand side of
(2.20), and there would be no divergence in A for d>2,

We may also note the relevance of Poisson-bracket
relations in the above calculation. It was essential to
Eq. (2.21a) that a long-wavelength viscous motion of the
fluid carries along with it any fluctuations in ¢ that may
be present. In a fundamental sense, this is a reflection
of a Poisson-bracket relation between the total momen-
tum P and any other density A (x) in the system

{A®), P} =VA®X); (2.23)

i.e., the momentum operator is the infinitesimal gen-
erator of translations of the system.® It was also at this
step that the coupling of modes came into play.

In the above analysis, we divided the system into re-
gions of a definite size £, and considered only rigid
motions of these regions., A more careful coupled-mode
analysis would calculate the divergence of the transport
coefficient A as an integral over intermediate wave vec-
tors p, of contributions arising from the product of a
concentration fluctuation at wave vector p with a trans-
verse momentum fluctuation at wave vector —p. Similar
analyses for finite wave vector transport coefficients
A(k) and 7i(k) involve the product of fluctuations at wave
vectors p and k —p. One finds that the transport coeffi-
cients are independent of temperature, for 2> §7!  and
that A (k)7 (k)< k** "¢, This leads to a homogeneous
scaling form for the order parameter relaxation rate, as
in (2.17) (see Sec. V.B, below). )

It is also interesting to note that a coupled-mode analy-
sis similar to the above leads to a divergence in A and
other transport coefficients for a two-dimensional fluid,
even away from any critical point.® To see this, one may
replace £ in Eqs. (2.18)-(2.22) by an arbitrary large
length L, and note that far from 7., X, is a constant in-
dependent of L.

The relationship of the symmetric binary fluid to cri-
tical points in real fluids will be discussed in Sec. V. It
turns out that the complications resulting from the asym-
metry in a real binary fluid do not change the diver-
gences of A and 7. Furthermore, one finds that the gas—
liquid critical point of a pure fluid also belongs to the
same universality class, where XA is now the thermal
conductivity, and x, is the specific heat C,.

SEquation (2.19) is also a reflection of the Poisson brackets.
See discussion in Sec. V.A below.

5The divergence of transport coefficients in two dimensions was
noted by Yamada and Kawasaki (1967), and by Alder and Wain-
wright (1970). For more recent treatments see Pomeau and Rési~
bois (1975), Forster et al.(1976), and Kawasaki and Gunton (1976a).
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I1l. BASIC DEFINITIONS AND FORMALISM
A. Stochastic models

Consider a physical system whose state at any instant
of time is described by a set of (real) classical variables
Q,. If the @, are a complete set of variables for the
system (including momenta), then they evolve in time
according to a set of deterministic first-order differen-
tial equations”

dQ,(t)/dt =% ,[Q;h],

where ®, is a function of the variable set Q at time ¢,
which may depend parametrically on a set of “applied
tields” {k,;=h. (We shall be interested in cases in
which the applied fields are in general themselves func-
tions of time.) Furthermore, according to classical
mechanics® it is possible to define a Hamiltonian

(3.1)

HQ;h]=H[QI- 2 _7,Q,, (3.2)
m
and a set of “Poisson-bracket relations” among the
variables
{éuaéu’}=_{éu’:éu}=wﬁlu" 3.3)
such that
¢":Z;"leralf/aéul, (3-4)
n

These equations are conservative in the sense that
dH/dt =0, if the %, do not vary in time. In the familiar
case where the Q“ are linear momentum and position
variables, the W,,: are a set of constants, but in the
more general case the quantities W,,» are themselves
functions of the {Q“}

In discussing condensed systems it is often convenient
to focus on a small subset” {Q,}=Q of the complete set
Q, and to take averages over the remaining variables.
The ensuing equations of motion for the variables Q, ob-
tained by averaging (3.1), are then necessarily sfo-
chastic® i.e., the value of @,(¢!) for {>0 is not completely
determined by the values of the {Q,} at {=0. In general,
it is necessary to define a weight functional W which de-
pends on the values of Q(f) for all times ¢, and which
gives the relative probability of that particular time
evolution of the system. The weight functional W also
depends parametrically on any time-dependent fields
h(t). One may then define expectation values {(Q, ()|,
two-time correlation functions (@, ()@, (t’')|4, etc., by
taking the average over all possible time evolutions,
weighted by W. The single-time expectation values
(@M, @,(E)Qy N4, etc., are entirely determined

"We shall use a vector notation @={@,} to denote the sét of all
variables @,,.

8Since the important fluctuations near T, are at low frequen-
cies, the condition %w/kgT,<<1 is satisfied close to T,. Con-
sequently classical mechanics will be adequate to describe the
asymptotic critical behavior of any physical system provided
T, is nonzero. The quantum case 7.~ 0 is mentioned briefly
in Sec. VIIL.D.2. )

%See for example Van Kampen (1965, 1976), Lax (1960), Mori
(1965), Martin (1968), Zwanzig (1972), Kawasaki (1976).
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by the probability distvibution P|Q;t] for the values of
Q at a single instant of time £,

A variety of formalisms exist for describing stochastic
equations of motion, and for evaluating the necessary
expectation values and correlation functions (at least
formally)?; usually it is not necessary to consider the
weight function W explicitly.

In discussing dynamic critical behavior, the variables
Q, of interest are those with slow variations near ther-
mal equilibrium. As mentioned in the Introduction,
these are the long-wavelength components of the densi-
ties of the conserved variables* in the system, as well
as the long-wavelength fluctuations of the ovder param -

- eter for the transition, if it is not itself a conserved

variable.

If the correlation functions (@, @,"|y, and the proba-
bility distribution P[Q;¢] are derived from a Hamil-
tonian, then there are a number of important properties
which may be proven quite generally.® Alternatively, if
we consider a stochastic model involving the restricted
set of variables Q, we should require that the correla-
tion functions and probability distribution derived from
that model also satisfy these conditions. The most im-
portant conditions are the following:

(i) Thermal Equilibvium. If the fields {,} are inde-
pendent of time, then the probability distribution is also
independent of time, and it has the form

Plal-r @)=z exp(-{FlQI- T u @ fost),  6.5)

where
exp(~F[Q)/k5T)= tr exp(-H[Ql/k5T)lq, (3.6)
ZE.trexp<— {F[Q]—Z“‘iéi}/kBT)y (3.7)
Z =tr exp<— %H[Q]—Zuiéi}/kBT> . (3.8)

The trace in (3.6) is taken over the “microscopic” vari-
ables Q, with fixed values of the “macroscopic” varia-
bles Q, which are a subset of the Q. The quantities @
in (3.7) are the constants of the motion for the system,
and they form a (small) subset of the {Q,,}. The constants
u; are Lagrange multipliers conjugate to the @;’s. On
the coexistence curve of a system undergoing a phase
transition, it is necessary to include the order param-
eter in the set of constants of the motion {G_?,}, even if
this order parameter is not conserved by the dynamics.
In that case, the associated Lagrange multiplier u; will
be infinitesimal.

The functional dependence of the equilibrium distribu-
tion function By[Q] and the partition function Z on the
parameters {&,}, {1;}, and T must be consistent with
statistical mechanics and must properly describe the
static properties of the system. In particular the parti-
tion function and equilibrium expectation values must
show the critical-point singularities appropriate to the
spatial dimensionality and the symmetry of the order
parameter. :

(ii) Relaxation to Equilibrium. If the fields h are inde-
pendent of time after some specified time ¢,, the proba-
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bility distribution P[Q, t] should 7elax at large times to
an equilibrium distribution Bq[Q], determined by the
values of the constants of the motion {Q,.} (the energy E,
the particle number N, etc.) at time /.

(iii) Causality. In the presence of a time-varying field
h(t), the expectation values (Q,(t’))|, only depend on
h(t) for {<t’ (Landau and Lifshitz, 1969).

(iv) Fluctuation-Dissipation Theovem. The fluctua-
tion-dissipation theorem is a relation between equilib-
rium correlation functions and linear response functions,
which may be proved for any system defined by a Hamil-
tonian (see Martin, 1968). We shall therefore only con-
sider stochastic models in which this relation is obeyed
in equilibrium. Specifically, let us assume that the
Q,(¢) are densities in space [a typical one being denoted
as Q (x, {)], and the conjugate field is ,(x, £). Then the linear
response function Xq(k, w) is defined by the relation

<Q (k7 w)>hQ :xQ (k) w)hn(ky (1)) ] (3.9)

where Fourier transforms in space and time are given
by
d’k (7 d® ;i cex-wt) )

hQ(X, t)—f W _m—z—;e hQ(k’ Q)),V (3.10)
and the system is assumed to start from equilibrium at
The field kg is taken to be infinitesimal in (3.9),
and the expectation value on the left-hand side is deter-
mined from the probability distribution P[Q; t] in the
presence of iy(x,t). We may also define the correlation
function

CQ(X, t)= <Q(x, t)Q(O, 0));;0:0
= (R, 1))ng=0(Q(0, 0))) =, ,

t ==,

(3.11)

which is a two-time expectation value and depends on a
joint probability P,[Q,Q’;¢,t']. We define the correlation
function Cg(k, w) as the Fourier transform of (3.11), and
the equal-lime covrelation function C,(k) as the spatial
Fourier transform of (3.11) for {=0, or
Cal)= [ 52 Colk, ). (3.12)

According to the causality condition (iii), the response
function Xq(k, w) is an analytic function for complex fre-
quencies in the upper-half plane, and its real and ima-
ginary parts satisfy the Kramers-Kronig relations (Lan-
dau and Lifshitz, 1969). The fluctuation-dissipation
theorem for classical systems?® states that

Cok, w)=2(kxT /w)Imxq (k, w). (3.13)

Similarly, the equal-time correlation function is related
to the sfatic susceptibility Xq (k)= Xq(k, w =0) by the equi-
partition theorem,

Colk) =kTxq(k). (3.14)

This theorem follows directly from (3.13) and the Kra-
mers—Kronig relations.

Given the frequency spectrum of Xxq(k, w) we may de-
fine the kinetic coefficient ITy(k) by

1 = ioxgt(k, w)
rq(k) dw w=o

(3.15)

Rev. Mod. Phys., Vol. 49, No. 3, July 1977

443

and a (dissipative) characteristic frequency as

wo®) =Ty (k)Xo (k). (3.16)
From Egs. (3.16) and (3.13) it is easy to show that!®

1 -1 Axo(k, w) Cqk, w=0)

wq(k) - XQ(k) ow w=o = 200(1() . (3.17)

The quantity 1/wq is also the lifetime which enters the
hysteresis loss at low frequencies. The power dissi-
pated in response to a field kg (k, w) is

W =3|hol?xquwglw? . (3.18)

A different definition of the characteristic frequency
makes use of the sum rule (3.12). We define the “median
frequency” wq (k) by the relation (Halperin and Hohen-
berg, 1969a)

f%(k) i«: Colk, 0)=3Co (k). (3.19)

- wg (k) 2
If the correlation function Cq(k, w) has a Lorentzian
spectrum centered about w =0, the two definitions (3.16)
and (3.19) are identical. For a spectrum having a sharp
peak at a finite frequency (propagating mode) the defini-
tion (3.16) is of course unsuitable. Note, also, that
definitions in terms of positive frequency moments of
Cqk, w) are generally unsuitable, since they are sensi-
tive to high frequencies rather than to the low-frequency,
long-time behavior which is of interest for hydrodynam-
ic or critical properties.

If the variable @ is conserved by the dynamics* (i.e.,
if @ is the density of a constant of the motion), then the
kinetic coefficient is proportional to 42 at small 2 (for
T+T,), and we may define a transport coefficient A, by

Ao =1im k™ Ty (k). (3.20)
S :

B. Linear and nonlinear hydrodynamics .

In the limit of long wavelengths, for T # T, it is gen-
erally possible to write down a set of coupled differen-
tial equations, known as kydrodynamic equations, which
govern the time evolution of the conserved densities of
the system (Landau and Lifshitz, 1959). [For a system
with a broken continuous symmetry, such as a Heisen-
berg ferromagnet or antiferromagnet below T, it is
necessary to include, among the hydrodynamic densi-
ties, variables which describe gradients of the direction
of orientation of the order parameter (see Halperin and
Hohenberg, 1969b)]. Although the hydrodynamic equa-
tions are based on assumptions which cannot be rigor-
ously justified, such as the possibility of making expan-
sions in powers of the gradient operator at long wave-
lengths, those equations are nonetheless believed to be
exact in the long-wavelength limit. In general, the equa-
tions contain a number of temperature-dependent coeffi-
cients whose values are not determined from macroscop-
ic considerations. By taking advantage of the known
symmetries of the system, however, and of the Poisson-

ONote that Eq. (3.17) differs from Eq. (3.9b) of Halperin et al.
(1974a), which was in error.
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bracket relations among the conserved variables, it is
possible to derive relations among various hydrodynamic
coefficients. and in some cases to express hydrodynamic
coefficients directly in terms of static quantities.

When the deviations of the conserved densities from
their equilibrium values are sufficiently small, the hy-
drodynamic equations may be linearized,' and solved to
give a finite number of hydrodynamic modes for the time
dependence of the densities at a given wave vector k.

The frequencies of the hydrodynamic modes must go to
zero (by definition) in the limit 2— 0.

If Q(x,t) is a conserved density, then the linear re-
sponse function Xxq(k, w), and by (3.13) the correlation
function Cqy(k, w), are completely determined by the
linearized hydrodynamic equations, for #—0. In particu-
lar, Xq(k, w) will have simple poles at the (complex) fre-
quencies of one or more of the hydrodynamic modes,
with residues determined by the hydrodynamic equations
(see Landau and Lifshitz, 1959; Kadanoff and Martin,
1963; Forster, 1975). The response function xq(k, w)
for a nonconserved variable will generally also have
poles at the hydrodynamic frequencies, but it will have
additional structure elsewhere in the lower half of the
complex frequency plane,

In a similar way, the equations of nonlinear hydro-
dynamics may impose conditions on various nonlinear
response functions and higher-order correlation func-
tions such as (@, &, )@, &', t")Q,»x",t")). In con-
structing stochastic models for the dynamic critical be-
havior of various physical systems, we shall take care
that nonlinear as well as linear response functiéns con-
form to the hydrodynamic behavior of the Hamiltonian
we wish to represent.! Specific theorems that will enter
our considerations are the Larmor precession theorem
for a Heisenberg or planar magnetic system, the Jo-
sephson relation for the rate of change of the phase of
the order parameter of a superfluid, and the convective
terms in the transport equations in a normal fluid. These
theorems generally follow from the Poisson-bracket
relations and the symmetries of the system.

C. Critical behavior
1. Static properties

Near the critical point, one of the variables Q under
consideration has the largest fluctuations, i.e., has a
susceptibility with a strong divergence as 7'~ T,. We
call this variable the order parameter ¥, and its conju-
gate field h, (see Stanley, 1971; Fisher, 1967). The
scaling hypothesis for thermodynamics is the assump-
tion that the leading singularity in the free energy
F(hy, T) can be written in the form

Fyg/VRsTe= A AT|2™f (K AT/ | hy|VP%), (3.21)

11t should be emphasized that the term “linear hydrodynamics”
does not imply that the underlying equations of motion are linear,
or that fluctuations are small, either in the microscopic equa-
tions or in the stochastic models. It is only necessary that the
induced variations on the macroscopic length scale be small.
Thus linear hydrodynamics may be used in the calculation of
linear response functions, provided that the wavelength is suf-
ficiently long.
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where AT =T -T,, A, and K, are constants, V is the
volume of the system, and «, B, and 0 are the usual
critical exponents. Similarly, one can make a scaling
assumption for the static response function

. - - k. K,AT
X ) = Vi LA ar|x (5, fanm) G22)
where « is the inverse of the correlation length!?
. K, AT
= K"l:\AT\-U,:<}—hQ—Im> . (3.23a)
w

with ¥ =g(6 —1) and v=(2 - @)/d. For h,=0, Eq. (3.23a)
reduces to :

E=ES|AT/T, ™" = (k) HAT/T, |, (3.23b)

The + and - signs corresponding to 7' greater or less
than 7., respectively. In the limit 2 =0 the response
function (3.22) must reduce to the thermodynamic sus-
ceptibility x, =982F/0h3%|,. At the critical point (AT =0,
n, =0,k =0) and for finite %, it behaves as

Xy (K) k727N (3.24)

with 2 -n=y/v.

According to the hypothesis of universality.? the expo-
nents are the same for different members of an equiva-
lence class., Moreover, the scaling functions f(x),
X(¥,x), and E(x) in (3.20)—(3.22) are also the same,
once the scales of F, and #, (i.e., the constants A, and
K,) have been properly adjusted. In particular, the hy-
pothesis of “two-scale-factor universality” states that
the scale of lengths £3 in (3.23) is not independent of the
thermodynamic scales A, and K, (Stauffer ef al,, 1972;
Hohenberg et al., 1976a).

2. Dynamic properties

The dynamic scaling assumption (Ferrell et al,, 1967,
1968; Halperin and Hohenberg, 1967,1969a) states that
the response function x,(k, w) has the form

w kK AT
; = Y — 0
Xp(k) (.U) Xd/(k) (QOKZ 'k’ ]h(bll/sb>’

(3.25)

where {2 is a constant which sets the scale of time, and
z is the dynamic critical exponent. [By definition the
function Y is normalized so that Y(0,¥,x)=1.] From the
expression for the characteristic frequency wy (k) in
(3.16), Eq. (3.25) implies the form '

R KAT)

- NS —
ww(k)-ﬂok Q(K N WBT

with a similar form for w, defined in (3.19). Ordinarily
one considers the case %, =0, where (3.26) becomes

(3.26)

wy (k) =QQ* (k/K), (3.27)

with different functions above and below 7,. It is as-
sumed that at T, the characteristic frequency is unique,
i.e.,

" () =07 (), (3.28)

2We shall use the notations ¢ and k™1 = ¢ interchangeably
throughout this paper.
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or more generally, that the function §(,x) in (3.26) is
independent of the ratio x =K AT /|h,|Y?® for AT -0,
n,—0. According to universality, the exponent z and the
dimensionless functions Y(w,¥,x) and £(¥,x) are the
same for all members of an equivalence class. The
constant Q, in (3.26) and (3.27), on the other hand, is
nonuniversal, and it may or may not bear a simple rela-
tion to thermodynamic parameters.

The dynamic scaling hypothesis can also be made for
variables other than the order parameter.'® In systems
with many hydrodynamic variables there are typically
some which do not! obey dynamic scaling. For example,
in the case of the symmetric binary fluid treated in Sec.
II, one finds z =3 for the order parameter, while the re-
laxation rate for the momentum density j at long wave-
lengths goes as Nk?= k2™ *7(k/k)? with x7=0. Further-
more, it can be shown that this relaxation rate does not
have the scaling form (3.27) for k/k=1 (Kadanoff and
Swift, 1968a).

We shall see below that in systems such as superfluid
helium and the Heisenberg ferro- and antiferromagnet,
where ¥ has a propagating mode in the ordered state,
the frequency wy(k) can be expressed purely in terms of
static quantities at long wavelengths. In that case dy-
namic scaling is sufficient to relate the exponent z to
static exponents. In other cases, such as anisotropic
magnets, or the gas-liquid and consolute critical points,
Xy (k, w) is dissipative and the dynamic scaling hypothesis
does not determine z. In either case, dynamic scaling
leads to 7elations between exponents characterizing the
behavior in various regimes (e.g., k<<« and k> «), Let
us note, finally, that the conventional theory is compati-
ble with dynamic scaling, with z =2 — 7 for a noncon-
served order parameter, and z =4 — 1 in the conserved
case [see Eqs. (3.16) and (3.20)].

D. The dynamic universality classes

In the following sections we shall describe the main
dynamic universality classes which have been studied to
date, and some of the physical systems belonging to
these classes. We shall explain the renormalization
group in the context of the simplest systems, those with
purely relaxational dynamics, since the fixed-point
mechanism for dynamic scaling and universality can be
adequately illustrated in that case. We have listed the
universality classes discussed below, and some of their
defining properties, in Table I.

IV. RENORMALIZATION GROUP FOR
RELAXATIONAL MODELS

A. System with no conservation laws: Model A

We shall first study a set of models with dissipative
equations of motion, which are often referred to as
time-dependent Ginzburg-Landau models, although an

131 the early formulation of dynamic scaling by the present
authors (Halperin and Hohenberg, 1969a) the assumption (3.25)
for the order parameter was referred to as rvestvicted scaling,
while the generalization to other variables was called extended
scaling.
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equation of motion of this type seems to have been first
employed by Landau and Khalatnikov (1954) in order to
explain the anomalous attenuation of sound in helium
near the A-point. These models are purely relaxational,
and they may be described by a Hermitian master equa-
tion,!*

1. The model

The most elementary of these models is a system with
no conservation laws, which we shall call model A. It
is defined by the Markoffian equations of motion

8‘”“3(’;’” =-T, ﬁwig, iy Ol 0+ Thale, 1), (4.1a)
Fy= [ atelirggs o490l sy}, (4.1b)
DI (4.10)
IlezﬁaZ:(V«/)a)z, (4.1d)

where ¥,(x, ?) is an z-component real order parameter
depending on space and time, and it is assumed that
P4, t) contains only variations with wave vector smaller
than a specified cutoff A, The function 6,(x, ) is a

- Gaussian white noise source with correlations

<9a> =0,
<0<x(x’ t)ea'(x,, i) =2r06(x -x)0(t-t")0qqer,

4.1e)
(4.1f)

and the functions %,(x,{) are arbitrary external fields
(we shall choose units such that 257,.=1). Correlation
and response functions for 3, may be obtained formally
by solving Eqs. (4.1a,b) for ¥, as a functional of the {6}
and then averaging over all values of {Oa} according to
Eqgs. (4.1e—f). The first term in (4.1a) causes ¥ to relax
towards a configuration which minimizes the functional
F,, while the noise 0, ensures that the proper equilib-
rium distribution is maintained, and that the fluctuation-
dissipation theorem is satisfied (see Glauber, 1963). As
in any Markoffian system, one can alternatively describe
the model by a master equation for the time evolution of
the probability distribution P[¢; t] (Vvan Kampen, 1965;
Lax, 1960). The master equation takes the form of a
Fokker-Planck equation (or more properly a Smolukow-
ski equation):

Y2 - 1] op OF

= =r0az=1 fddx-—% [—5% +P5—¢ﬂ. (4.2)
For time-independent fields {%.}

Bq[lpa] =zt exP(_Fo[wa]) ) (4-3)

z = [ Dluatexp(-Ffval), (4.4)

where | D{y,} denotes a functional integral over the
variations in §. The existence of the equilibrium solu-

4The transport and kinetic coefficients will never diverge in
such models, as was shown by Kawasaki (1966b). See also
Kadanoff and Swift (1968b), Kawasaki (1972), and Halperin
(1973b).
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tion (4.3), whose free energy has the usual Ginzburg—
Landau—Wilson form,! depends crucially on the fact that
the same constant I, appears in (4.1a) and (4.1f). The
model has a critical point for %, =0, and 7, equal to a
critical value ¥, (#,). For ¥,>7,, the model is in the
“disordered phase” (T >7T,), while for 7 <7, the model
is in the “ordered phase” (I'<T,). This model has no
conserved variables, and thus does not have any hydro-
dynamic modes, in the sense of Sec. IIL.B.

If the coupling constant «, in (4.1b) is equal to zero,
then the free-energy functional is quadratic in ¥, and in
this Gaussian case it is easy to show that

Xy (K, w) =X, (k, w) = (- iw/T +7, +£2)"!
=Xy BN1 - iw/wy (k)] 7,
wy (B) =T, (r, +£2)"t =Tox3 (k);

4.5)
(4.8)

i.e., the kinetic coefficient I, (k) is equal to a constant,
T,. In the interacting case (#,#0), it is no longer possi-
ble to calculate Xy (k, w) exactly, since even the equilib-

rium problem is insoluble., If we define the kinetic coef- *

ficient I, (k) according to (3.15), we may still expect, at
least for 7,>7 ., that I'y(k) will be finite in the limit
k-0, but the value of

r'=T,k=0) 4.7)

will depend on %, A, and 7,, as well as on I, The re-
laxation rate w,(k =0)=I/x, is also finite for »,>7, but
the spectrum of x,(k, w) will no longer consist of a single
pole at w=—-iw,K).

2. Perturbation theory

As we saw above, the dynamics of model A is trivial
for «#,=0, since the conventional theory holds (with
7 =0). Thus the interesting dynamic effects arise from
the interaction #,, as is also true for the static behavior
(Wilson, 1972). We must therefore have a systematic
formal procedure for expanding the response functions
of model A in powers of #,. There exist a number of

Addq Addp
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FIG. 1. Self-energy correction of order #}. The lines rep-

resent propagation of an order parameter mode.

equivalent formalisms for carrying out such expansions
in terms of diagrams, and we refer the reader to the
literature for details.'® A typical formalism is given by
Ma (1976a), where diagrams are constructed with four-
point vertices %, and propagators represented by lines.
The value assigned to a line is either x,(k, w), Eq. (4.5),
or w 'Imx,(k, w), according to specified rules. The “in-
ternal” lines are integrated over frequency, and over
the d-dimensional wave vector, up to the cutoff A. The
effect of #, on the response function may be expressed
in terms of a self-energy 2 given by

Xpt (&, @) =x51(k, w) +Z (&, w). (4.8)

The kinetic coefficient I' is obtained from (4.8) via the
definition (3.15),

The leading contribution to the renormalization of I
comes from the self-energy diagram indicated in Fig. 1.
This contribution may be described in mode-coupling
terms as arising from the nonlinear interaction of three
order parameter fluctuations. The sign of the effect
may be understood from a simple physical argument:
The hysteresis loss in response to a slow time-varying
field at wave vector k is proportional to w? divided by
the characteristic relaxation rate w(k). Since our model
is purely dissipative, coupling between the modes will
tend to increase losses at low frequencies. This in turn
can be interpreted as a decrease in w(k), and therefore
a decrease in the kinetic coefficient I'.

After integration over internal frequencies, the con-
tribution of this diagram is given by the expression

L[37 +p2 +4% + (p +q —k)?]

=k, w):—% (n+2)u2 @y

[Note that we have rearranged the perturbation theory by
carrying out a “mass renormalization” (Wilson 1972),
which replaces the parameter 7, by its dressed value 7,
which vanishes at T =T,, or ¥,=%,,]. The kinetic coeffi-
cient may then be calculated for 2 =0, w=0, and one
finds a contribution to I'"! proportional to #Z7%* which
diverges at T, for d<4, Since higher-order diagrams
will involve even more strongly divergent powers of 7,
it is not possible to take (4.9) at face value, and some
other means must be found to extract sensible results
for the model near T,.

It was precisely in order to solve an analogous problem
in the static case that the renormalization group meth-
ods! were developed, and it turns out that similar tech-
niques apply here. The essential idea is to carry out in-
tegrals such as (4.9) step by step, over a range which
excludes the origin q =0 at each step, and thereby toavoid
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o @0 (r4p) (v +q®)¥

+(p+q-k)?] {—iw +T[37 +p? +q2+(p+q_k)2]}. 4.9)

—

the occurrence of divergent integrals at intermediate
steps in the calculations, when T =T,

3. Recursion relations near d = 4

The renormalization group transformation we employ'®
is a generalization of the one used by Wilson and Kogut

15See, for instance, Tucker and Halperin (1971), Halperin
et al. (1974a, 1976a), Ma (1976a), De Dominicis (1975), Pata-
shinskii and Pokrovskii (1977), Suzuki and Tanaka (1974a),
Suzuki (1973a), Kawasaki (1974), and Martin et al. (1973).

éBesides the exact renormalization group transformation de-
fined here, there exist a number of alternative formulations
(either exact or approximate), which have been applied to dy-
namics. See for instance De Dominicis et al. (1975), Suzuki
and Tanaka (1974b), Kawasaki (1974, 1975), Kuramoto (1974),
and Abrahams and Tsuneto (1975).
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(1974) for static phenomena. It is defined by

R, =RSRi, (4.10)
where R$ is a simple change of scale .
x—=x"=x/b, (4.11a)
A~A=Ab, (4.11b)
h—y' =0, (4.11¢)
w—w’' =bfw, (4.114)

Here b is an arbitrary constant greater than unity, and a
and z are exponents to be determined. The operation
R,’;, which may be applied to the diagrammatic expansion
of any quantity, consists of an integration over “internal”
wave vectors in the domain 67'A < p <A, and internal
frequencies from —= to +«,!7

The effect of R} on various terms in the equations of
motion (4.1a) and the free-energy functional (4.1b) may
be found by a simple “power-counting” procedure (Wil-
son and Kogut 1974; Ma 1976a; Halperin ef al, 1974a,
1976a). For example, it follows from (4.1) and (4.11)
that

R3(ry) =b""2y, (4.12)
Rij(up) =0 u,, (4.13)
RY(I;Y) =po-20-2p51 (4.14)

The action of R} is to add to the right-hand sides of Egs.
(4.12)—(4.14) contributions from all the appropriate dia-
grams with intermediate wave vectors restricted to the
shell b'A<p<A. It is clear from the definitions given
above that the operations R} and R,f commute.

If the renormalization group transformation is iterated
! times, the diagrammatic representation of the equa-
tions of motion will be given in terms of partially re-
normalized propagators and vertices, which are in prin-
ciple much more complicated than the ones occurring in
the starting equations (4.1). Nonetheless, we may
identify venormalized constants »,, u,;, and I'; by taking
limits of the corresponding vertices as the external
frequencies and wave vectors go to zero. These limits
are well behaved, since the intermediate integrations
were limited to a finite shell, excluding p=0. The re-
normalized constants 7, and I'; are defined by

ri=lim R} [xq'(k, w) + 32, (k, w)], (4.15)
k-0
I =lim ——— { R[5 (e, @) +2, (&, @)},  (4.16)

koo 9(—iw)
w->0
where Z, (k, w) represents the contributions to Z(k, w)
coming from diagrams in which internal wave vectors
are in the shell A/b* <p<A. A definition similar to
(4.16) may be given for u,, in terms of the renormalized
four-point vertex with external frequencies and wave
vectors equal to zero (Halperin et al., 1976a).
The above procedure leads to recursion relations for

"We have not found it necessary to introduce a cutoff in fre-
quencies, since the propagators decay sufficiently rapidly for
large |w].
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the quantities »,, u,, and I';, which may be written down
explicitly in pevturbation theory in u,. The expansion
turns out to be meaningful for d near four, i.e., for
0<e=4-d<1. The lowest-order contribution to I';?,
which comes from the self-energy diagram in Fig. 1 and
Eq. (4.9), is proportionalto#:I';'1nb, infour dimensions
and for »;<<1. [ As mentioned earlier, this contribution
is finite, because of the finite range of integration A/b
<p<A.] The recursion relation for I';! is thus

Ol =02 271 +c,u? Inb], (4.17)
where

¢, =48(n+2)1n(4/3)KZ, (4.18)
and

K, =24 774/21(q/2) (4.19)

is (27)7? times the surface of the unit sphere in d-dimen-
sions [K,=(87°)"']. A similar procedure yields the well-
known Wilson-Fisher (1972) recursion relations for #,
and u;

Ve =002, +2(0 +2) K, u,[A2(1 = 72) = 27, 1nb]},
(4.20)

Uy =" u, -~ 4(n +8)K,u?Indb], (4.21)

where we have assumed 7; <1,

In order to calculate the critical exponents to lowest
significant order in €, one determines the fixed point
of the recursion relations (4.17)-(4.21). The exponent
a is determined by requiring that the coefficient of the
term proportional to |V#|? in (4.1b) remain unchanged,
which yields (Wilson and Kogut, 1974)

a=3(d-2+n), (4.22)

where 7 is the usual critical exponent for the correlation
function at T,. Equations (4.20)—(4.21) then go to a finite
fixed point

u* =€[4K,(n +8)]"1 + O(€?), (4.23a)
r* =—3€(m+2)A%/(n +8) + O(e?) , (4.23Db)

since 7 is of order €2 (Wilson, 1972). The fact that 7*
is of order € justifies the approximation 7; <<1 made in
deriving Eqgs. (4.20) and (4.21) (see Wilson and Kogut,
1974).

The recursion relation (4.17) for I, will reach a finite
nonzero fixed point I'* if the exponent z is given by

z=2=n+c, (u*p, (4.24a)

Inserting #* from (4.23a) and using the € expansion of 7
(Wilson, 1972), we find (Halperin et al., 1972)

z2=2+cn=2+[61n(£)-1]n+0(e?). (4.24b)

By expanding the recursion relations (4.20) and (4.21)
about the fixed point (4.23) it is readily seen that the
fixed point is unstable to a perturbation of the form
7, =7* +067,, On the other hand, the fixed point is stable
with respect to small perturbations of the form u, =u*
+08u,, provided that 7, is adjusted slightly, in the form
v, =v*(1 +0u,/u*), The linearized recursion relations
are said to have one 7elevant (unstable) eigenvalue, and
one irrvelevant (stable) eigenvalue, which, loosely speak-
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ing, we may identify with the variables 7; —7*, and
u,-u*, respectively. More generally, the fixed point
(4.23) is reached from any positive starting value of u,
provided 7, lies on a critical curve

Vo =7oclU,) . (4.25)

When 7,>7,.(4,), the model corresponds to T >T,, while
for v,<7,.(4,), the model corresponds to T <T.,.

It may be seen from Eqs. (4.21) and (4.22) that the rate
of approach of «,; to its fixed point is slow for small €;
i.e., for large I we may linearize (4.21) to find,

(d/dl)(u, —u*)==—€(u, —u*)Inb . (4.26)

Thus the irrelevant variable «, leads to a slow (ransient
u,, near four dimensions, whose existence has impor-
tant consequences for the expansion methods discussed
in Sec. IV.A.5 below. At precisely d=4 (€ =0), the
linearized equation (4.26) yields no information, and one
must go to quadratic terms in «#; —~u*, In that case «, is
referred to as a marginal variable.!

4. Scaling and universality: Stability of the fixed point
to all orders in €

The recursion relations (4.17)-(4.21) may be used to
derive the scaling forms of the response functions dis-
cussed in Sec. III, for both statics and dynamics. Let us
first discuss the temperature dependence of the kinetic
coefficient as T~ T, According to the definition of RS,
we may write the physical coefficient T® as

1? =(Ri)_l l:_;_‘l_ + ?1;_] —p-(g=27 M) [:_1%—" T %] ,
where 1/T'} represents the contribution to [8Z(0, w)/
9(—iw)]| y=, coming from intermediate wave vectors in
the range 0< p <A /b'. When the operation R, is iterated
many times, i.e., when [ grows large, the quantity I}
approaches very close to its fixed-point value I'*  pro-
vided that |7, — 7,/ is sufficiently small. Moreover, if
we choose ! such that »; =1, which occurs when

bl:A/K, (4.28)

then both 1/T°; and I; —I'* are finite and of order €2,
Taking into account Egs. (4.27) and (4.28), we see then
that for large values of A /k

L= (A/k)*27TTH1 + O(e?)],

(4.27)

(4.29)

where the term of order €? is independent of (A /k) and
is actually a universal constant for systems approaching
"the model A fixed point. This result may be combined
with Eq. (3.16) (for k =0) to see that z is indeed the dy-
namic exponent defined in (3.27).

In order to obtain the scaling form (3.25) for finite k
and w, we repeat the above argument for the response
function, which we write as

X3t k, @) =(R3) [(—iw/T}) +7, +k2 + 2 (k, w)],  (4.30)
X;l(k, w) =b"2+””[(—iu}b”/1",)+7, +k2bzl +E;(k, w)]’
(4.31)

where Z; represents the contributions to the self-energy
coming from intermediate wave vectors in the range
0<p<A/b’, as well as contributions which are of higher
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order in € than those retained in the recursion relations.
The function 2;(k, w) may have singularities when either
k or w go to zero, but provided the renormalization
group is well behaved, 2 is finite and of ovder € or
smallev, when

ke RN, wb]
max[A2 '(A)b TR =1
If, for v ,=7,. and finite £ and w, we choose ! such that

b=~ max[k/A, k/N, (/TN W*] (4.33)

then Eq. (4.32) is satisfied, and Eq. (4.31) takes on the
scaling form (3.25), (for k,=0),

(4.32)

Xy (k, @) =X, (k) Y(L f). (4.34)

QK" K

X¢(k)=x¢X(%>. (4.35)

The scaling functions (4.34) and (4.35) and the critical
exponents are properties of the fixed point reached. and
do not depend on the initial parameters 7, «,, I, and A.
Thus these critical properties are universal for all sys-
tems which go to the same fixed point.

In order to ascertain that the renormalization group
is well behaved, it is necessary to verify that the fixed
point found in the lowest-order analysis is slable with
respect to two types of perturbations. The first type in-
volves the higher-order terms generated by the pertur-
bation expansion in #,, e.g., terms of order #2w? in Z,
of (4.15), The second class of perturbations are varia-
tions of the starting model, to approximate more closely
a realistic physical system. Of course the two kinds of
perturbations are closely related, and we shall repre-
sent both types by terms in the equations of motion in-
volving regular powers of k, w, and ¢, of arbitrarily
The essential feature which makes these
terms ivvelevant perturbations is that, under the opera-
tion Rj, the coefficients are reduced at each step by an
amount 6™*, where x is at least 2 — O(e). Thus for d
sufficiently close to 4, these are irrelevant perturba-
tions, which decay rapidly, to values entirely deter-
mined by the slow transients and the relevant variables
(Wilson and Kogut, 1974; Wilson, 1975; Halperin et al.,
1976a).

For concreteness, let us study an example in which we
add to the inverse bare propagator X;!(k, w) a term
—M,w?, representing a second derivative with respect to
time in the equations of motion. We may define a coeffi-
cient M, in terms of the second derivative with respect
to w of x;'+Z,, in analogy to (4.16), and derive a recur-
sion relation describing the action of R,,

M, =b%"22"250 m, (1~ b72) (4.36)

where the second term represents the contribution from
2,4 —Z;. Note thatm, is proportional to #Z, and so must
be of order €2 or smaller, for large I. According to
Eqgs. (4.22) and (4.24) the exponent in (4.36) is equal to
~-2 — (2¢ +1)y which is close to -2 for small €. More-
over, for large I, m, will be essentially independent of
1. When R, is iterated many times M, can be written
approximately in the form
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M, =(1=-0"2)0m,_ +072m,_, +07m,_ 4+ ¢ )=m,, (4.37)

which is of order €2, and independent of the initial value
M,. In fact, m;, and therefore M,, will be entirely de-
termined by the fixed-point parameters v* u* and I'*,
considered earlier. Furthermore, the nonzero value of
M, will only affect the recursion relation for I to order
€,

Arguments similar to the above for the stability of the
fixed point under various perturbations have been ela-
borated in much more detail in Sec. 5 of Wilson and
Kogut (1974), and Secs. II and V of Wilson (1975). These
discussions are at the heart of the justification of the
renormalization group, and of the derivation of scaling
and universality near d =4, lo all orvders in €,

In addition to more complicated terms in the propaga-
tor x,(k, w), the intermediate stages of the renormaliza-
tion group will also contain k- and w-dependent vertices
of fourth and higher order in ¥. The fixed point will be
stable with respect to these perturbations, for the same
reason as discussed above, In particular, it was argued
by Halperin et al, (1976a) that the frequency dependence
of the four-point vertex [«,(k;, w;)], was irrelevant, and
that the static variable %, was therefore also sufficient
for a calculation of the dynamics. The argument depends
crucially on the rvegularity of [u4(k,, w,-)], for small w;,

We may note, finally, that the frequency-dependent
vertices and complicated propagators are reflected in
non-Gaussian and frequency-dependent noise correla-
tions, determined by fluctuation—dissipation theorems.
It is clear that these features, which arise in interme-
diate stages of the renormalization group, could also
have been introduced in the starting equations, and that
the simple form of the model chosen in (4.1) is not a re-
striction on the applicability of the results.

5. Epsilon and 1/n expansions in higher orders

The recursion relations discussed in the previous sec-
tions are useful for illustrating the essentials of the
fixed-point mechanism, and for analyzing the important
properties of a given universality class. If, however,
one wishes to carry out explicit calculations beyond the
lowest significant orders, the recursion relations be-
come quite cumbersome, and alternate methods have
been developed which are more convenient. Most of:
these are procedures for extracting the critical expo-
nents from ordinary perturbation theory, generally in
the form of expansions in a small parameter. The earl-
iest such method was that of Larkin and Khmel’nitzkii
(1969), who studied static critical behavior in the “mar-
ginal” cases of short-range forces at d =4, or dipolar-
Ising systems at d =3, Subsequently, Wilson (1972) de-
veloped his Feynman-graph expansion method for calcu-
lating the exponents in powers of €, When truncated at
the second order and extrapolated to d =3, these ex-
pressions were in surprisingly good agreement with the
best available series values. A similar expansion, in
powers of 1/n, valid when the number of components #
of the order parameter is large, can be applied for
2<d<4, and complements the € expansion (see Ma,
1973, and references therein). More recently, a variety
of field-theoretic methods based on the Callan—Symanzik
equations have been devised, which permit calculations
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to rather high orders in the various expansions (see
Brézin et al,, 1976), All of the above methods had been
developed for the static case, but they may readily be
generalized to dynamics (De Dominicis et al., 1975;
Murata, 1976a; Bausch et al., 1976).

The Feynman-graph expansion for exponents deter-
mines the coefficients of various powers of € by match-
ing logarithmic terms in the perturbation theory expres-
sion for Z(k, w) to the expected scaling behavior. It is
important to note (Wilson, 1972) that this matching will
only be correct if the slow transients in the approach to
the fixed point have been eliminated. In the case of mod-
el A near four dimensions, the effect of the slow tran-
sient #; can be eliminated from the perturbation theory
by choosing the bare coupling constant %, to have a spe-
cial value, u,=u,(€). As mentioned above, it turns out
that #; is the only slow transient for bo¢ the statics and
and the dynamics, so the € expansion for dynamics can
also be carried out with «, fixed at its static value u(€)
(Halperin et al,, 1972).

The results for the dynamic exponent z in model A can
be written in the form

z=2+cn, (4.38)

where in general c is a function of d and ». Near d =4,
calculations yield (Halperin ef al., 1972; DeDominicis
et al,, 19175)

cn=0.7261(1 - 1.687€)n + O(e*), (4.39)

which shows that ¢ is independent of #, to the order
which is presently available. For large » and 2<d<4,
the result to order 1/n is (Halperin et al,, 1972)
C_( 4d ){ B(d-1,zd-1)
“\4-d ‘8fo”dx[x(2-—x)]“2'2 :
This expression agrees with (4.39), in the limit d— 4,
and gives c=3 at d=3,n—,

The properties of model A below T, have been studied
near d =4 by Mazenko (1976).

It is also possible to make expansions about two dimen-
sions for #>2, since T, vanishes for d=2., De Dominicis
et al. (1977) have calculated z to lowestorder in €' =d — 2,
and they find a result of the form (4.38), with

(4.40)

c=(1-1n%)’,

€’ €’
) [1 +O<n—2>] :
It is interesting to note that in this domain ¢ is also in-
dependent of #, and it agrees with the large-» expression
extracted from (4.40) for d—2",

Values of z were also obtained for the two-dimensional
kinetic Ising model (Glauber, 1963) from high-tempera-
ture series (Yahata and Suzuki, 1969; Yahata, 1971) and
from Monte-Carlo calculations (Schneider et al., 1972;
Stoll et al., 1973), and the results were consistent with
the value ¢ =0, which would be obtained from (4.40) and
(4.41), by assuming ¢ to be independent of # down to
n=1. Recently, however, Rdcz and Collins (1976) re-
analyzed the series expansions using Padé approximants,
and have concluded that ¢= 0.5 for the two-dimensional
kinetic Ising model, suggesting a possible n-dependence
for c.

(4.41)

(4.42)
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We may note, finally, that in the case of model A, the
dynamic exponent bears no simple relation to static ex-
ponents. This is in contrast to certain models with con-
servation laws which will be considered below,

6. Related models

It is known from the static theory! that various modifi-
cations of the free-energy functional F, will change the
fixed point and the corresponding critical behavior.
Examples are the introduction of cubic anisotropy for
n>3, of dipolar forces, or of “long-range” spin inter-
actions, which decay as x~ "9 with 0<0<2 (see Fish-
er, 1974). If one assumes that the dynamics remains
purely relaxational, then the form of X, (k, w) will be
similar to the short-range case considered above, but
the values of the exponents and scaling functions will in
general be modified. The critical dynamics of model A
in the presence of long-range forces was discussed by
Suzuki and Igarashi (1973), while the effects of cubic
anisotropy were discussed by Yamazaki (1976a), and
dipolar forces for n=d =4 — € were considered by Teitel-
baum (1975).

It is well known that the addition of dipolar forces to
an Ising-like (7 =1) system has strong effects on the
critical properties (Larkin and Khmel’nitzkii, 1969).
The static critical behavior of the d =3 dipolar-Ising
model is similar to that of the d =4 short-ranged model,
and is mean-field-like, except for the occurrence of
various fractional powers of In(T — T,) or 1nk (see
Fisher, 1974, and references therein). The critical
dynamics of model A for the dipolar-Ising case at d =3,
or for the short-ranged case at d=4, are similarly
mean-field-like, as has been discussed by Siggia (1975)
(see also, Miiller and Merz, 1976).

The critical behavior of the s-state Potts model with
relaxational dynamics has been studied by Trimper
(1976).

B. Conserved order parameter: Model B

There exists a simple modification of model A, in
which the order parameter is conserved (Kawasaki,
1966a). This model, which we call model B, is also de-
fined by Egs. (4.1), but with I replaced by —A,V2, For
k—0and 7,#7,,, the order parameter relaxation rate
has the long-wavelength form

wy (k) = (A/xy k%,

where the transport coefficient A is in principle a func-
tion of the parameters A, #,, A, and 7,. The propagator
for model B may be written in the form (4.8), with the
bare propagator

Xollk, w)=—dw/N k2 +7 +k?.

(4.43)

(4.44)

By analyzing the perturbation expansion of x,(k, w) for
¥o# ¥y, it may be shown that although 2 (k, w) is fre-
quency dependent, the quantity 82 /9 (i w) remains finite
for #—~0, w—0. It follows that Z does not contribute a
term of order w/k? to x3'(k, w), so that the exact trans-
port coefficient A is equal to its bare value A, and the
conventional theory holds in this case (Halperin et al.,
1972, 1974a, 1976a).

Alternatively, we may write down a recursion relation
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for A, of the form

7\—1

__pd=2a=z+2 \~1
I+1_b 7\1 Ll

(4.45)

with no contribution from R{ in any order in €. Using
(4.22) we see that Eq. (4.45) will reach a finite nonzero
fixed point A* if and only if

z=4-7, (4.46)

as required by the conventional theory. The stability of
the model-B fixed point to perturbations which preserve
the conservation law may be studied in the same way as
was discussed in Sec. IV.A.4.

It is interesting to note the instability of the fixed point
to a perturbation which violates the conservation law,
e.g., if the first term in the inverse bare propagator
(4.44) has the form —iw/(\ k% +T,), with T'j small.

L4y =027 [ 14+ O(u})]. (4.47)

The exponent of b will be close to 2, if z is equal to

4 — 1. Thus the perturbation I', grows rapidly, and one is
driven far away from the model-B fixed point (I';=0), no
matter how small I was to start with. When I; becomes
much larger than A; A% one crosses over to the model-A
fixed point, and it is more convenient to choose z =2 so
that T'* becomes finite. In that case Eq. (4.45) leads to a
vanishing fixed-point value for A;, and A; becomes irrel-
evant,

The fact that the dressed transport coefficient A is
precisely equal to its temperature-independent bare
value A, is actually an artifact of the class of models
we have considered. A more general model, consistent
with the requirements of a conserved order parameter,
is obtained by assuming that the bare coefficient A is
itself a function of ¢, such as

X)) =g + A2 (X) .

It may be argued that this modification will lead to a
transport coefficient of the form

A=Rgo + A (&),

which implies a singularity in the temperature deriva-
tive of A, proportional to the specific heat singularity
(T'-T,)"*. Thus we see that the perturbation A ,J? is
irrelevant for the asymptotic fixed-point behavior of A
(which remains finite as in model B), but that the per-
turbation is important for predicting the first correction
to this asymptotic behavior.

(4.48)

(4.49)

C. Coupling to an auxiliary conserved density: Model C
1. The model

Intesting the stability of the fixed point in model A, we saw
that any coupling terms in the free-energy functional involv-
ing high powers of ¥(x) or high powers of gradients were ir-
relevant, Another possibility is to couple ¥(x)to an auxilia-
ry density, which itself varies slowly (Kadanoff and Swift,
1968b). We may introduce a conserved density m(x, t)
which couples to |$|? in the free-energy functional
(4.1b), just as the “temperature” 7,. This density can
represent the energy, or alternatively the concentration
of a set of mobile impurities. The simplest such system
(model C) is defined by the equations (Halperin et al.,
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1974a)
) OF
a‘/;d = —Fo‘('w‘: - ha> +0,, (4.50a)
5

%n— :A;"Vz(é—ﬁ:lo- +6B> +¢, (4.50b)

(¢) =0, o . (4.50c)

(Elx, DE(x’, 1)) ==2A1m20 (x —x/)8(t - t'), (4.50d)

Fy= [ a7 6) + a0t ) + 3 9o )l

+y 2 @)m(x) +3C;'m?(x)} +const. +const. M

(4.50e)

where M is the space integral of m, 0p(x,t) is an exter-
nal field coupled to m, and the correlations of the Lange-
vin noise source 6,(x,t) are still given by (4.1e) and
(4.11).

2. Static properties

The equilibrium distribution for the above model is
given by a joint probability density (kz7,=1)

B[y, m]=2""exp(-F,), (4.51)
where ‘
zZ= fD{tPa}D{m}exp(—Fo) (4.52)

is a functional integral over all ¥,(x) and m(x), whose
variations have wave vectors less than A (see Halperin
et al., 1974a for details). Since the functional F, in
(4.50e) is quadratic in m, we may integrate (4.52) over
m to obtain a probability density for ¢ alone. This den-
sity has the same form as in model A, Eq. (4.1b), with
parameters

(4.53)
(4.54)

v, =7,-const.,
Uy :do - %cho .
In order to study the static renormalization group for
model C, we may define a perturbation expansion in

terms of the dimensionless four-point vertex %, in Eq.
(4.54), and a dimensionless three-point vertex

v,=K2C, . (4.55)

The recursion relations for «; and 7, have the same form
as Eqs. (4.20) and (4.21), and additional relations for
C, and v; may be written in the form

C7l, =b"%m C7![1 ~ 2nv, 1nb ], (4.56)
Ve, =0 )[1 - 8(n +2)u, K, Inb — 2nv, 1nb] , (4.57)
1+1 1 4
where the exponent ¢,, is defined, in analogy with
(4.11c), by
m'=b*mm (4.58)

In order for the functional F; to reach a finite fixed point
we must have

am=%(d_&/y); (4-59)
where
&=max(a,0), (4.60)
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and « is the exponent for the singular part of the sus-
ceptibility X,, which is the specific heat if 7 is the en-
ergy density. From (4.59) and the recursion relations
(4.56) and (4.57) it may be shown that
V¥ =& /2nv + O(?) (4.61)
with
a/v=(4 -n)e/(n+8)+0(e), (4.62)
Equation (4.61) implies that the effective coupling of the
densities ¢ and m vanishes asymptotically for o <0.
3. Dynamic properties

To study the dynamics we find the recursion relations

for the variables AJ" and T,
(CHI IR S A L (4.63)

7Y, =02 T 1 40,4,], (4.64)

A ddp . . " -
Aar [ Gt er)lpt ey 0p/C T}

(4.65)

Since according to Eq. (4.61) v, is of order €, the fixed-
point condition for Eq. (4.64) is different from (4.17)

in that order. Evaluating A; from Eq. (4.65) we find to
lowest order in €

A;=4(1 +p,) " Inb (4.66)
where
p=27/TC, (4.67)
satisfies the recursion relation
a 2
Mlq-u,[l +<Tlnb>(m—l>] y (4.68)

to first order in €. Equation (4.68) has three possible
fixed points,

p*W e , (4.69)

pro =2y (4.70)
and

p¥® =0, (4.71)

a. Thecasen =71

Let us first consider the case n=1. Analysis of Eq.
(4.68) shows that the fixed point w*®’ =1 is the stable
one, from which it follows by Eqs. (4.64) and (4.61) that
T, will reach a finite nonzero fixed point if and only if we
choose

z=2+a/v . (4.72)

(note that @ >0 near d=4 for n=1). Comparing Eqgs.
(4.72) and (4.24), we see that the coupling of ¢ to the
conserved density 7 has changed the value of z in linear
order in €,

In fact, it may be shown that Eq. (4.72) is an exact
scaling relation, which holds to all orders in € for n=1.
It expresses the dynamic exponent z purely in terms of
static exponents. The essential point in proving this
scaling law is to verify that u* remains finite and non-
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zero when higher-order terms are considered. For
sufficiently small €, this has been done (Halperin et al.,
1976a) by verifying that the recursion relations are
regular near pu* =1,

Associated with the scaling relation (4.72), there is a
universal amplitude ratio, defined as a ratio of charac-
teristic frequencies for ¢ and 7z,

AnK%X o

wnk) «°
—~ =1lim =5 .
TXm o wy(k) 22
To lowest order in €. p is just equal to £*®’ =1 and in
the next order p has been obtained from the Feynman-
graph expansion (Halperin ef al., 1976a) as

u= (4.73)

p=1+€(91n2 -2 1n3 - ). (4.74)

The exact scaling relation (4.72), which follows from
the finite fixed-point value for the dimensionless con-
stant 4, and leads to the physical amplitude ratio (4.74),
is the prototype for all the dynamic scaling relations to
be discussed below.

Let us briefly consider the other fixed point values of
u;, Egs. (4.70) and (4.71) for the case n=1. The fixed
point p*?? = corresponds to model A, or to a situation
in which the characteristic frequency for relaxation of
m is large compared to that of ¥. In that case m effec-
tively follows the fluctuations of ¥ instantaneously. This
fixed point is of course reached for # =1 if one starts out
with p, = (or AJ =), but it is unstable if one begins with
any finite Wy, no matter how large. In the latter case
there will be a crossover from model A behavior to the
model C fixed point.

The fixed point w*®’ =0 is also unstable for n=1, as
long as AJ'>0 (or u,>0), but it has significance if u, is
sufficiently small. Unfortunately, when u,~0, the
validity of the recursion relation (4.68) is subject to
considerable doubt. As discussed by Halperin ef al.
(1976a), there is a contribution to the renormalized four-
point vertex which is a singular function of the frequency
transfer w, in the limit w—0, u, =0. A generalization
of the recursion relations designed to keep track of this
singular contribution does not lead to a well-behaved
fixed point, so that the true critical behavior in the limit
Ko~ 0 is not yet known. .

The limit <1 will not occur when 7 is the energy
density, since the thermal diffusion rate over a distance
£ is generally not small compared to the relaxation rate
of the order parameter, in physical situations. A very
small value of u, can occur, however, when m(x, ?) is
a denSity of mobile impurities, whose diffusion rate may
be arbitrarily slow. In order to ensure that we begin
from a situation of thermal equilibrium, as is assumed
in model C, we must require that the specimen be an-
nealed at the measuring temperature T for a time long
compared to the impurity diffusion time £2x,,/X,, before
the order parameter relaxation is measured.

The dynamics of relaxational models with randomly dis-
tributed immobile impurities, representing a crystal in
which the impurity positions are frozen in upon quench-
ing from a temperature high compared to T, has been
studied by Grinstein el al. (1976), Krey (1976, 1977a,
1977b), and Yamazaki (1976b, 1976c). In contrast to the
annealed impurity case considered above, the dynamic
renormalization group for the quenched models is found
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to reach a well-behaved fixed point whenever the static
fixed point is well behaved. In particular, for impurities
which couple to [§|2, the critical exponents are different
from those of the pure system, for values of # and d for
which a>0 in the pure system,

b. Thecasen>1

For any point in the (z —d) plane where the specific
heat exponent « is negative, the coupling constant v,
tends to zero for large ! [Eq. (4.61)], and the conserved
energy field has no effect on the asymptotic critical be-
havior. [The region @ <0 occurs for n>#n,(d), where =,
=4 —4e +O(e®) for e -0, n,(3)~ 1.8, and n,(2)=2; see
Fisher (1974).] The critical behavior of model C is the
same as that of model A in this case, and p; -« for
large I. In the domain 2<xn<4,e -0, the recursion rela-
tion (4.68) implies that the stable fixed point is p*® =0.
Because of the difficulties with these recursion relations
in the limit 1, =0, however, it is not clear whether this
result is in fact correct. Another possibility which can-
not be ruled out is that the stable fixed point has a finite
but very small value of u* in this region. A more com-
plete discussion of the possible fixed points of model C,
and their domains of stability, may be found in Halperin
et al. (1974a,1976b), Brezin and De Dominicis (1975),
and Murata (1976a). The theoretical problems in the re-
normalization group when (., -0 will arise again in the
dynamics near the tricritical point of *He~*He mixtures
treated in Sec. VI.F, below.

D. Applications to physical systems
1. Structural phase transitions
a. Simple Hamiltonian mode/

Consider a system described by the classical Hamilto -
nian ’

z 1
H=) (——fM * mw?wozp?) +7 2 Tuli=1)?,  (4.75)
1 0 1]

where the subscripts ¢ and j refer to points on a d-di-
mensional, simple cubic lattice with lattice constant un-
ity, ¥; is a scalar quantity describing the displacement
of an atom in the ¢-th unit cell, and p; = M dy,;/dt is the
momentum conjugate to y;.'®

If 7, is negative, while J;; and U, are positive, then
the ground state of H has a uniform distortion with {¥,)
#0. Let us define

BWhen (4.75) is applied to a real structural transition, § may
represent the displacement of an optical phonon mode at the cen-
ter of the Brillouin zone, or it may be interpreted as a stag-
gered displacement, corresponding to a soft phonon at the edge
of the zone. Note, however, that if the zone center mode car-
ries an electric dipole moment (ferroelectric case), the inter-
action J;; will contain a long-range dipolar contribution, which
will modify the static and dynamic critical behavior. For an
Ising-like system with dipolar forces in three dimensions the
dynamic critical behavior of model C will be mean-field-like,
with logarithmic corrections (Siggia, 1975; see also Stauffer,
1977, and Miiller and Merz, 1976).
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Jq:ZJijeiq' xi=xy) (4.76)
J
where X; and X; are the positions of the lattice sites ¢ and
j. If |,|/J,> 1, then the value of |§;| will be approxi-
mately |»,/4U,| /2 on each lattice site, both above and be-
low the transition temperature. The partition function is
essentially that of an Ising model, and the transition may
be described as an orientalional or an ovdev-disovder
transition. On the other hand, in the case |r,|/J, <1,
one has a displacive transition, in which the phonon sys-
tem is only weakly anharmonic. In general, the transi-
tion temperature T, may be written as

kpT, = const.|7o| Jo/U,, (4.77a)

where the constant of proportionality is a function of
|74]/J4, but remains finite in both the displacive and ori-
entational limits (see Thomas, 1971; Halperin and
Varma, 1976, and references therein). The quartic
coupling constant #, of the previous sections may be
identified as

uo= const.UkpT,/J2=const.|ry|/J,, (4.77b)

which is small in the displacive limit.

The only conserved density for the Hamiltonian (4.75)
is the energy. According to the universality hypothesis,
we would therefore expect the system to exhibit the
critical dynamics of model C.'® It is instructive to see
how this may come about, i.e., to sketch a “derivation”
of model C from a miéroscopic starting point.

If we assume that the interaction «, is small, a formal
diagrammatic expansion of the response function
Xy (K, w) in powers of u, can be developed for the Hamil-
tonian model, in much the same manner as for the sim-
ple relaxational case (model A) discussed above. The
important difference is that the bare propagator x,(k, w)
is now taken to be

Xo ‘(& w) = —=Mw? +7,+ Jo = Jy

(4.782)
= —Mow?+7,+ JEEE+ O(RY) , (4.78b)

which has poles at the bare phonon frequencies £
=+ M2+ Jy — J)Y2. The first step in the renormal-
ization group approach is to eliminate fluctuations in the
range A, <p<A,, where A =75 A, say, and A =7 is the
maximum wave vector in the Brillouin zone. This leads
to a partially dressed propagator (before rescaling by

3) of the approximate form

X1k, w)= =M, 0w? —iw/T +7,

+ J"EE+O(FY) + 0(w?), (4.79)

where 7, is shifted from », by a small amount of order
EsTU,/J2= u,; the coefficients M, and J” are shifted
from M, and J? by a smaller amount (of order «Z), and
(1/T)) is the phonon damping constant resulting from in-
teractions with phonons of wave vector greater than A,
If the term of order %* in Eq. (4.79) is sufficiently posi-
tive, so that the phonon spectrum curves upwards for A

19Note that there can be no reversible couplings between ¥ and
the energy density m because both densities are even under
time reversal. The Poisson bracket of m and ¥ need not be con-
sidered in this case.
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FIG. 2. The lowest correction to the four-point vertex. The
lines represent propagation of an order parameter mode.

<p<2A,, then 1/T'; may be calculated from the lowest-
order diagram in Fig. 1, with the result®

1/T, = const.U2(ksT M2 J;7/2 (4.80)

If one were to neglect the effect of this first renormal-
ization operation on the four-point vertex U,, then one
would have at this stage a model with interaction ver-
tices of the same form as model A, and with a propa-
gator of the form (4.79), containing a small but finite
phonon damping. Energy no longer is conserved for this
model, andthe universality hypothesis now predicts that
the model should show the critical behavior of model A
itself. Indeed, we may note that the rescaling operation
Rj increases the importance of —iw/I'; relative to —M;w?,
and we expect that after many iterations of the renor-
malization procedure the phonon propagator will become
overdamped, and the term —M,w® may be neglected
(see Sec. IV.A.4, and Murata, 1976a).

The change in propagator from (4.78) to (4.79) is, how-
ever not the only effect of the elimination of fluctua-
tions with p>A,;. An important new feature arises from
the contribution of Fig. 2 to the renormalized four-point
vertex U,. As a consequence of the absence of damping
in the bare propagator (4.78), this diagram gives a
singular function of the wave vector transfer k =k, +k,
and frequency transfer w=w, +w,, in the limit 2 and
w=0. If one is able to sum an appropriate series of
diagrams, equivalent to a solution of the Boltzman equa-
tion for phonons with p> A, then the singularity in U,
should take the form of a simple pole, at w=-iD'k® (see
Kwok and Martin, 1966). The quantity D}* is the thermal
diffusion constant for the short wavelength phonon sys-
tem, and is proportional to the phonon lifetime, and the
square of the phonon velocity

D=const.JJ T, (4.81)
_ Uik T, DUR®
Ul(k,w)Z_;gU0+const. 2 "0 1D (4.82)

It may readily be seen that the rescaling operation R
does not reduce the singular part of U,, for d near 4;
therefore one must keep track of the residue and position
of the pole in U;. These two parameters obviously cor-
respond to the parameters v, and y, in model C, and

®1n a simple cubic lattice with nearest-neighbor forces only,
the phonon spectrum curves downwards, and the contribution
of Fig. 1 is found to vanish, because it is impossible to satisfy
wave vector and frequency conservation in this process. In
most physical systems, however, where the phonon spectrum
has several branches, there will be a contribution to 1/T", of
order U}T? as in (4.80). There may also be a larger contribu-
tion (order T) in systems where three-phonon scattering pro-
cesses are important.
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indeed the introduction of a separate conserved energy
field was essentially a device to keep track of the singu-
lar part of the retarded four-point interactions among
the long-wavelength components of . Although the cal-
culations have not been carried out in complete detail,
the preceding argument thus makes it plausible that ap-
plication of the renormalization group to the micro-
scopic phonon model (4.75) should carry it toward the
fixed point of model C.

We may remark incidentally that the asymptotic cri-
tical behavior for the model in three dimensions does
not seem to be very different, qualitatively, from the
predictions of a time-dependent mean-field theory
X7 &k, w) = =M,w?* —iw/T +r +d,=d,,,
where
¥ =ro+12U,(¥7) =7, +12U kg T/J, +const.(T = T,), (4.84)
and I'"! is a phenomenological damping constant, which
is generally taken to be independent of k and 7'. [See,
for example, Halperin and Varma (1976).]

If the displacements ¥; and momenta p; in (4.75) are
defined to be n-component veclors, the hydrodynamics
and dynamic critical behavior of the model will be qual-
itatively different from the scalar case. The Hamilton-
ian in this case has a new set of conserved quantities,
the angular momenta Lyg =) ;7pf —pFyf. The Poisson-
bracket relations between L, and y; are important
here, and one expects that the system will behave very
much like the planar ferromagnet or Heisenberg anti-
ferromagnet systems, discussed in Secs. VI and VII be-
low. (See Sasvari ef al., 1975; Janssen, 1976; Szép-
falusy, 1976; Sasvari and Szépfalusy, 1977a, and 1977b.)
Onthe other hand, if we add to the Hamiltonian anisotropic
terms such as >, 27;(¥%)*, which will always be present
for a real structural transition, angular momentum is
no longer conserved, and we expect to find relaxational
critical dynamics close to 7,, similar to that of model
C, for n>1.

(4.83)

Note added in proof. Bausch and Halperin (1977) have
applied renormalization group methods to the critical
dynamics of a Hamiltonian model for an antiferroelectric
transition, in which the dominant contribution to the
damping of the scalar order-parameter mode comes
from cubic interactions with additional phonon branches.
As expected, the model shows the same critical dynam-
ics as model C, and results are in line with the dis-
cussion of the present section.

b. Experiments on structural phase transitions

Inelastic neutron scattering measurements of the pho-
non spectrum near displacive phase transitions in a
variety of crystals have revealed a feature which is in
striking contrast to the predictions of the previous para-
graphs. The correlation function C »(K, w) is dominated
by a very narrow central peak whose relative intensity
diverges for k—~0 and 7~ 7). This feature appears in
addition to the damped or overdamped soft-phonon mode,
whose frequency and intensity are found to be finite at 7,
(see Riste, 19'74; Miiller and Merz, 1976). Indirectmea-
surements of the central peak width in SrTiO, above T, via
electron-spin resonance (Miiller et ¢l., 1974) and sound
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attenuation techniques (Rehwald, 1970), as well as direct
measurements by inelastic neutron and y-ray scattering
(Topler et al., 1975; Darlington and O’ Connor, 1975) sug-
gestthat the central peak is atleast several orders of mag-
nitude smaller than the typical phonon widths.

It has been pointed out that the qualitative behavior of
the central peak can be described by a model in which a
small concentration of impurities is responsible for
pinning of local “domains” of the order parameter, on a
time scale long compared to the fluctuation lifetimes in
a pure material for 7> T, (Shirane and Axe, 1973; Folk
and Schwabl, 1974; Halperin and Varma, 1976; Schmidt
and Schwabl, 1977.) Recent neutron measurements in
SrTiO,; have shown the strength of the central peak to be
sample-dependent for temperatures 2 7, +10 K, which
clearly supports an extrinsic origin for the central peak,
at least in that temperature regime (Currat et al., 1977).
Closer to T,, however, the central peak strength was
found to be sample independent and it is not clear how
this relates to the impurity explanation.

Temperature-dependent central peaks below T, have
been observed recently in a number of materials, using
light-scattering techniques. It appears that the central
peak may have several temperature-dependent compo-
nents in various situations, and that part of the central
peak may be elastic while other parts are inelastic.
See, for example, Fleury and Lyons, 1976, Lockwood
et al., 1977, Mermelstein and Cummins, 1977, Dur-
rasula and Gammon, 1977, Lyons and Fleury, 1977,
Courtens, 1976.

There have been a number of theoretical attempts to
obtain a narrow central peak for a Hamiltonian similar
to (4.75), without the introduction of impurities, in con-
tradiction to the expectations of the previous subsection.
(See the references cited in Halperin and Varma, 1976).
In our opinion, these attempts have not been successful
in predicting a central peak narrow enough to be identi-
fied with the one observed experimentally. Therefore,
if one hopes to avoid an explanation in terms of impur-
ities, one must probably consider some other model

with two very different time scales built into the start-

ing Hamiltonian.

2. Magnetic phase transitions
a. Hamiltonian examples

As a Hamiltonian example of a magnetic system, let
us consider a three-dimensional anisotropic Heisenberg
ferromagnet or antiferromagnet, in which the coupling
constants for the three components of the spin are all
different. In this system there is no conservation law
other than conservation of energy, and the only low-fre-
quency mode at long wavelengths, for 7+ T, is the
thermal diffusion mode. Since the spin has a single easy
direction, the order parameter is characterized by n=1,
and the static exponents are expected to be the same as
those of the Ising model. Similarly we expect that the
dynamic critical properties should be the same as those
of the model with energy conservation, i.e. model C with
n=1.

In the uniaxial Heisenberg fervomagnet, the couplings
of the x and y components of the spin are equal, but
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smaller than the coupling of the z component. The order
parameter is the z component of the spin, which is now
conserved by the Hamiltonian. We expect that the dy-
namic critical behavior should be the same as that of
case B,?! provided dipolar interactions can be ne-
glected.

In the uniaxial antiferromagnet, the order parameter
is the z component of the staggered magnetization which
is not conserved. In addition to the energy, there is now
a second conserved quantity, the z component of the total
magnetization. However, under repeated application of
the renormalization group, the (nonlinear) coupling of
the order parameter and the energy to long-wavelength
fluctuations of the z component of the magnetization be-
comes vanishingly small, and this variable will not af-
fect the critical dynamics. Thus the uniaxial antiferro-
magnet should have the same critical behavior as model
C.

In a real magnetic system coupling to the phonons or
other degrees of freedom will also contribute to the time
dependence of the spins. Since the thermal conductivity
of the phonon system is often very high compared to that
of the spins in a magnetic insulator, model A without
energy conservation may be a better description of the
magnetic system than model C. On the other hand, if the
rate of energy transfer between the spin and phonon sys-
tems is very slow compared to the spin exchange fre-
quencies, it may be a good approximation to consider
the spinsasa thermally isolated system with conserva-
tion of energy. Of course, in many cases the physical
system will be intermediate between the cases de-
scribed, and the dynamic critical behavior may reflect
a crossover between the different regimes.

b. Experimental consequences in magnetic systems

Generally speaking, the relaxational models are rather
well approximated by the conventional theory, since the
deviations of the critical exponents from their conven-
tional values are numerically small. Thus, in order to
observe these deviations in magnetic systems, extremely
accurate measurements would be required. There is
some evidence in the NMR linewidth measurements of
Gottlieb and Heller (1971) on the uniaxial antiferromag-
net FeF,, for a critical exponent z which is slightly
larger than 2 —7, but the deviation from the conventional
theory is by no means conclusive. Further discussion of
these results is given by Halperin ef al. (1974a).

Siggia and Nelson (1977) have noted that at a magnetic
tricvitical point, the kinetic coefficient should vanish
much more strongly than at the ordinary critical point,
provided the system can be described by relaxational
dynamics with a conserved energy field, as in model C
(see Sec. VIII.D.3, below). There may thus be a better
chance of seeing the effects of energy conservation ex-
perimentally in the tricritical case.

IMore precisely this case corresponds to model D of Halperin
et al. (1974a, 1976a), in which both ¥ and m are conserved. The
order parameter relaxation obeys the conventional theory in
that case, just as in model B.

Rev. Mod. Phys., Vol. 49, No. 3, July 1977

455

3. Order-disorder transitions in alloys

A number of alloys such as g-brass (CuZn), Fe,Al,
and Ni,Mn undergo an order-disorder transition, in-
volving rearrangement of the atomic constituents. A
given atomic species, which has an equal probability of
lying on either of two equivalent sublattices in the dis-
ordered phase, tends to order on one of the-two sublat-
tices, for T<T,. It is known that the equilibrium prop-
erties of these systems are well described by an anti-
ferromagnetic Ising model (see Fisher, 1967), and the
critical dynamics might be expected to be that of model
A. (The energy diffusion rate is very large compared to
the relaxation rate for the order parameter here.)

The order parameter relaxation in Ni,Mn was studied
by Collins and Teh (1973) by monitoring the relaxation
of the apprbpriate Bragg peak intensity in neutron scat-
tering after changing the temperature from one value to
another, in the range 7'<7T,. Although the results
seemed to differ significantly from the predictions of
model A, the discrepancies may be due to nonlinear ef-
fects of the relatively large temperature changes AT
(Récz, 1976; see also Sec. VIII.B below). Another com-
plication in the interpretation of these experiments
arises because the mechanism for order parameter re-
laxation involves “catalysis” by a small density of mo-
bile vacancies (Rdcz and Collins, 1975).

" V. GAS-LIQUID AND BINARY-FLUID CRITICAL

POINTS

A. Model H

We shall first study the gas-liquid critical point of a
pure fluid, and generalize to a binary mixture in Sec.
V.E below. A pure fluid has four hydrodynamic modes,
a soundwave, thermal diffusion, and two viscous diffu-
sion modes (Landau and Lifshitz, 1959). For & of order
£~ the sound modes are at a significantly higher fre-
quency than the diffusive modes near T.. Therefore, if
one considers fluctuations at frequencies w small com-
pared to ck and c£7Y, it is reasonable to employ a model
in which sound waves are ignored, and fluctuations are
considered to occur at constant pressure. Such a model
(model H) is defined by the equations (Kawasaki, 1970;
Halperin et al., 1974b; Siggia et al., 1976)

o _ 5F BF
—5; - )\ovz Ep‘ “gOVlP 5j +0, (5'13‘)
of .~ 3 0F oF

—E; =T [TIUVZF +go(VZP) 59 +§] > (5.1b)
F=Fo- [ a®x{n(x, 00+ A(x,1)-3} , (5.1c)
F0=fddx{%rozp2+%(vw)2+u0¢4+-§jz}, (5.1d)

where 2 and A are infinitesimal applied fields, 7" is a
projection operator which selects the transverse part of
the vector in brackets (7 §#=06,5 ~ kyks/#?), and 6 and ¢
are appropriate Langevin noise sources. The order pa-
rameter § represents the linear combination

q(x,8)=e@®,t) - (L+T3)p(x,1), (5.2)
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of the energy density e(x,t) and the mass density p(x,t)
[ and 5 are the equilibrium chemical potential and en-
tropy (per unit mass), respectively]. The quantity j(x,?)
is the transverse part of the momentum density, and the
constant g, is equal to unity in the usual units.??

The coupling terms in the equations of motion (5.1a)
and (5.1b) are suggested by the Poisson-bracket relation
(2.23), which follows from the fact that the momentum is
the generator of translations in the system. Specifically,
the term proportional to g; in (5.1a) corresponds to the
convective term in the heat transport equations, and is
necessary to obtain the correct nonlinear hydrodynamics.
The g, term in the Navier-Stokes equation (5.1b) is then
required so that the system will relax to the proper equi-
librium distribution in the absence of external forces.
This term corresponds to a contribution proportional to
»v%) in the stress tensor.?

At long wavelengths, for T'#7T,, the linear response
functions for ¥ and j contain simple poles at frequencies

wy (k) = = iAR*/xy , (5.3)
and
w; (k) = —ink?, (5.4)

respectively, where the transport coefficients A and 77

(k+Tp-k)
NP2+ AP Xy 1 (P.) P2

d
A(k)=A0+g§k'zf %ﬁ;xw(m)

gok™® (A%

Xs @) [X5'®.) =X5 (@)@ Ty - D)
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are the “dressed” values of the thermal conductivity and
shear viscosity in a pure fluid.

B. Mode-coupling treatment

The heuristic arguments presented in Sec. II may be
applied to this model, and they suggest that the product
A will diverge at T,. A quantitative calculation which
embodies these ideas was first performed by Kadanoff
and Swift (1968a), and subsequently refined and general-
ized by Kawasaki (1969, 1970). The Kawasaki theory in-
volves a self-consistent evaluation of the response func-
tions x, (k, w) and x;(k, w) based on a first-order expan-
sion of (5.1) in g,. Although this was an uncontrolled ap-
proximation (the effective vertex is not small in three
dimensions), the self-consistency condition ensures that
dynamic scaling is preserved, and the results agree re-
markably well with experiment (see below). The approx-
imation, which is illustrated schematically in Fig. 3,
may be written in the form -

ﬁ(k) =ﬁo+ d _ 1 (27{)'1

p:=p=zk . (5.9)
Note that in writing Eqs. (5.5) and (5.6) we have made a
Lorentzian approximation for the frequency dependence
of the response functions, i.e., we have evaluated the
contributions of the diagrams in Fig. 3, in the limit of
low frequency (see Kawasaki 1970, 1976; Siggia et al.,
1976). Since ¥, (p) is strongly divergent we may neglect
the A(p,) term in the denominator of (5.7). Inserting a
scaling form (3.21) for ¥, (p), and neglecting X, and 7,,
it is apparent that Eqs. (5.7) and (5.8) have solutions in
which A(k) and 77(k) also have the scaling form

A(K) = k7ML (KE) ,
n(k) = kR E (kE) ,

(5.10)
(5.11)

2In (5.1) we have chosen units in which the free energy F, is
dimensionless (kg7T.=1), and the susceptibility )<j=p"1 is set
equal to unity. More generally, the field j is the transverse
momentum density divided by (pksT,)!/2, and gy= (pkpT,)1/2.
%Note that a convective term of the form

6 F,
gﬂ"[(# -V>j]oc (R
also occurs in the nonlinear Navier-Stokes equation for 9j/9¢.

This term has been omitted from (5.1b) since it turns out to be
irrelevant near T,.
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AP Xy (P PE + 1P Xy (PP

Xy (&, w) = [—iw/ X&) E? ] +x; ' (k) , (5.5)
X'k, w) = [—tw/MK)E]+1, (5.6)
with?*
(5.7)
(5.8)
with
Xx+xp=4=d+n. (5.12)

Moreover, in the limit #-~0 we have, using Egs. (5.3)

and (5.4), roc £) o £7, with
M =g3 x, (k=0) &R ,

where R is a (universal) numerical constant: Equation

(5.13)

.(5.13) may be rewritten in the “Kawasaki-Stokes” form,

in terms of the thermal diffusivity D =X/x, in physical
units,?® as (Kawasaki, 1970)

D= RkgT/ME*2. (5.14)

This is precisely the result obtained in (2.22) by a sim-
plified argument.

In order to calculate the exponents and scaling func-
tions in (5.10) and (5.11) it is necessary to solve (5.7)
and (5.8) numerically, or to make further approxima-
tions. The simplest of these follows from the experi-
mental observation that 77 is at most weakly divergent.
The approximation consists in setting 1= constant, and

MU Eq. (A6) of Siggia et al. (1976), the factor {x;!(p,) —x;' @)}
in (5.8) was approximated as p *k, which implies an Ornstein-
Zernike assumption for x,(p) (i.e., 1=0).
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(a)

(b)

FIG. 3. Lowest-order self-energy diagrams for the critical
dynamics of the fluid, in an expansion in the mode-coupling
vertex g;. The solid lines represent the order parameter
mode, and the wavy lines are viscous relaxation modes. Near
four dimensions these diagrams yield the correct asymptotic
behavior at the critical point. In three dimensions they lead
to the self-consistent Kawasaki approximation, which pre-
serves scaling and agrees rather well with experiment.

using an Ornstein-Zernike form for x, (k) in (5.7), to
calculate the scaling function L (k£). From (5.12) with d
=3 and n=0 we then obtain x, =1, and the characteristic
frequency takes the form

wy (K) = A(K)E?/x, (k) = (kgT/61TE)Q (RE) ,
Qr(y)=y72Ko(y) =1 y?[L+y% +(y° =y~ arctany] .

(5.15)
(5.16)

In the next approximation, the correction to 7 can be
found from (5.8) by using (5.16). The result is?®

n=1,[1+(8/1572) In£] . (5.17)

A more accurate solution of (5.7) and (5.8) may be ob-
tained numerically, and the exponents for d =3 turn out
to be (with n=0) (Ohta and Kawasaki, 1976)

x5=0.054, x,=0.946, (5.18)

which differs little from the lowest approximation x, =1,
%%=0 in (5.16) and (5.17). A slightly different calculation
was performed recently by Garisto and Kapral (1975,
1976), who did not make the Lorentzian approximation
(5.5) and (5.6), and found x5 =0.07. Furthermore, the
scaling functions may be evaluated numerically from
(5.7) and (5.8) (Kawasaki and Lo, 1972), and the results
also show only small deviations from the lowest-order
expression (5.16).

A result in the form (5.14) for the thermal diffusivity
was first obtained by Kadanoff and Swift (1969a), except
that they had a “high-frequency” viscosity n* in place of
the macroscopic transport coefficient 77, in the denomin-
ator. The correct form was presented by Kawasaki
(1969, 1970, 1971), but he mistakenly argued that Egs.

ZNote that a factor of 7, was inadvertently left out of Eq.
(4.13) of Siggia et al. (1976).
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(5.7) and (5.8) imply a finite 77 at the critical point. A
mode-coupling argument including a logarithmically di-
verging viscosity in the form (5.17) was given by Ferrell
(1970). A power-law divergence for the viscosity was
first predicted by Halperin et al. (1974b), using renor-
malization group arguments near four dimensions (see
below). The exponent x5 was subsequently calculated to
second order in € by Siggia et al. (1976), and self-con-
sistently by Ohta and Kawasaki (1976), and Garisto and
Kapral (1976), as in (5.18). More extensive references
to the theoretical literature may be found in Swinney and
Henry (1973), Kawasaki (1976), Siggia et al. (1976), and
Kawasaki and Gunton (1976a).

C. Comparison with experiment

The results of the approximate mode-coupling calcula-
tions can be subjected to a number of tests, by compar-
ing to inelastic light scattering experiments and direct
macroscopic measurements of the transport coefficients.
These have been reviewed extensively elsewhere (Swinney

“and Henry, 1973; Kawasaki, 1976; Sengers, 1971,1973),

so we shall only illustrate the main features. In com-
paring experiment and theory it is important to consider
the regular background contributions to the transport
coefficients, represented by 1, and 7, in Eqgs. (5.7-8),
since these do not become negligible until one reaches
the asymptotic limit in which £ is truly infinite (see
Sengers, 1971,1973; Swinney and Henry, 1973). For the
viscosity in particular, the condition 7>>7, would only be
satisfied in an unphysical temperature range, since the
exponent x3 is so small. If 77, and X, are retained in
Eqgs. (5.7) and (5.8) the solutions no longer have the

" scaling form (5.10)-(5.11) for finite values of & or £7*

(Oxtoby and Gelbart, 1976). In the Kawasaki approxima-
tion leading to (5.15) we may take X, and 7, into account
by writing .
_NEE kT —
wy (k)_;f(_k_i 3 Qg (RE),
where 77, the full viscosity, includes 7, as a multiplica-
tive factor (Ohta, 1977).

The characteristic frequency w, (k) may be determined
from the spectrum of inelastic light scattering in a fluid.
In cases where the thermal conductivity has been mea-
sured independently, the constant A, can be obtained from
data far from the critical point. The susceptibility x, (k)
may be replaced by the Ornstein—Zernike form x, (R)
=C,(1+~%£%) ™!, and the quantities 7 and £ can be mea-
sured directly. Thus, a comparison of Eq. (5.19) with
experiments is possible, with no adjustable pavameters
(Swinney and Henry, 1973). The results for a number of
fluids (including binary mixtures) are shown in Fig. 4,
and represent in our opinion a truly remarkable success
for the mode-coupling theory. Moreover, macroscopic
measurements of A and 77 are also consistent with the re-
sults (5.14) and (5.17) (Sengers, 1971,1973).

The agreement between experiments and the simple
Kawasaki theory is well within the 10%-20% accuracy
with which the parameters C,, 77, &, and X, can be deter-
mined experimentally, and calculations or measure-
ments of systematic deviations from this theory require
great care. An important quantitative effect comes from

(5.19)
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the corrections to scaling in A and 77, as well as in the
static functions (Wegner, 1972), and these may enter in
rather subtle ways at the 10% level.

From a theoretical point of view, there are two ways
to understand the success of the Kawasaki approximation
(5.15). First of all, one may calculate the corrections
by inserting the lowest-order expressions in a systema-
tic expansion of the correlation functions. This has been
done by a number of authors (Lo and Kawasaki, 1972;
Perl and Ferrell, 1972a, 1972b; Garisto and Kapral,
1975), and quite generally the corrections are found to
be less than 5% for the order parameter, and somewhat
more for 7. [An example is the self-consistent calcula-
tion of x, and x5 in (5.18), which hardly changes their
values, compared to (5.15)—(5.17).] Another way to in-
vestigate the validity of the mode-coupling theory is via
the renormalization group, which provides a systematic
expansion near d = 4.

D. Renormalization group

The treatment of model H follows rather closely the
analysis given in Sec. IV for the relaxational models.
The addition of nondissipative vertices proportional to
&, makes the diagrammatic formalism considerably more
complicated, but the general structure of the theory re-
mains the same [see Siggia et al. (1976)]. One writes
down recursion relations for the static parameters 7,
and u;, and for the dynamic quantities A;, g; and 7,.%® It
may be seen from Eqs. (5.1) that there is a dimension-
less coupling constant

fo Kdngd-‘!/)\oﬁo .

It is thus useful to combine the recursion relations for
&1, A;, and 7, into an equation for f;. The result is (Hal-
perin et al., 1974b)

‘(5.20)

®There is no static coupling between j and ¥ in (5.1d), analo-
gous to v, in (4.50e), since the susceptibility x; = p~! does not
have an « divergence at T,.
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1 =0T (1 + 4 f, 1nb) (5.21)
ﬁl+1=bz-zﬁl(l+ﬁfl lnb): (5.22)
S141=07 (1 =22 £, 1nb) . (5.23)

From Eq. (5.23) it follows that f; reaches a stable fixed
point

f*=(24/19)e +0(¢?) ,

for d<4. An examination of the corrections to (5.24)
shows that these are finite in every order when l -, so
that f * remains finite to all orders in €, for small €
[Siggia et al. (1976)]. It then follows, by an analysis sim-
ilar to the one leading from (4.70) to (4.72), that the
transport coefficients are related by an exact scaling
law, which is the one given in (5.12). This relation is
also valid to all orders in €, since it depends only on the
finiteness of f*. The dynamic exponent z may then be
identified, using (5.21), as

(5.24)

2=4-n—=1x,. (5.25).

The exponents x, and x3 and the universal constant R
in (5.14) may be found to order € from the recursion re-
lations (5.21)-(5.23). For the higher-order corrections
it is more convenient to use the Feynman-graph expan-
sion, as was done by Siggia et al. (1976), who found

%y =1 €[1-0.033¢ + 0(c?)]~0.916, (5.26)
=% €[1+0.238¢ + 0(¢%)] ~0.065, (5.27)
R=K;2 €™ [1+0.06¢ +0(c?)] . (5.28)

A direct extrapolation of (5.28) to d=3 yields R =0.042,
which is rather close to the result of the Kawasaki ap-
proximation Rg = (67)"!= 0.05, but probably not as ac-
curate at d=3. An extrapolation for R which combines
mode coupling and the € expansion, and should therefore
be more accurate than either method separately, was
devised by Siggia et al. (1976), and yields R = 1.2Ry

= 0.064,

The € expansion is also useful in understanding the
success and the limitations of the mode-coupling ap-
proach. First of all, to the extent that one only examines
velations between transport coefficients the scaling law
(5.12) is correct to all orders in g, and is not limited to
the lowest order. The further approximation made by
Kawasaki (1970) to evaluate x,, namely the assumption
that x5 is negligible, has its justification in experiments.
However, it is also reflected in the smallness of the co-
efficient 35 f; in Eq. (5.22) compared to £ f; in (5.21). The
origin of this effect lies in the angular factors appearing
in the integrand of (5.8), and it also leads to the small
coefficient 8/1572 in (5.17) for three dimensions. The
weak effect of an order parameter fluctuation on trans-
verse current fluctuations represents in some sense a
small parameter in the theory, of order x/x, = 0.05
(Siggia et al., 1976). Although this parameter does not
seem to lead to a systematic expansion, it appears in
most of the higher-order diagrams and explains the suc-
cess of the simple Kawasaki approximation (5.15) with
xT" = 0’ x)\‘ = 1- i

Another approximation made in all mode-coupling cal-
culations (Gunton and Kawasaki, 1975; Kawasaki and
Gunton, 1976b) is the neglect of the nondissipative cou-
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pling %, (5.1d) which does not appear in linear order in
gZ,- The main effect of %, is in the statics,' where it
changes the exponents from their mean-field values to
their scaling values, but this is taken into account in the
mode-coupling approach by using the experimental § and
C,. The remaining effects of u,, on shape functions and
dynamic exponents, are of order ez, and are small in
three dimensions (roughly speaking one can say that these
residual effects are of order 7).

E. Real binary fluids

For a real binary fluid, where the symmetry assumed
in Sec. IT does not occur, it is convenient to use as a
variable the quantity

c(®)=[PaPp(x) —P5 P4 (X)]/P?,

in addition to the transverse part of the momentum den-
sity j(x), and a “thermal fluctuation density” ¢ (x) [the
symbols p,, Py, and P in (5.29) denote equilibrium values
of ps, Py, and p, respectively]. The density ¢ (x) is a
linear combination of p,, Pz, and the energy density
¢(x), chosen such that ¢(x) and c(x) are orthogonal to
each other and to the pressure, in the sense that their
equal-time cross-correlation functions vanish at long
wavelengths, in equilibrium. The pressure fluctuations
and the longitudinal part of the momentum density, which
enter the sound mode, will be disregarded as before.
Note that ¢ (%) = [Pg(%)/P(x)] — ps/P, for small deviations
from equilibrium, and c(x) is loosely referred to as the
concentrvation fluctuation. Because the binary fluid has
two long-wavelength diffusive modes with the same sym-
metry properties, it is convenient to define a transport
matrix, according to

(5.29)

. [3)
A= lim T X (K, ), (5.30)
R,w—>0
DIRES

where 7 and j may be either ¢ or ¢g. The normal modes
of these variables have relaxation rates D,k? and D,k?,
which are the eigenvalues of the matrix xx ~*#%, where X
is the matrix of static susceptibilities. We remark that
the diagonal matrix elements of A reduce to the coeffi-
cient A defined by (3.20), only in the case wheve \ and
X commute. In general, this does not occur.

In the vicinity of the consolute point, the susceptibility
Xo(EXee) diverges strongly, as £2°", while x, has only a
“specific-heat divergence” proportional to £9/Y, On the
basis of the mode-coupling theories, it has been found
that one eigenvalue of A diverges at T';, while the other
remains finite (Swift, 1968; Giterman and Gorodetskii,
1969; Mistura, 1975). Furthermore, the diverging part
of A is simply the matrix element )., so that in the as-
ymptotic critical region, A and ¥ may be simultaneously
diagonalized. The concentration ¢ then enters the sta-
tics and dynamics in the same manner as the order pa-
rameter i for model H, or for the ordinary gas-liquid
critical point. Although nonlinear couplings between ¢
and g are present in the appropriate free-energy func-
tional, the dissipative couplings have no effect on the
critical dynamics of ¢, because the diffusion rate for ¢
is fast compared to the diffusion rate for ¢. Thus it is
found that the universality class for the asymptotic criti-
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cal dynamics of the binary fluid is the same as for the
ordinary fluid critical point.

A renormalization group analysis by Siggia et al.
(1976) of a simple model containing a field analogous to
q, in addition to j and ¢, confirms this picture, in agree-
ment with the mode-coupling work cited above, and in
disagreement with Papoular (1974).

VI. PLANAR MAGNET AND SUPERFLUID HELIUM
A. Models E and F

The usefulness of a pseudospin model to describe su-
perfluid helium was first pointed out by Matsubara and
Matsuda (1956). These authors showed that bose conden-
sation in a quantum lattice gas was equivalent to the de-
velopment of magnetic order in a spin-3 “easy-plane”
magnet. The quantum field ¢ corresponds to the opera-
tor?” (S, —2S,) in the magnet, and the density of the boson
system corresponds to (% —-S,). The easy-plane magnet
has cylindrical symmetry about the z axis and has inter-
actions which lead to ferromagnetic order in the (x-y)
plane, i.e., to a two-component order parameter (z=2).
It is to be noted that in both the planar magnet and the
superfluid the order parameter is 70f a constant of the
motion, i.e., it does not commute with the Hamiltonian.
A constant of the motion in the planar magnet is the z
component of magnetization, which we denote by M. This
is proportional to the spin-angular momentum S,, which
is the generator of rotations of the order parameter in
the x-y plane. There is thus an important relationship
between the symmetry of the order parameter and M,
which we express by the Poisson-bracket relation

{¥, My=ig .

This equation is crucial for the hydrodynamics and the
critical dynamics of the system (Halperin and Hohen-
berg, 1969b; Anderson, 1966). In particular it is re-
sponsible for the Larmor precession theorem in the pla-
nar magnet, which states that the sole effect of a time-
dependent uniform applied field %,(¢) is to add to the mo-
tion of all the spins a precession at the angular frequency
8oh,. In the superfluid, the corresponding theorem is
the “Josephson equation” (Pitaevskii, 1958; Anderson,
1966)

de/dt=rn"p, (6.2)

where ¢ is the phase of the order parameter and u is the
chemical potential. ‘
If the dynamics of the planar magnet arises from a
Hamiltonian for the spins alone, then the energy of the
spins is another constant of the motion. We shall,
however, consider a model in which this energy is
not conserved, as in model A of Sec. IV,2® since such
a model is applicable to superfluid helium. This is

(6.1)

2'For the systems treated in this section it is useful to intro-
duce a complex order parameter P(x,t). This requires certain
trivial modifications in the formulas of Sec. III, which were
derived for real variables.

%875 mentioned in Sec. IV, such a model arises when one con-
siders a spin system in contact with a heat reservoir having in-
finite heat capacity, or infinite thermal conductivity.



460

model F, defined by the equations (Halperin et al.,
1974b, 1976b; see also Stauffer and Wong, 1970; Okwa-
moto, 1976; Ginzburg and Sobyanin, 1976, and refer-
ences therein)

W __,p OF

. OF
o 0————51!)*—2g01p 5m+9’ (6.3a)
oM _ oy 8F < . 6F)
of Ay V am+2g01m ] S +Z, (6.3b)

Fl¢, m]=F, - fd"x{hm(x, tym + Re[h(x, )4}, (6.3¢)

F,= j A% 57|17 +5 | V9]2 +itg ||

+2C5m* +yom[p|*}, (6.3d)
where 2, and k are infinitesimal applied fields, and 6
and ¢ are the appropriate Langevin noise sources. The
static properties of this model are precisely those of
model C considered in Sec. IV.C, but the dynamic behav-
ior is different, due to the presence of the nondissipative
coupling g,, and to the possibility of a complex value of
T',. It may be shown (Halperin and Hohenberg, 1969b;
Halperin et al., 1976b) that there is a propagating “spin-
wave” mode below T,, involving variations in # and the
direction of ¥ (in the complex plane), with frequency

ww (k)=wm(k)=csk; (6'4)

ci=85PsXm> (6.5)
where the stiffness constant p, is defined in Eq. (6.8) be-
low. For T >T,, the density m has a diffusive mode

W (K) = /X m)E (6.6)
and the nonconserved field ¥ has a characteristic fre-
quency

Wy (k)= 1—‘/sz s (6.7)

which does not vanish as k-~ 0.

An important simplification arises in the planar mag-
net if one assumes that there 'is no applied field in the z
direction so that the average value of M= f dxm(x) van-
ishes. This is the symmetric planar model, the sym-
metry here being rotation of 180° about an axis in the
x-y plane. We can represent this by model E, which is
obtained from F by settting y,=0. Then the equations are
invariant under the transformation m —~ —m and § - ¥*,
and it follows that (M) =0.

As mentioned above, for liquid helium the density ¥
represents the expectation value of the quantum field.
The conserved density #m(x, f) is that linear combination
of energy and mass which appears in the thermal diffu-
sion mode in the normal fluid (T >T,), and in second
sound in the superfluid (T <T,) (see, for example,
Hohenberg and Martin, 1965). It follows that A, is the
thermal conductivity, ¥, is the specific heat C,, and ¢
is the second-sound velocity. The quantity » is the same
as ¢ in Eq. (5.2), and it is orthogonal to the pressure
variations at long wavelengths, both above and below
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T,.?° Since a variation in m(x) implies a change in the
local value of T — T, we expect to find couplings of the
form y,m|¢|? in the free-energy functional, and we must
represent helium by the asymmetric model (F) rather
than the symmetric one (E).

An important distinction in the static properties, be-
tween systems with discrete (z=1) and continuous (n = 2)
symmetry, is that in the ordered state (T'<T,), the cor-
relation function for y does not decay exponentially at
large distances for systems with a continuous broken
symmetry. Indeed, due to the invariance of the energy
with respect to uniform rotations of (¢) in this case, the
free-energy functional contains a term proportional to
ps|V|%, where ¢ is the phase of (), and p, is the stiff-
ness constant. It follows that the static response has the
long-wavelength form (Hohenberg and Martin, 1965)

Xy ®) =P 1%/p 7, (6.8)
leading to a correlation function
C, (x)~ const/x*"2, (6.9)

with power-law decay at large distances. It is then con-
venient to define the (transverse) correlation length by
the relation (Josephson, 1966)

LmCy (x)= A g W 12(EL/x)"2, (6.10)
X—> 00
where the numerical constant A, is defined by
ddk -2 ,ikex _ 2-d
(2—70‘3 k™%e = Aux . (6.11)
Comparing (6.10) with (6.8) we find (kgT,=1)
Ep=pf 7, (6.12)

The stiffness constant p; is the superfluid density of
liquid helium, and it may be obtained experimentally
from the second-sound velocity (6.5), or form various
measurements of the momentum carried by the super-
fluid in equilibrium.*® Above T, thé correlation func-
tion decays exponentially, but the correlation length &,
is not directly accessible to experiment. Nevertheless,
one may estimate its'amplitude from the measured
specific heat and a calculation of a static universal ratio
(see Hohenberg et al., 1976a; Bervillier, 1976).

®The velocity of ordinary (first) sound remains finite in heli-
um at T, so that this mode can be omitted from the model for
the same reasons as at the gas-liquid critical point, discussed
in Sec. V. Note also that we could have introduced mode cou-
pling to the transverse momentum j in the equations of motion
for ¥ and m. These turn out to be irrelevant, however, in con-
trast to the situation in model H, because ¥ is not conserved,
and because the static susceptibility x,, has at most a weak di-
vergence in the present case.

30The equations of this section are written in units in which
kpT.=1 and the frequency scale is set by g;. The usual super-
fluid density P, in units of mass per unit volume, is given by
Bs= mi ks T/% *)ps, where my, is the helium mass. The fre-
quency g is given by gy=kzTo/#%, where oc=S/R is the dimen-
sionless entropy per particle (R is the gas constant). Equations
(6.12) and (6.5) become &=mp kT /% 2P, and &2=pk%To?/Coml,,
where C,=kgX,, is the specific heat per unit volume (see Hal-
perin et al., 1976b).
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B. Dynamic scaling

The existence of a propagating critical mode below T,,
whose frequency is related to static quantities [see Egs.
(6.4), (6.5), and (6.8)], may be used to evaluate the ex-
ponent z of the dynamic scaling expression (3.27). In-
deed, if the characteristic frequency for ¢ is to have the
general form (3.27) and the limiting behavior (6.4) for
kEr<<1, it then follows that ¢ oc £ 7. But by (6.5) and
(6.12) we have c o £17@/278/20 whence (Ferrell et al.,
1967,1968; Halperin and Hohenberg, 1967, 1969a),

z=5+ -2% , (6.13)
where o =max(q,0) is the exponent of C,. In the present
case we see that z is expressed entirely in terms of
static exponents, in contrast to the case of the gas-liquid
critical point, Eq. (5.29).

The most interesting physical applications of the result
(6.13) in liquid helium are to the damping of second sound
below T\, and the thermal conductivity above T, (Ferrell
et al., 1967). If one includes the next term in % in the '
dispersion relation for second sound (6.4), one obtains
(see Hohenberg and Martin, 1965)

w=xc.k - (i/2)D K, (6.14)

where D k? represents the width of the second-sound
peak in the correlation function. This width is also a
characteristic frequency associated with the order pa-
rameter, and according to dynamic scaling it will scale
with the same power z as cgk. It follows that

DSOC EeT/z—a/zu .

(6.15)

Similarly, consideration of thermal diffusion above Ty
(6.6) yields the prediction

A, oc /2 /W (6.16)
Note that thermal diffusion is the characteristic frequen-
cy for m rather than ¥, so that the prediction (6.16) re-
quires a dynamic scaling assumption for », as well as
for the order parameter (Halperin and Hohenberg,

1969a).

C. Renormalization group

The renormalization group may be formulated for mod-
el F in much the same way as for models C and H above
(Halperin et al., 1974b,1976b). The static recursion re-
lations for 7;, u;, C;, and v;=K,v?C,A*"* are precisely
the same as in Sec. IV.C, and it follows that the static
susceptibility x,, behaves as 78/ for T =T, in model F
(vo#0). For the symmetric model (y,=0), X,, remains
constant (equal to C,) as k=0 or T—T,. Recursion rela-
tions may also be developed for the dynamic quantities
&1, A, and I';, or for the combinations

J1 EKdg?Ad-4/(7t, Rel';),
w,=T,C/x;.

(6.17)
(6.18)

(Note that I’y and T'; are in general complex.)

In the symmetric case (model E: y,=0,T, real), there
are three dimensionless slow transients in the recursion
relations, namely «,;, f;, andw,. To the lowest signifi-
cant order, these reach the fixed-point values
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f*=e+0(?), (6.19)
wr=1+0(), (6.20)

while u* is given by its static value (4.23a). It is then
possible to show, by an argument quite analogous to the
one leading to (4.72), that the frequencies w, (k) and
w,(K) are both characterized by the same exponent

z2=2-%e=%d. (6.21)

This result is a scaling law, which holds to all orders in
€ for d near 4, or more generally for any dimensionality
at which the quantities f *, w*, and u* are finite and non-
zero.: »

In the asymmetric case (model F: y,#0, T, complex)
there are two additional slow transients, v; and Imw,.
The fixed-point parameters are

Fr=e+0(?), (6.22)
(Rew)* =0.732+0(e) , (6.23a)
(Imw)* = 0.480 sgny* +O(e) , (6.23b)
v*=¢/20+0(e®)=a/4v, (6.24)

with # * given in Eq. (4.23a). The dynamic exponent z
then takes on precisely the value (63.113) predicted by the
phenomenological scaling analysis.  The symmetric
fixed point (6.19)—(6.20) is unstable with respect to the
perturbation y,m||% near d=4. On the other hand, there
is evidence thatatd = 3, the specific heat exponent « is
negative (see Ahlers, 1976), so that v* =0, in which case
the stable fixed point for model F is the symmelric one.
The existence of five slow transients in model F will
lead to a rather complicated structure in the leading cov-
vections to scaling, for both ¢ >0 and o <0. These cor-
rections can be written in the form of power series in
the variables d;£™i/" (;=1,...,5), where the x; are cor-
rection exponents (Wegner, 1972) and the d; are nonuni-
versal coefficients. Near the symmetric fixed point («
<0), the dynamic correction exponents have been evalu-
ated to lowest order in € by Halperin et al. (1976b), and

to second order by De Dominicis and Peliti (1977). The
results are

x,=ev(s —0.1498¢) + O(e?) , (6.25a)

x,=€v(§ —0.3618¢) +O(c®), (6.25Db)

x3=€v(l —0.3135¢) +0 (€°) . (6.25¢)
The static correction exponents

x,=€v+0(e?) (6.25d)
and

x;=—a>0 (6.25€)

are the ones associated with the transients #; and v,;, re-
spectively (Wegner, 1972). Because the exponent x is
so close to zero in liquid helium (o = -0.02, Ahlers,

$1Recently, Kawasaki and Gunton (1976b) considered a model
without dissipative couplings, but with a singular specific heat
Cy £%/¥ in the starting free-energy functional. This model
leads to the scaling law (6.13) of the asymmetric model, but
its universal amplitude ratios do not correspond either to those
of model E or of model F, even in lowest order in €.
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1976), terms nonlinear in d.£ 5 are expected to be im-
portant; it was therefore proposed by Halperin et al.
(1976b) to eliminate the variable d £ 5 in favor of the
measured quantity

_dInC,(T)
o - 20
It is not clear, however, how useful such a procedure
will be, especially in view of the existence of other small
correction exponents, for instance x,~ 0.07, as obtained
from Eq. (6.25a). De Dominicis and Peliti (1977) have
suggested the possibility that x, might even be negative
in three dimensions, implying an instability of the fixed
point and a breakdown of dynamic scaling.

The fixed-point mechanism leading to the scaling law
(6.13) also implies that the response functions x, (k, w)
and ¥, (k, w) will have a scaling form analogous to (3.25),
with %z, =0. These functions lead to a large number of
universal amplitude ratios, which may in principle be
calculated using the € expansion and compared to experi-
mental values. For example, in liquid helium the ther-
mal conductivity A, may be written for T>T, as

M= RyZ,CHEY, (6.27)

where R, is a universal number. Since g, is determined
by the entropy per particle o and the value of T,,%° Eq.
(6.27) represents a universal relation between a dynamic
quantity x,, and purely static parameters.®® This relation
is predicted to be exact asymptotically close to T,, but
it will contain correction terms of the form discussed
above at finite temperature differences AT.

A universal amplitude ratio may also be defined from
the damping constant of second sound below T',, namely

R,=D/2c ér, (6.28)

and another one from the characteristic frequency w,,(k)
at T, given by

W, (K) =Qok?= RSt ¢ E57R7 (6.29)

Note that according to Eqs. (6.5), (6.12), and (6.13),
cs£57! goes to a constant at T, so RZ* also reaches a
finite limit.?3

The amplitude ratios defined above may be estimated
in different ways. From the € expansion one obtains, to
second order (Halperin et al., 1976b, Siggia, 1976),

Ry = (Ky/€)Y?[1+0.597¢ + 0(e?)] = 0.36 , (6.30)

32The possibility of expressing A, purely in terms of static
parameters and a universal ratio depends on the existence of a
propagating critical mode below T,, and it also occurs in iso-
tropic magnetic systems treated in Sec. VII. For the fluid or
model C, which have relaxational critical modes, it is only
combinations such as A or A,,/I" which can be expressed in this
way, not the transport coefficients themselves. In the nomen-
clature of Kawasaki (1976), superfluid helium and isotropic
magnets are “systems of the first kind,” whereas the fluid and
model C are “systems of the second kind.”

$33ince the spectrum of X,,(k,w) is not Lorentzian at T,, the
definition of the characteristic frequency w,,(k) is not unique.
The quantity in Eq. (6.29) is defined using Eq. (3.15); when the
median frequency (3:19) is used instead, the corresponding uni-
versal ratio is designated Ry [see Eq. (9a) of Siggia (1976), or
Hohenberg et al. (1976b)].
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R = (K,/€)[1+0.311e +O(e?)]= 0.07, (6.31)

Rt = (K,/€)Y?[1+1.4¢ + 0(e?)]~ 0.54 . (6.32)

Alternatively, it is possible to calculate the universal
scaling functions and amplitude ratios using a self-con-
sistent, first-order perturbation theory, similar to the
one depicted in Fig. 3 and described in Sec. V.B for the
fluid. Such mode-coupling calculations were carried out
in an approximate form both above and below T,, as a
function of k£, by Hohenberg et al. (19'716b) [see also
Krueger and Huber (1970)]. The results for the dimen-
sionless ratios discussed above are

Ry=0.19, (6.33)
R,=0.09, (6.34)
Rgt =0.42. (6.35)

These values are consistent with the extrapolations of the
€ expansion (6.30)—(6.32), to within the rather large (50~
100%) inaccuracies inherent in either method of calcula-
tion. The mode-coupling calculations also yield the
spectral shape functions defined in (3.25). An example
for T <T, is shown in Fig. 5, for the function C,,(k, w)
which can be compared with inelastic light scattering
measurements, as discussed below.
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FIG. 5. The correlation function C,(k,w) in the symmetric
planar magnet, obtained from a self-consistent approximation
analogous to the one shown in Fig. 3, plotted as a function of
the scaled frequency, for T<T,. In superfluid *He, close to
T,, this function has the same spectrum as the low-frequency
part of the density-correlation function C,(k,w), which can be
measured by inelastic light scattering experiments. From
Hohenberg et al. (1976b).
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D. Comparison with experiment

The earliest success of the dynamic scaling hypothesis
was the verification of the predicted divergence of the ther-
mal conductivity inliquid helium (Ferrellet al., 1967;
Ahlers, 1968). The observed temperature dependence,
shown in Fig. 6, was consistent with Eq. (6.27) within the
accuracy of the measurements, and the measured ampli-
tude of the divergence yields a coefficient R§{?=0.3, in
rather good agreement with the renormalization group
calculations in Egs. (6.30) or (6.33). However, subse-
quent, more accurate measurements indicated deviations
from the exponent in Eq. (6.27) by about £°-* (Ahlers,
1971, and private communications). Moreover, some
early experiments carried out in cells with heights less
than 1 mm showed much larger deviations, which are as
yet unexplained (Archibald et al., 1968).

Macroscopic measurements of the attenuation of second
sound have also been made, and they follow the tempera-
ture dependence predicted in Eq. (6.15) (Tyson, 1968).
The coefficient R,, however, has the value R* =~ 0.5,
which is quite far from the theoretical estimates in
(6.31) and (6.34).

Another way to test the theory for liquid helium is
through inelastic light scattering measurements, which
yield the spectrum of the density-correlation function.
Near T, and at low frequencies, it may be shown that
this function is proportional to C,(k, w), calculated in the
planar-spin model. Specifically, the correspondence
holds for T close to T, and for w<<c,k, where c, is the
velocity of first sound, which remains finite at 7', in
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helium. Given the spectrum of C,(k, w), the character-
istic frequencies may be evaluated for different values
of k¢, both above and below 7'y, and comparison can be
made with the expressions of Sec. VI.C. The presently
available experimental data, which span a sizeable range
of k¢ values, do not show any temperature dependence
for the characteristic frequencies, in striking contrast
to the dynamic scaling predictions (Winterling et al.,
1973, 1974; Vinen et al., 1975; O’Connor et al., 1975;
Tarvin et al., 1977). A comparison of experiment and
theory is shown in Fig. 7. )

Thus, althdugh there is some evidence in favor of the
theory outlined above, the overall situation remains
quite unclear. It is hoped that further experimental and
theoretical work will clarify the picture, since the A
transition in helium presents a unique case where accur-
ate experiments are possible over a wide range of tem-
peratures, frequencies, and pressures (see Ahlers,
1976). On the theoretical side, it is necessary to make
quantitative estimates of the correction terms discussed
above, in order to obtain realistic predictions in the ex-
perimentally accessible range. :

E. Microscopic models

Various authors®* have attempted to study the critical
dynamics of helium by applying the renormalization

34gee, for instance, Suzuki and Igarashi (1974), Yamashita
and Tsuneto (1974), Suzuki (1975), Abrahams and Tsuneto
(1975); see also the earlier Polyakov, 1969.
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FIG. 7. Light scattering measurements of second sound and
thermal relaxation in helium near T,, for 2=1.8 x 10° A and
P~23 atm. The density correlation function C,(k,w), at the
given k, has been fit to the sum of two Lorentzians of width I,
(half-width at half-maximum) centered at w=+w,. The value
of w,/2m thus determined is plotted vs temperature in Fig.
7(a), for T<T,, while I',/2r is plotted in Fig. 7(b) for T< T,
and T>T,. Dots represent the experimental values of Tarvin
et al. (1977); solid curves represent a two-Lorentzian fit to
the theory of Hohenberg et al. (1976b) for the symmetric plan-
ar-spin model. The broken curves are extrapolations from
macroscopic measurements of the second-sound velocity
(Greywall and Ahlers, 1973) and second-sound damping (Ty-
son, 1968) below T,, and of the thermal conductivity and spec-
ific heat (Ahlers, 1968) above T,. Arrows indicate tempera-
ture where kér=1, for T<T, and k¢{,=1 for T>T,. Note that
w, is comparable to T'y at T,, and the half-width at half-max-
imum of the density spectrum is approximately twice the value
of T'y at this point. The fitted value of w, continues to drop for
T >T, (not shown in figure) and is indistinguishable from zero
for T—T,> 0.2 mK. Figures taken from Tarvin et al. (1977).

group directly to a Hamiltonian model of helium involv-
ing only a single complex field . The simplest example
of such a model can be obtained from Eq. (6.3) by treat-
ing T', as pure imaginary (no dissipation) and dropping
all couplings to the field m

Y _ o n 6&
of “2T8 g (6.36)
HIY)= [ a%Crolol*+ 3yl +uolul, (6.37)

with an appropriate cutoff at short wavelengths. If the
renormalization group is properly applied to this mod-
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el, however, one encounters a difficulty on the first it-
eration, similar to that found in the phonon Hamiltonian
of Sec. IV.D. The renormalized four-point vertex

U (k;, w;) is a singular function of the wave vectors and
frequencies, when the net wave vector and frequency
transfers go to zero. These singularities are due to the
absence of damping in the bare propagators, and are re-
flections of the conservation laws in the system. Equa-
tions (6.36)—(6.37) conserve the total “particle number,”

N= [ ol

as well as the total energy E = H[¢]. Furthermore, as
long as the cutoff is introduced in such a way that the
Hamiltonian H is translationally invariant, the total mo-
mentum will also be conserved.

A microscopic derivation of stochastic model F, begin-
ning with a model such as (6.36)—(6.37), or with the
more realistic quantum Hamiltonian, would pro-
ceed along the lines suggested in Sec. IV.D for the inter-
acting phonon system. One begins by integrating out all
wave vectors larger than a cutoff A,, which we choose to
be less than the inverse mean free path for atomic col-
lisions. The partially renormalized four-point vertex
U, will then contain a number of simple poles near zero
frequency transfer (when the momentum transfer is
small), while the renormalized propagator for ¢ will be
damped and well behaved. A careful analysis of the sin-
gularities in U, would then involve keeping track of the
positions and residues of these poles. We believe that
this procedure is equivalent to introducing propagators
and coupling constants for appropriate conserved densi-
ties, as has been done in the present approach.

If one attempts to remove the singularities in the vertex
U,(k;,w;) by simply introducing an imaginary part in the
frequencies of the initial propagator for ¥, while keeping
a structureless bare coupling constant »,, one violates
the conservation laws, and one is led by further itera-
tions to the fixed point for a time-dependent Ginzburg—
Landau model with no conserved quantity (model A),
rather than to a fixed point appropriate to helium
(Dé Dominicis et al., 1975; Brezin and De Dominicis,
1975; Abrahams and Tsuneto, 1975; Tanaka, 1975).

It has been emphasized by Kawasaki and Gunton (1976b)
that the fixed point of model C with n=2 is unstable with
respect to the introduction of reversible mode coupling
(g,#0) in the equations of motion. Thus, as long as there
is a conserved field coupled via g, to the order param-
eter, the system will exhibit the critical behavior. of
model F, or E. On the other hand, the addition of terms
in the Hamiltonian which violate the n =2 symmetry of
the order parameter, as well as the conservation of m,
will lead to a crossover to relaxational dynamics, as in
model A (Kawasaki and Hikami, 1976).

(6.38)

F. 3He-*He mixtures and tricritical dynamics

In order to describe the critical dynamics of *He—
“He mixtures along the A line, it is necessary to consider
two conserved densities, in addition to the superfluid or-
der parameter ¥ (Khalatnikov, 1965). We choose these
to be the *He “concentration fluctuation” c(x) and the
“thermal fluctuation” ¢ (x), which were defined in Sec.
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V.E, with the property that the equal-time cross-corre-
lations between ¢ (xX), ¢ (x), and the pressure vanish at
long wavelengths.

For concentrations less than the tricritical concentra-
tion, the susceptibility x, behaves like the specific heat
of pure “He, i.e., X, const+£%/’, which is finite at T,
since a is slightly negative, for d=3. The peak value of
X o increases as the concentration approaches its tricriti-
cal value, and for higher concentrations the superfluid
transition is first order. At the tricritical concentration,
X. is predicted to diverge as £*"%, for d= 3, with £
« (T =T, where T, is the tricritical temperature.
[We neglect the logarithmic corrections which occur in
static properties at the tricritical point, in three dimen-
sions (Wegner and Riedel, 1973).] The susceptibility x,
remains finite along the A line and at the tricritical point.

As at the consolute point of a classical binary fluid,
one eigenvalue of the transport matrix A diverges at the
superfluid transition, while the other remains finite.
Now, however, the divergent eigenfunction (which we
identify with the variable m) is a linear combination of ¢
and ¢, and the divergent part of A does not commute with
X- A mode-coupling calculation of A and of the order pa-
rameter Kinetic coefficient I', in which only the nondis-
sipative couplings are included, leads to the prediction

(6.39)
(6.40)

with x, = x= (4 —d)/2, both along the X line and at the
tricritical concentration (Kawasaki and Gunton, 1972;
Grover and Swift, 1973). Note that the macroscopically
measured thermal conductivity is proportional to detA/
A, Which remains finite, for finite concentrations (see
Ahlers, 1976). The divergence of the thermal conductivity
along the X line as one approaches pure “He has been
studied both experimentally and theoretically, but the
present situation is still controversial (see Tanaka

et al., 1977; Siggia, 1977).

It was pointed out by Siggia and Nelson (1977) that the
dissipative coupling between ¢ and ¢, which is ignored in
the mode-coupling approach, should be quite important
near the tricritical point. These authors have written
down recursion relations which take both dissipative and
nondissipative couplings into account, and have obtained
for the tricritical behavior:

%y =(2¢/3)+0(e?),

X
)\Noc)\ccochcqocg A

Toc §4797"x = £°T |

(6.41)

xr=€ —x,=(e/3) +0(e?), (6.42)

where € =4 —d. As was noted by Siggia and Nelson, how-
ever, these results must be viewed with considerable
caution. The slower of the two diffusive modes has a re-
laxation rate Dk?*« x;'%k%, which is slow on the scale of
the order parameter relaxation wy oc £T~2, The dissipa-
tive coupling between y and this slow mode leads to seri-
ous difficulties in the justification of the recursion rela-
tions, similar to the problems encountered in the case of
model C, with 2<% <4 and € -~ 0 (see Sec. IV.C.3). The
tricritical point of *He—~*He mixtures thus seems to be an
appropriate system in which to study these subtle effects,
since they may be experimentally accessible. Recent
measurements of the attenuation of first sound in 3He-
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“He mixtures (Roe et al., 1977) support the predictions
(6.41) and (6.42).

G. Two-dimensional superfluid films

A problem of considerable theoretical and experimental
interest is the transition between the normal and super-
fluid states in two dimensional helium films (i.e., . films
with thickness much smaller than the correlation length.
It is known rigorously that such films cannot exhibit true
long range order in the boson operator ¥, at any temper-
ature 7> 0 (Hohenberg, 1967). Nevertheless, it is be-
lieved that there is a well-defined superfluid transition
temperature 7, and some progress has been made
towards understanding the nature of the transition. (See
Kosterlitz and Thouless, 1977; and references therein;
José et al., 1977; Luther and Scalapino, 1977). The
superfluid order parameter exhibits some characteris-
tics of a critical point at all temperatures below 7.
Critical behavior in the dynamics has been considered
by a number of authors. (See Langer, 1968, Villain,
1973, Blank et al.,, 1974, and Nelson and Fisher, 1977.)
Needless to say, expansions in 4 —d are not particularly
useful in this case.

VIl. HEISENBERG MAGNETS

A. Antiferromagnet
1. Model G

The isotropic antiferromagnet is another system in
which reversible mode-coupling terms are important.
The simplest model which represents this system (model
G) consists of two densities, a nonconserved order pa-
rameter § which is a three-component vector represent-
ing the staggered magnetization, and a conserved density
m, also a three-component vector, representing the to-
tal magnetization of the system. The equations of motion
are given by

o _ . OF oF

-, — X— + 6
ot T, o9 +g o) 5m+ ’ (7.1a)
bm 2 9.1?_ X 9__12 X 6_F.
ot oV gm T80 ¥X g tEomX Foat, (7.1b)

F[w,m]=Fo—fd”x{h(x, B ¥+h,(x,£)-m}, (T.1c).

F,= fddx{%rozp2+%lv¢{2+uo e (XM~ m?},  (7.1d)
where 6 and ¢ are Langevin noise sources. The nondis-
sipative terms involving g,¢ in (7.1a) and (7.1b) reflect
the Poisson-bracket relation between  and

M = [ d%¢m(x),

{zpaaMB}=go€oteylpy

(eaﬁ./ is the antisymmetric unit tensor), while the third
term on the right-hand side of (7.1b) reflects the Pois-
son-bracket relation

{Ma’MB}=go€aByMy . (7.3)

The coupling constant g, is equal to unity if the magnet-
ization M is measured in units of angular momentum,

(7.2)
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and kgT,=1. Equations (7.2) and (7.3) in turn express
the fact that the magnetization is the infinitesimal gen-
erator of rotations of  and M, a transformation which
leaves the free-energy functional F invariant.

The lowest coupling between M and ¢ in F, will be of
the form M?*)? or (M- )2, both of which are irrelevant at
the critical point. As in the planar ferromagnet or liq-
uid helium, the Poisson-bracket relations have import-
ant consequences for the dynamics of the system. In
particular one can prove a Larmor precession theorem
for the system (see Sec. VI.A). The fact that the Larmor
precession theorem holds exactly for this model means
that the coupling constant g, is not renormalized by the
interactions, i.e., the frequency scale is set by g, (Hal-
perin et al., 1976b).

The hydrodynamic modes of the antiferromagnet are
similar to those of liquid helium with a propagating
(spin-wave) mode below T, and decaying modes above
(Halperin and Hohenberg, 1969b). Since the density m
is a three-component vector, it has both longitudinal and
transverse components below T, of which only the latter
participate in the spin-wave modes. The longitudinal
components of both m and § appear to have rather com-

_ plicated behavior even away from T, as indicated from
low-order mode-coupling and € -expansion calculations
(Villain, 1970; Michel and Schwabl, 1970; Mazenko et
al., 1977; SasvAiri and Szépfalusy, 1977Db).

2. Critical behavior

Early applications of dynamic scaling and mode-cou-
pling methods led to the prediction that the transport co-
efficient A, and the kinetic coefficient I" will diverge as
T - T} (see Halperin and Hohenberg 1969a; Kawasaki,
1976). The exponents turn out to be the same as in the
symmetric planar-spin model (E), treated in Sec. VI.B,

for which
z=d/2. (7.4)

One again finds a scaling relation for x, leading to the
expressions

)‘mz Rxgong)(yln/z’ (7.5)
L= Rrgot /2% 2%y ksTs (1.6)

where R, and Ry are universal constants, which may be
estimated from the € expansion (Halperin et al., 1976b),
or from self-consistent mode-coupling calculations. The
scaling functions for finite k and w may also be ex~
pressed in the form of Eq. (3.25), and evaluated in vari-
ous approximations (see Kawasaki, 1976, Sec. VIIL.A.2,
and references therein; Freedman and Mazenko, 1975,
1976). An example is shown in Fig. 8.

3. Couplings to other fields and effects of anisotropy

If one considers a spin system, defined by an exchange
Hamiltonian, which orders antiferromagnetically, then
in addition to the densities m and § present in model G,
the hydrodynamics also contains the energy density
e(x,t) (Halperin and Hohenberg, 1969b). When the dissi-
pative coupling between the e and y fields is considered,
energy conservation can in principle modify the critical
behavior of the order parameter, if the specific heat
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FIG. 8. The correlation functions Cyk,w) and C,,(k,w) for the
staggered and total magnetizations, respectively, in the Hei-
senberg antiferromagnet at T,, plotted as a function of the re-
duced frequency w/Q.k*/2. The calculations (Wegner, 1969)
were performed using a self-consistent mode-coupling approx-
imation analogous to the one depicted in Fig. 3. Note the
remnant of spin-wave propagation at T, in the staggered mag-
netization, predicted in this approximation. After Wegner
(1969).

exponent is positive, as is the case for d near 4. In
three dimensions, however, the exponent o is expected
to be negative for =3, and only the corrections to scal-
ing will be affected (Halperin et al., 1976b). In real
systems, of course, the remarks made in Sec. IV.D on
the role of spin-lattice coupling near T, will once again
apply, and it is not clear a priori whether a model with
or without energy conservation is more appropriate.

It is possible to add to the free-energy functional
(7.1d) a wide variety of anisotropic terms, and thus to
study the crossover from the isotropic antiferromagnetic
fixed point to other types of critical behavior (Fisher,
1974). Of greatest practical interest is the crossover to
a uniaxial system (represented by models A or C), due
to the presence of anisotropy. The crossover of the iso-
tropic antiferromagnet to relaxational behavior of type
A may also occur as a result of the addition of terms
with cubic anisotropy, which destroy the conservation of
m. Another interesting effect comes from the application
of a uniform magnetic field which causes crossover to
behavior characteristic of the asymmetric x-y model
(model F) (Halperin and Hohenberg 1969b; Fisher and
Nelson, 1974). See also the discussion on multicritical
points in magnetic systems in Sec. VIIL.D.3, below.

4. Experimental studies

The antiferromagnet is a favorable case for experi-
mental study since the dynamic correlation functions for
both the staggered magnetization  and the total magnet-
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ization m can be measured by the technique of inelastic
neutron scattering, as a function of k, w, and tempera-
ture, on a variety of isotropic and anisotropic materials.
(See Als-Nielsen 1976; Tucciarone et al., 1971, Hohen-
berg, 1971a). Unfortunately, however, the presently at-
tainable accuracy of such experiments is considerably
poorer than for macroscopic or light scattering mea-
surements, and it has not yet proved possible to test the
quantitative details of the theories described above.
Moreover, there are inherent limitations to the accuracy
of experiments near T, due to the presence, in real
solids, of impurities, crystal imperfections, compli-
cated interactions with lattice degrees of freedom, and
small anisotropy fields, of unknown magnitude. Never-
theless, the main predictions of dynamic scaling and
mode coupling have been verified at least semiquantita-
tively for the isotropic magnet RobMnF,, and for a num-
ber of anisotropic systems, such as MnF, or FeF, (see
Als-Nielsen 1976; Kawasaki, 1976). For instance, the
dynamic exponent z =3, Eq. (7.4), was shown to be con-
sistent with data above and at T, in RbMnF, (see Fig. 9),
and the scaling function £ (k¢), Eq. (3.27), was measured
and compared with theory (see Tucciarone et al., 1971;
Als-Nielsen, 1976). In the limit 2§ <1 the behavior in
Eqgs. (7.5)—(7.6) was found, with R$® =0.17 and R
=0.23, which compares favorably with the € expansion
estimates R, =0.16 and R-=0.16 (Halperin et al.,
1976b). The crossover from isotropic to uniaxial behav-
ior was observed in both FeF, and MnF, (Schulhof et al.,
1970) in reasonable agreement with mode~-coupling cal-
culations (see Kawasaki, 1976; Bagnuls and Joukoff-
Piette, 1975).
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Y
@
€ 04— —
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FIG. 9. Critical slowing down of the characteristic frequency
wy(k=0) for the staggered magnetization of the Heisenberg
antiferromagnet RoMnF; for T'> Ty as measured by inelastic
neutron scattering, plotted as a function of k!4~ 0.35 (T — Ty)/
Ty. The quantity « is the inverse correlation length, mea-
sured in A™l, After Tucciarone ef al. (1971).

Rev. Mod. Phys., Vol. 49, No. 3, July 1977

467

B. Isotropic ferromagnet
1. Model J

The simplest model for an isotropic ferromagnet (mod-
el J), has a conserved three-component vector field
whose components are coupled according to the Larmor
precession law (Ma and Mazenko, 1975)

%=AOV2 %+g¢>< g—g—+9 (7.7a)
F=F,— [d%{he 19}, (7.71)
F0=fd“x{%rozp2+%iv¢]2+uozp4}. (7.7¢)

This model represents a Heisenberg ferromagnet, with-
out energy conservation. In the paramagnetic phase (T
>T,) the order parameter has diffusive behavior with
frequency

Wy (k)= ()\/X;/,)kz .

In the ordered phase (7 <7,) the components of § trans-
verse to (P) have propagating spin-waves

(7.8)

wzp (k):gkz b (709)
with
£ =g,Ps/|W, (7.10)

where pg is the stiffness constant defined by an equation
analogous to (6.8). The longitudinal component of ¥ is
expected to relax to its average value (¥), ‘but the pre-
cise form of this relaxation is not known; it is probably
singular in the limit 2= 0, w—~ 0, due to nonlinear inter-
actions among the spin-wave modes (see Villain, 1971a,
1971b; Sasvari, 1977).

2. Dynamic scaling and mode coupling

At the phase transition, itis possible to relate the dy-
namic exponent z to static exponents, by arguments sim-
ilar to those employed for liquid helium or the antiferro-
magnet. Using Egs. (7.9)—(7.10) and the static scaling
relations, one thus finds (Halperin and Hohenberg,
1969a; Wagner, 1970)

z2=d—-B/v=3(d+2-17). (7.11)

Recalling that n=0 for 4> 4, we note that the dynamic
exponent reaches its conventional value z=4 -7 for d=6,
in contrast to the antiferromagnet, Eq. (7.4), where the
conventional value z =2 -7 is reached for d=4 (Villain,
1968; Kawasaki, 1968b; Hohenberg et al., 1973). Ap-
plying the dynamic scaling assumption to Eq. (7.8) we -
find that the transport coefficient A diverges as®®

Am gmemm/z (7.12)
which again shows that the Van Hove theory breaks down
for d<6.

%In what seems to be the first example of a self-consistent
calculation of a divergent transport coefficient at T,, Bennett
and Martin (1965) obtained the result A< x3/4, which corresponds
precisely to (7.12), in three dimensions and with an Ornstein-
Zernike approximation 1 =0,x << £2). See also Kawasaki (1967).
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2.0

FIG. 10. The scaling function flw [Eg. (8.27)] for the charac-
teristic frequency of the order parameter in Fe above T,
plotted as a function of the dimensionless parameter (REY1.
The dots are from the neutron scattering data of Parette and
Kahn (1971), and the solid line is the mode-coupling calcula-
tion of Résibois and Piette (1970). The dashed line shows the
hydrodynamic behavior Q,(k&)e (#£)™/27/2 which is correct
for kE < 1 (leading to wy(k)x £-1/21/2,2) | but which breaks
down for k£ >1 (T— T,). After Parette and Kahn (1971).

The dynamic scaling predictions (7.11) and (7.12) are
easily obtained from a self-consistent mode-coupling
calculation based on the lowest-order graphs, as dis-
cussed for the fluid in Sec. V.B. This calculation may
also be generalized to finite k and w, and the scaling
function Q(x) and Y,x) [cf. Egs. (3.27) and (3.25)] ob-
tained numerically. An example of the function & (x) cal-
culated by Re€sibois and Piette (1970) is shown in Fig. 10
for the case T = T,, and compared to data on Fe.

3. Renormalization group

Recursion relations may be obtained for the quantities
A; and g;, to linear order in € =6 —d, and a finite nonzero
fixed point found for the quantity f;=g,/x,;, for d<6 (Ma
and Mazenko, 1975; Dohm, 1976; Nolan and Mazenko,
1977). This result leads to the scaling law (7.11),
which may be reexpressed in the form

A= Ragoxy/ %40/, (7.13)

where R, is a universal amplitude. Just as in the previ-
ous cases, it may be shown (Kawasaki, 1975; Bausch

et al., 1976) that the scaling relations (7.11) will hold to
all orders in €. Of course there will be new nonanalyti-
cities at d =4, where the static behavior changes. Thus
to reach d=3, formally, one must make a double power
series expansion in 6 —d and 4 —d.

4. Comparison with experiment

As in the case of the antiferromagnets, inelastic neu-
tron scattering provides the most complete method of in-
vestigating the critical dynamics of ferromagnets. Ex-
periments on the metals Fe, Co, and Ni, and the aniso-
tropic insulators CrBr,; and MnP are consistent with the
theory outlined above, but the experiments do not pro-
vide a stringent test of that theory (see Kawasaki, 1976;
Als-Nielsen, 1976, and references therein). Recently,
an extensive set of measurements were performed on the
isotropic insulator EuO, and quantitative comparison was
made with dynamic scaling and mode-coupling predictions
(Dietrich et al., 1976). The general agreement was
found to be satisfactory, but specific deviations were ob-
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served in both the power laws and the magnitudes of the
scaling functions. The universal amplitude for w, (k) at
T,, analogous to R, in (7.13), was found to deviate sub-
stantially from mode-coupling estimates for the Heisen-
berg system, but the scaling function (x) [see Eq.
(3.27)] showed reasonable agreement. Some of the de-
viations could be interpreted in terms of dipolar forces,
which have an important effect on the dynamics of
Heisenberg systems at long wavelengths, since these
forces destroy the conservation of total spin. Calcula-
tions of these effects have been carried out by Villain
(1971b), Maleev (1974, 1975), by Raghavan and Huber
(1976), and by Finger (1977), using mode-coupling theory
to describe the crossover between Heisenberg and di-
polar behavior.

VIIl. MISCELLANEOUS TOPICS
A. Other dynamic properties
1. Sound propagation, EPR, and NMR

In our previous discussions, emphasis was placed on
the relaxation rate of the order parameter, or of certain
other conserved densities, which couple to the order pa-
rameter at long wavelengths through dissipative and non-
dissipative interactions. In many other experimental
situations one is interested in the relaxation of a non-
conserved variable, which contains a part proportional
to the square of the order parameter . An example of
such an operator is the “energy density”

e(x, t) = (dVo/dT)lP?(x: t) ’ (8-1)

for model A, or any other model in which energy is not
conserved. A second example is the quadrupole operator

Qae=wa¢a—n—1¢25as ’ (8-2)

for an isotropic n-component model such as the Heisen-
berg ferromagnet or antiferromagnet, or for a relaxa-
tional model with# >1. The correlation function C,(k, w)
plays an essential role in calculations of the sound atten-
uation and velocity shift near a magnetic critical point,
whereas both C,(k, w) and Cq (k, w) may be important for
sound propagation near a structural transition with a
multicomponent order parameter, such as is found in the
perovskites (Murata, 1976b). The correlation function
Cq(k, w) is important for electron-paramagnetic-reso-
nance (EPR) in the limit of weak dipolar or anisotropy
fields (Huber, 1971; Kawasaki, 1968, 1976).

According to the scaling hypothesis for static critical
phenomena, the equal-time correlation functions C, (k)
and Cq (k) behave as '

C.(k) = const+k %" X, (k/K),
Co(R) = k™ Xq(R/K),

(8.3)
(8.4)

where a is the specific heat exponent, and the exponent
x is related to the “crossover exponent” ¢ for axial an-
isotropy via

2n% - 9n + 17

_ 29 n+1
x=—, —ds 8(n +2)3

v n+2

€2+ 0(e®) (8.5)

(Wilson, 1972; Fisher, 1974). If we apply the dynamic
scaling hypothesis (3.25) to Cqy(k, w) and to the singular
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part of C,(k, w), we predict that these functions diverge
as .

Colk, ) = K*7Y, (w/K*", k/K)
CQ (k’ w) = K-x—zYQ(w/Kz: k/K) ’

where z is the dynamic scaling exponent for iy. The
functions, Y, and Y, are expected to be finite as w/k* and
k/k - 0. The behavior of C,(k,w) for the relaxational mod-
els (A-D), near d=4, has been studied using renormal-
ization group techniques by Halperin et al. (19'76a) and
Suzuki (1973b). The results for models A and B, where
the energy is not conserved, are indeed in agreement
with (8.6). The scaling form (8.6) is also found to be
correct for model C (where energy is conserved) in that
region of the d —» plane where z =2+ a/v. In model D,?
and in model C when z >2+a/v, Eq. (8.6) is correct only
when k/k is not too small.

The analysis of Halperin et al. (1976a) may readily be
extended to the function Cg,(k, w) for the relaxational
models withn>1, as well as to the functions C,(k, w) and
Co(k, w) for a variety of other systems, including model
G, the Heisenberg antiferromagnet without energy con-
servation. In each of these cases the dynamic scaling
results are found to hold, at least near d=4.

It is interesting to compare (8.6) and (8.7) with the de-
coupling approximation

<¢o¢(x’ t)lpB(X, t)lpa (0: 0)¢’e(0, 0» d (1 + éaﬂ) <‘p«a (X, t)‘pa(oy 0»2 s
(8.8)

(8.6)
(8.7)

which has often been made in the literature (see Huber,
1971; Kawasaki, 1976). This approximation leads to the
prediction

Co(k, w) o Cq(k, w)oc k¥™2C"MW =2f () /L= k /k) .

For the three-dimensional Heisenberg model, the expo-
nent x has a value =0.8, according to Eq. (8.5) or x

= 0.51, according to the high-temperature series expan-
sions of Pfeuty et al. (1974). The difference between the
exponents in (8.7) and (8.9) is numerically small (0.1-
0.4), and the decoupling approximation is probably quite
reasonable for Cq(k,w). On the other hand, this approx-
imation overestimates the divergence of C,(k, w) by a
more considerable margin.

There exists an approximate decoupling formula for
C.(k, w), based on mode-coupling ideas, which preserves
the correct scaling behavior at long wavelengths, and is
therefore more accurate than (8.8) (see Kadanoff and
Swift, 1968a; Kawasaki, 1976, and references therein).
In terms of the correlation functions C,(k, ¢) and C, (k, ),
this approximation may be written as

(8.9)

d% [dlny;'(p)]? 2
Ce(k=0, t)z (—Z_;TPV [J;—_%_Q)—jl [Cw(P:t)] . (8°10)

Analysis of sound propagation experiments in magnetic
systems is complicated by the occurrence of several dif-
ferent regimes, depending on whether or not energy ex-
change between the spins and the phonon system is im-
portant at the frequency of interest. The correlation
function of the “magnetic shear tensor,”

Ty = (Vi) (Vi) —d ™16, | V2
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may also be important in some cases. Reviews of the
extensive experimental and theoretical literature in the
field may be found in Kawasaki (1976), Garland (1970),
the Liithi et ai. (1970). )

Measurements of EPR linewidths near the critical
point of Heisenberg-like systems have typically shown
divergences that are considerably weaker than would be
predicted from theories using either (8.7) or (8.8). The
origin of these discrepancies is not understood at the
present time (see Kawasaki, 1976).

The critical behavior of an NMR line near a magnetic
transition depends on the symmetry of the nuclear sites,
and on the form of the coupling between the nucleus and
the magnetic order parameter. When linear coupling is
permitted, as in the case of FeF,, cited in Sec. IV.D.2,
the NMR linewidth is proportional to

d .
(Czl—ﬁ];; Cy (k, w=0) = g?-@-M =% (8.11)
(Heller, 1966; Halperin and Hohenberg, 1969a; Gottlieb
and Heller, 1971). Measurements of perturbed angular
correlation of y rays give information which is similar
in principle to the NMR measurements (Gottlieb and
Hohenemser, 1973).

Along with NMR techniques, EPR studies of paramag-
netic impurities provide a tool for examining order pa-
rameter relaxation at a strvuctuval phase transition.
Here, again, the results obtained depend on the symme-
try of the spin site, the nature of the coupling to the or-
der parameter, the direction of the applied magnetic
field, and the ratio of the order parameter relaxation rate
to the resonance frequency shifts in the low-temperature
phase. (See, for example, Miiller and Rigamonti, 1976;
Petschek and Halperin, 19717.)

Anomalies in sound propagation have also been ob-
served at the gas-liquid and binary-fluid critical points
and discussed using mode-coupling ideas (see Kawasaki,
1976). An approximation analogous to.(8.10) leads to an
expression for the complex sound attenuation at long
wavelengths of the form

~ )= & keT? 2) d’p (alnxg (p)>2
aw)= 2¢® p3C2 <3T v J @n)? oT s
® it [C (p,t))2
x dte’ ‘(—t—— ,  (8.12
-/0‘ ¢ Cy (p) ( )

from which the velocity ¢(w) and attenuation a(w) follow,
as ’

c(w) —c(0) _ c(w) N
@ - 20 Ima(w), (8.13)
a(w) =Rea(w) . (8.14)

Equation (8.12) can be compared to experiments using
calculated forms for x, and C,, without any adjustable
parameters. The agreement obtained is quite good, in
both temperature and frequency dependence, except at
the highest frequencies [w>10 w,(k=«)]. It is to be re-
marked that in this frequency range the theory becomes
very sensitive to the precise behavior of Xy () for p&>1,
and a more careful discussion of Eq. (8.12) is necessary
(Kawasaki, 1976). :

In helium just above the lambda point there is a fluctu-
ation contribution to &(w) analogous to the one in Eq.
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(8.12). Below T, the theory becomes more complicated,
as C, contains terms such as $Z(5¢,(t)6¢,(0)) and

¥ {0Y, (£)0]2(0)), where P = (¥) is assumed to be real,
51‘P|25 Ilplz - ‘nb(z), and Gd)r = Relﬁ —¢o' The term ¢g<5¢75¢,>,
which is the only one that contributes to the sound ab-
sorption in mean field theory, was first considered by
Landau and Khalatnikov (1954), and has been discussed
by many authors. In the scaling region there will be
cancellations between the various contributions, but no
detailed analysis has yet been presented which satis-
factorily explains all the experimental data (see Williams
and Rudnick, 1970; Khalatnikov, 1969; Hohenberg,
1971a; Kawasaki, 1976; Ginzburg and Sobyanin, 1976;
Kroll and Kawasaki, 1977; Tozaki and Ikushima, 1977).
We remark, finally, that the Landau-Khalatnikov pro-
cess will also contribute in magnetic systems, but, as
mentioned earlier, the interpretation of experiments is
more complicated in this case (see Kawasaki, 1976).

2. Electrical conductivity

There has been considerable experimental and theo-~
retical interest in the temperature dependence of the
electrical conductivity near the critical point of a ferro-
magnet or antiferromagnet, or near the order-disorder
transition of various metallic binary alloys. It is well
known that the conductivity is finite at 7, (conventional
theory applies) and interest centers on the temperature
derivative do/dT. Most of the theoretical investigations
have been based on the formula

o =me?/m*r, (8.15)

where n is the carrier density, m* is the electronic ef-
fective mass, and 7 is the transport lifetime for scatter-
ing of the conduction electrons. The scattering rate, in
turn, is assumed to be of the form (de Gennes and
Friedel, 1958)

e v? [ daf@C,@, (8.16)
where C,(q) is the equal-time correlation function for the

spins, V is the scattering matrix element for a single
spin, and

f@=4q°3
=0,

for g <2kg

for q >2k;. (8.17)

(For an order-disorder transition, one considers scat-
tering from pseudospins which are equal to +1, accord-
ing to which atomic species occupies a given lattice site.)
It was pointed out by Mannari (1968) and Fisher and
Langer (1968), for the case of a ferromagnet, that the
main contribution to the temperature dependence of Eq.
(8.16) comes from wave vectors of order 2%k, and that
dC4(2k,)/dT is expected to be positive and to have the
same singularity as the specific heat, for T~T). It
follows that do/dT should be negative and proportional
to the specific heat, in this 1limit.>**>” A somewhat more

31t was independently pointed out by Nabutovskii and Patashin-
skii (1968) that there is a contribution to do/dT proportional to
C,, arising from changes in the electron-phonon scattering.
This contribution is additional to the one arising from the
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detailed analysis (e.g., Kasuya and Kondo, 19'74a) of Eq.
(8.16) leads to the same conclusion for the ferromagnet
below T.. For the antiferromagnet or the order-disorder
transition, Eq. (8.16) predicts that do/dT will be positive
in most cases, but again proportional to the specific
heat, above and below T,, provided that one includes the
contribution of the Bragg peak in the correlation function
C, below T, (Suezaki and Mori, 1968; Kasuya and Kondo,
1974p).

In a magnetic semiconductor, the temperature depen-
dence of the carrier density is of great importance in de-
termining the behavior of do/dT. Once again, however,
one is led to a specific heat singularity in do/dT.
Changes in carrier density may also become important
in metallic antiferromagnets a short distance below T,
and may lead to deviations from specific heat-like be-
havior in this case (Suezaki and Mori, 1969).

Alexander et al. (1976) have been able to interpret the
qualitative behavior of the electrical conductivity in a
variety of ferromagnetic and antiferromagnetic metals
and semiconductors in terms of the formulas (8.15)—
(8.17). The asymptotic critical behavior of C,(k) is not
necessarily reached in the temperature range of interest,
and Alexander et al. find it necessary to consider the
crossover from scaling behavior to a normalized
Ornstein—Zernike form for C (k).

Despite these successes, it should be borne in mind
that the starting equations (8.15)~(8.16) are based on as-
sumptions which may not be reasonable very close to T,.
The assumptions behind (8.15) and (8.16) are:

(i) that the relaxation rate for fluctuations in the spin
system is small compared to kzT,/7,

(ii) that the scattering may be treated in the lowest
Born approximation, and

(iii) that the relaxation of the current can be character-
ized by a single relaxation rate.

Assumption (i) is probably not too severe; qualitatively
similar behavior would be expected even if finite fre-
quencies were taken into account. Assumption (ii) is ex-
act in the limit where V is small, at least for a fixed
correlation function C,(q). The Born approximation must
be used with some care, however, when the electron
mean free path is shorter than the correlation length for
the spins.

Assumption (iii) is exact for a spherical Fermi surface
when kgT, <E, provided that C,(q) depends only on the
magnitude of q and not on its direction. This last as-
sumption is particularly unreasonable in the case of an
antiferromagnet or order-disorder transition, since
C,(q) is then divergent at points which occur only in cer-
tain discrete directions in the Brillouin zone. In this
more general case, different regions of the Fermi sur-
face may have different scattering rates, and it is nec-
essary in principle to solve an integral equation (Boltz-
mann equation) for the relaxation of the current, even
when the Born approximation is valid (Ziman, 1960).

change in magnetic scattering.

37In their original paper, deGennes and Friedel (1958) em-
ployed the Ornstein-Zernike form for C¢(q), which is not suf-
ficiently accurate at large ¢, and leads to qualitatively incor-
rect behavior of do/dT.
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Solution of this integral equation may lead to a singular-
ity in do/dT which differs from the behavior of an aver-
aged relaxation rate, calculated according to (8.15)—
(8.17) (Halperin and Thomas, 1972).

Sufficiently close to T., when the correlation length for
the spins becomes large compared to the electronic mean
free path, one may take a different point of view, which
leads to the result do/dT « C,, under conditions more
general than the assumptions behind (8.15) and (8.16). In
this case one may assume that in a region whose diame-
ter is large compared to the mean free path but small
compared to the correlation length, one has a local value
of the conductivity, of the form

0 (X) = g+ 0,9 ()2, (8.18)

where o, and ¢, are constants, and J)(x) is the average
value of the order parameter over the region in question,
at a particular moment of time. The average conductiv-
ity of the sample will then be

0=0,+0,(I®?, (8.19)

and the singular part of do/dT is proportional to the
specific heat, both above and below T.

For a review of the experimental and theoretical situ-
ation as of 1971, the reader is referred to Parks (1972).
Some more recent references may be found in Alexander
et al. (1976), and Shacklette (1974). See also Simons and
Salamon (1971), and Takada (1971). Some closely related
properties, the critical behavior of the thermopower and
electronic thermal conductivity, and of the spin-flip
scattering lifetime in metallic magnetic systems, have
been discussed by Zorié et al. (1973); Thomas et al.
(1972); and Entin-Wohlman et al. (1975, 1976). The criti-
cal behavior of the electrical resistivity of a ferroelec-
tric semiconductor in which dipolar forces are important
has been discussed by Binder et al. (1976).

Experimental measurements and theoretical predictions
for the ionic conductivity of binary fluid mixtures near
their consolute points have been reviewed by Shaw and
Goldberg (1976). The theory is more complicated than
for solid-state transitions, because there is a contribu-~
tion to the local conductivity Iinear in the order param-
eter . Similar complications arise in the electrical
conductivity of metallic vapors and of metal-ammonia
solutions near their critical points. (See, for example,
Cohen and Jortner, 1975).

B. Nonlinear relaxation

The characteristic frequencies (3.16) or (3.19) are ap-
propriate for the linear response function Xy (k, w), de-
fined in the limit of zero external field. More generally,
in the presence of a finite field %, (X, ), one can consider
the response (¥(x, t»"w(x’t) as a functional of h,. Letus
for simplicity assume that &, is nonzero and constant
for <0, and &, =0 for £> 0. Then it is possible to show
from general renormalization group arguments (Bausch
and Janssen, 1976; Suzuki, 1976a; Suzuki and Ikeda,
1976) that for ¢ >0 the average order parameter takes the
form

@@Na, = ATVAAT), 9, (aT) ],

where §,= (P(t = 0)),,¢ . A relaxation time

(8.20)
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7 N
= fu ai g (8.21)
may be defined (Suzuki, 1971) and written as
7= (AT) fo[v,(aT) ™). (8.22)

In the case ¥, << (AT)?, Eq. (8.22) yields the linear relax-
ation time with exponent A®) =pz, but in the opposite
case, P,> (AT)?, one obtains the nonlinear relaxation
time whose exponent satisfies

AP =AM _g | (8.23)

Equation (8.23) was first proposed by Racz (1975, 1976)
on the basis of mean-field theory, and then obtained by
Fisher and Rdcz (1976) from more general phenomeno-
logical arguments. [See also the series analysis by
Rdcz and Collins (1976), and by Ikeda (1976)]. The re-
cent renormalization group calculation by Bausch and
Janssen (1976) for model A, evaluated the function f, in
(8.20) explicitly to lowest order in €. This function
shows nonexponential relaxation and memory effects,
and permits the calculation of nonlinear response func-
tions. A more phenomenological calculation, valid in
three dimensions, was performed by Binder et al. (1975)
and Kretschmer et al. (1976), based on a cluster dyna-
mics treatment, and small departures from exponential
behavior were found. In contrast to the work of Fisher
and Racz (1976) and of Suzuki(1976a), the work of Bausch
and Janssen (1976) and Binder et al. (1975) takes into ac-
count the fact that the equation of motion for {(Y(¢)) is
nonlocal in time. Other calculations of nonlinear relax-
ation have been performed by Saito and Kubo (1976),
using the Bethe approximation in the Ising model, and by
Racz and Tel (1977) in the spherical model.

C. Other methods of calculation

1. Series expansions and computer modeling

For systems with simple relaxational dynamics, such
as the kinetic Ising model, critical dynamics has been
studied using high-temperature series expansions
(Suzuki, 1970; Yahata and Suzuki, 1969; Yahata, 1971;
Racz and Collins, 1976; Ikeda, 1976) and Monte Carlo
methods (Schneider et al., 1972; Stoll et al., 1973;
Binder, 1976). Generally speaking, the results are con-
sistent in two or three dimensions with those obtained
from the renormalization group, within the limited ac-
curacy of the various estimates.

Computer modeling for nonstochastic models has also
been carried out on certain classical spiri or lattice-dy-
namical systems, by solving the equations of motion of
the constituent particles and carrying out the necessary
ensemble averages [Schneider and Stoll, 1973, and ref-
erences therein]. Due to practical limitations, however,
these “molecular dynamics” calculations are restricted
to one- and two-dimensional systems, and give little in-
formation on the asymptotic critical behavior.

2. Renormalization group on a lattice

Attempts to solve the static renormalization group
equations using approximate truncation methods on a dis-
crete lattice have yielded rather accurate results in two
and three dimensions [see Niemeijer and van Leeuwen,
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1974,1976; Kadanoff, 1975]. The corresponding dyna-
mical problem may also be amenable to solution, but no
progress has yet been reported. An interesting combin-
ation of renormalization group and Monte-Carlo methods
for both statics and dynamics was recently developed by
Ma (1976b), but it is too early to say whether this scheme
can yield reliable quantitative information.

3. Cluster dynamics and nucleation theory

A phenomenological theory which leads to quantitative
predictions for the response functions both near and far
from equilibrium has been developed by Binder, Stauf-
fer, and Miiller-Krumbhaar (1975). This theory is based
on the dynamics of clusters, and can be considered a
generalization of the droplet model to dynamic phenom-
ena. As mentioned in Sec. VIII.B, the response functions
obtained from this theory near equilibrium are consist-
ent with scaling; moreover, the detailed form of the
spectrum agrees quantitatively with Monte-Carlo results
on the kinetic Ising model.

Far from equilibrium, the theory may be applied to a
study of nucleation, for which scaling laws can also be
formulated near the critical point. Let us suppose that
the system is at a temperature 7T, —AT <T, with a small
positive field, and the field is changed to a value -2 <0
at time t=0. There will be a nucleation of the opposite
phase, with a rate J(&,AT) which was expressed by
Binder and Stauffer (1976) in the form

J(, AT) = (AT Y T J (h/AT®®), (8.24)
where
j=2-a+zv, (8.25)

and f(x) is a universal function, if suitable scales are
chosen for the variables 7z and AT. An analogous func-
tion may be defined for fluids, where it is possible to
extract j and f(x) from experiments, but little quantita-
tive information is available at present. A related prob-
lem is that of spinodal decomposition in alloys and
glasses, which may also be studied near T, either ex-
perimentally or with Monte Carlo calculations. For re-
cent work on nucleation phenomena near phase transi-
tions the reader is referred to Riste (1975).

D. Other systems

In this section we shall mention, but not discuss in de-
tail, a number of other systems whose dynamic critical
behavior has been studied.

1. Forces of long but finite range

It is well known that the static properties of systems
with infinite-range forces agree with mean-field theory
for d<4 as well as d >4 (Kac, 1968). If the force range
R is finite but large, the reduced temperature region
where fluctuations cause departures from mean-field
behavior vanishes as R~2%/¢-9 (Ginzburg, 1960; Hohen-
berg, 1968; Amit et al., 1973).

The dynamic properties of such systems will be quite
different for the relaxational and Heisenberg cases. In
the former, the long-range forces suppress fluctuations,
and the system follows time-dependent mean-field theory,
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i.e., conventional behavior, except for the temperature
region close to T, where mean-field theory breaks down
in the statics. For Heisenberg dynamics, the conven-
tional theory does not hold even away from T, in three
dimensions, since mode coupling is not suppressed by
long-range forces (R€sibois and De Leener, 1969). The
criterion for the breakdown of conventional theory is d
<4 for the antiferromagnet, and d <6 for the ferromag-
net, whether or not the static exponents are mean-field-
like (Hohenberg et al., 1973; Kawasaki, 1968b; Villain,
1968).

2. Quantum effects and the case Tc =0

When the transition temperature of a system is suffi-
ciently low, then beside the classical scaling region®
(AT) <T, there will be a temperature domain where
quantum effects play an important role, and new power
laws may appear. One may also have a phase transition
at 7'=0, as a function of a parameter such as the pres--
sure, the magnetic field, or the chemical composition,
and in that case quantum effects must dominate (see, for
instance, Pfeuty and Elliott, 1971). The separation we
have made between statics and dynamics is then no long-
er possible, since even the equilibrium properties will
depend in detail on the dynamics of the system. In some
cases, where the elementary excitation spectrum is lin-
ear in &, the frequency w plays the role of an additional
component of the wave vector, and the correlation func-
tions behave like the static correlation functions at a
classical critical point in (d+ 1) dimensions. The con-
nection between a quantum field theory in d dimensions
and a corresponding classical model in d + 1 dimensions
has been known for some time (see Kac, 1959; Symanzik,
1969; Pfeuty and Elliott, 1971; Osterwalder and Schra-
der, 1973; and Suzuki, 1976b). This connection was ex-
ploited by Rechester (1971) for a structural transition in
three dimensions, with a one-component order parame-
ter. The ensuing four-dimensional Ising-like model was
solved by Rechester, using the methods of Larkin and
Khmel’nitzkii (1969), which lead to mean-field behavior
with logarithmic corrections. More general situations,
in which the system does not necessarily behave as the
corresponding (d+ 1)-dimensional model, have been in-
vestigated by Béal-Monod (1974); Béal-Monod and Maki
(1975); Young (1976); Hertz (1976); and Schneider et al.
(1976).

In one dimension, there are no transitions at finite
temperature, but one-dimensional quantum systems at
T =0, or classical systems in the limit 7'—= 0, can legiti-
mately be considered to display critical behavior. We
shall not, however, discuss these systems here [see,
for instance, Lurie et al. (1974); Luther and Peschel
(1975); Efetov and Larkin (1975); Steiner et al., (1976);
Nelson and Fisher (1977); and Reiter and Sjblander
(1977)].

It is also believed that two-dimensional classical sys-
tems with component number »>2, such as the classical
Heisenberg model, have a phase transition only at 7'=0.
(See, for example, Fisher and Nelson, 1977, and refer-
ences therein.) The dynamics of these systems, at long
wavelengths and low temperatures, have not been ex-
plored in detail. However, as mentioned above in Sec.
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IV.A.5, DeDominicis ef al. (1977) have explored the
critical dynamics of the relaxational model A for n>2
and d - 2 - 0*.

An interesting case of a phase transition at 7'=0 is a
pevcolation transition, which arises when magnetic ions
on a lattice with nearest-neighbor interactions are ran-
domly replaced by nonmagnetic impurities, until T, is
reduced to zero. The impurity concentration at which
this occurs is known as the critical concentration p,, for
percolation of the magnetic sites. The behavior of the
system as a function of concentration p and temperature
T, near T =0 and p =p,, must be interpreted in terms of
crossover between the various regimes [Stanley ef al.
(1976); Lubensky (1977); Stauffer (1975a, 1976)]. Dyna- .
mics near the percolation threshold has been discussed
by Stauffer (1975b) and Harris and Kirkpatrick (1977).

3. Multicritical points in magnetic systems

A number of multicritical points exist in magnetic sys-
tems, which have interesting dynamic properties.

When a uniform magnetic field H is applied to certain
Ising-like antiferromagnets (e.g., FeCl,), the transition
to the paramagnetic state becomes first order, for H
greater than a minimum value, the tricritical field H,.
Dynamics near a magnetic tricritical point has been
studied with renormalization group techniques by Siggia
and Nelson (1977). [See also Huber (1974a)]. If energy
is conserved and the system is described by the two-field
relaxational dynamics of model C (Sec. IV.C), with a
free-energy F, appropriate to the tricritical point, then
strong deviations from the conventional theory are pre-
dicted. In particular, at the tricritical point the relaxa-
tion rate w, (k) goes to zero as k*, with

z=2+a,/v,, (8.26)

where. @, and v, are the exponents of the specific heat
and correlation length, respectively, at the tricritical
point, and «,/v,=1, at d=3. Note: If the total magneti-
zation M, is conserved, as well as the energy E, then the
auxiliary field m of model C is to be interpreted as that
linear combination of energy and magnetization which ap-
pears in the slowest diffusive mode.

If energy and total magnetization are not conserved in
the dynamics of the spin system, because of strong cou-
pling to phonons with a high thermal conductivity, then
the system is represented by a relaxational model of
type A, with no conserved quantities. The dynamic tri-
critical exponent in this case takes its conventional val-
ue, z=2, atd=3. '

The dynamics of relaxational models of type A and of
type B (conserved order parameter), at a tricritical
point and at critical points of higher order, have also been
investigated by Prodnikov and Teitel’baum (1976).

Another multicritical point with intereSting dynamics
is the spin-flop bicritical point that can be reached in
certain easy-axis antiferromagnets, when a uniform
magnetic field is applied parallel to the easy axis. The
bicritical point is the point at which the x-y like spin-
flopped phase meets simultaneously the paramagnetic
and the easy-axis antiferromagnetic phases. Although
static properties at the bicritical point are the same as
for the Heisenberg model, the dynamic properties differ
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from those of the Heisenberg antiferromagnet (model G)
for several reasons. In the first place, only the com-
ponent of total magnetization parallel to the easy axis
m, is conserved in the uniaxial system. Moreover, the
susceptibility Xm, 18 divergent at the bicritical point.
Huber and Raghavan (1976) have predicted that m, and
the components of the staggered magnetization perpen-
dicular to z have a dynamic critical exponent which may
be written in the form

2, = 2n,=$/v=1.18, (8.27)

where ¢ is the uniaxial crossover exponent and v the
correlation length exponent appropriate to the Heisenberg
fixed point at d =3 [see also Huber (1974b)]. On the other
hand, the staggered magnetization parallel to the easy
axis has a different dynamic critical exponent,
zy,>2 =1.

A special kind of phase transition known as the Lifshitz
point occurs at the intersection of the ferromagnetic—
(or antiferromagnetic) paramagnetic and helicoidal—pa-
ramagnetic phase boundaries (Hornreich et al., 1976).
The scaling theory for such transitions involves two dif-
ferent correlation lengths, which reflect an anisotropy in
k space at the transition. The dynamic exponents were
recently obtained using mode-coupling methods by Huber
(1976), who found generalizations of the scaling relations
appropriate to isotropic Heisenberg systems.

4. Multicomponent Bose fluid

The hydrodynamic properties of an m-component Bose
fluid with m'> 2 differ in significant respects from those
of superfluid helium (m=x/2=1), since the multicompo-
nent system is invariant under the group U(m) of unitary
transformations. This system has (m — 1) new propagat-
ing modes with we k? in the superfluid phase, and (22 — 1)
new diffusive modes in the normal phase. An analysis of
the critical dynamics of this model using scaling and
mode-coupling theory was carried out by Halperin (1975).
The dynamic critical exponent in this case is predicted
to be z =¢/v, where ¢ is the crossover exponent for a
symmetry breaking perturbation of the axial type. A re-
normalization group analysis near d =4 indicates that the
scaling prediction is valid only for m larger than a criti-
cal value m,(d), which is given by m, =~ 2.213 for
d—4. ‘

A number of authors have studied the dynamic critical
behavior of the multicomponent boson system in the lim-
it m—c. [See Ma and Senbetu (1974); Abe and Hikami
(1974); Suzuki and Tanaka (1974b); Kondor and Szé€pfalusy
(19'74); Sak (1976); Oppermann (1976); Grest (1977)].

A satisfactory renormalization group analysis to order
1/m has not yet been done, however, and the behavior
in this limit is not completely understood.

5. Superconductors

Because the transition temperature in all known super-
conductors is very small compared to the Fermi energy
E, it turns out that critical fluctuations have a very
small effect on the free energy, and the temperature re-
gion where asymptotic critical behavior should occur is
predicted to be unattainably small in any bulk sample
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(Ginzburg, 1960; Hohenberg, 1968).*® In thin films and
whisker samples, the critical fluctuations are enhanced,
and it has been possible to observe a fluctuation contri-
bution to the conductivity in the normal phase, sufficient-
ly close to T,. The explanation of this enhancement given
by Aslamazov and Larkin (1968), using the microscopic
theory of superconductivity, is very similar in its phys-
ical origins to the divergence of the transport coefficient
A, near the A point of helium, or near the N€el point of
an antiferromagnet, as discussed in Secs. VI and VII
above. In the superconductor one is primarily interested
in temperatures outside the asymptotic critical region,
however, so that the relaxation of the order parameter
is of the simple time-dependent Ginzburg-Landau form
(i.e., model A), with a temperature-independent Kinetic
coefficient I' and classical Ornstein—-Zernike behavior
for the susceptibility x, (k). It was realized subsequent-
ly, however, that there are other contributions to the
electrical conductivity in the temperature range of inter-
est, in addition to the one proposed by Aslamazov and
Larkin. These contributions may be dominant when the
spin-flip scattering rate is small compared to the order
parameter relaxation rate at the temperature of interest.
A review of the experimental and theoretical situation
may be found in Parks (1971), Hohenberg (1971b), and
Skocpol and Tinkham (1975).

6. Liquid crystals

The most interesting transitions in liquid crystals,
from the point of view of critical phenomena, are the
transitions from nematic to smectic A, from nematic to
smectic C, and smectic A to smectic C. All of these
have the possibility of being second order, according to
the Landau theory (de Gennes, 1974; Stephen and Straley,
1974), although the first two cases have been predicted
to be at least weakly first order, because of fluctuation
effects (Halperin et al., 1974c; Halperin and Lubensky,
1974)."

The possible effects of fluctuations on the critical dy-
namics in liquid crystals have been investigated theoret-
ically, with a variety of coupled-mode and dynamic scal-
ing approaches by Brochard (1973,1976), Jihnig and
Brochard (1974), and Shiwa (1976).

The experimental situation for the nematic—smectic A
transition is very puzzling, however. For example,
measurements of the elastic properties and of the
smectic order parameter in the material p-cyanobenzy-
lidene-p-n-octyloxyaniline (CBOOA), strongly indicate
a critical point transition, while specific heat and vol-
ume measurements suggest a latent heat and volume
jump. For an entry into the experimental literature of
this system, see Clark (1976), Chu and McMillan (1975),
and Als-Nielsen ef al., 1977.

38When one takes into account interactions with thermal fluc-
tuations of the electromagnetic field, it appears that the super-
conducting transition should actually be very weakly first order,
in a bulk sample. The predicted latentheatis too small to have
been observed in existing experiments, however. See Halperin
et al. (1974c). :
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7. Polymer solutions

The theory of stochastic motions of flexible polymer
chains in solution bears many formal relationships to
thermodynamic phase transitions (de Gennes, 1972;
des Cloiseaux, 1975). In the polymer system, the cor-
relation length diverges when the chain length goes to
infinity and the concentration goes to zero. A scaling
theory can be developed, for both statics and dynamics,
which predicts critical exponents for the viscosity and
relaxation time (de Gennes, 1976a, 1976b; Daoud ef al.,
1975; deGennes et al., 1976).

8. “"Phase transitions” far from equilibrium

There exist a number of examples of systems in a
steady state far from equilibrium, which undergo insta-
bilities under the influence of an external force. These
instabilities have some elements in common with equi-
librium phase transitions, and it is interesting to ask
whether scaling concepts will also apply to that case. At
present, most of the analogies have been drawn at the
level of mean field theory, and it is not clear whether
fluctuations can be treated in the same way as for phase
transitions [see Riste (1975); Haken (1975); Swift and
Hohenberg (1977)].

IX. CONCLUSION
A. Summary of results

Let us summarize the principal accomplishments of
the modern theory of critical dynamics.

(1) The singularities which occur in transport coeffi-
cients and time-dependent correlations near the critical
point have been explained in terms of the long-wave-
length fluctuations of slow variables in a system. The
concepts of scaling and universality, which are general-
izations of the corresponding ideas applicable to static
properties, provide a framework for understanding a
large number of dynamic phenomena.

(2) The mode-coupling: method enables one to make
semiquantitative calculations on simple models, and to
understand the breakdown of the conventional theory of
critical slowing down, which occurs in many cases.

(3) The renormalization group method may be applied
to dynamic models, where it provides the mathematical
mechanism for scaling and universality, in complete
analogy to the static situation. The dynamic universality
classes are smaller than the static ones, however, due
to the relevance of conservation laws and Poisson-brack-
et relations in the dynamic case. The renormalization
group method provides a justification for the earlier
mode-coupling theories, and permits one to see which
aspects of these theories are exact, and which are ap-
proximate.

(4) A large number of different systems have been an-
alyzed and quantitative results obtained, many of which
are in agreement with experiment. The principal dyna-
mic universality classes are listed in Table I, and the
most important results of the renormalization group an-
alysis are summarized in Table II.

(5) Corrections to the leading asymptotic behavior have
been estimated for a number of dynamic quantities. In
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certain cases these corrections play a much more im-
portant role than for static properties, either because
the correction exponent is small, or because the leading
singularity is weak. Under such circumstances the re-
gion of universal scaling behavior is severely reduced,
and further elaborations of the theory are necessary, in
order to obtain predictions which are experimentally
verifiable.

(6) The connection between a fully microscopic descrip-
tion and the stochastic models which are the basis of the
renormalization group, has not been established in full
detail. A suggestion for how such a derivation would
proceed has been outlined in Sec. IV.D, for a system
undergoing a structural phase transition. Similar argu-
ments can be given to “derive” the stochastic models for
gas-liquid and binary-fluid critical points, or for super-
fluid -helium and various magnetic systems.

B. Problems and prospects

In order to test the theory of critical phenomena it is
important to have accurate experiments on well charac-.
terized systems, very close to the critical point. Such
experiments exist primarily in fluids, and it may be said
that the theory has been tested successfully at the 10%—
15% level on a number of pure fluids and binary-fluid
mixtures. For the superfluid transition in helium, on the
other hand, where accurate experiments are also avail-
able, there are a number of striking quantitative dis-
agreements with the theory, which pose a major chal-
lenge at this time. Apart from these cases, there is rel-
atively little experimental information of high accuracy
available on systems which are well enough character-
ized to make the theory unambiguous.

With regard to the theory itself, it must be said that
the methods presently available for making predictions
in three dimensions are extremely crude. In essence
what has been used in the renormalization group frame-
work is an extrapolation from four dimensions via the €
expansion, or lowest-order perturbation theory in the
mode coupling directly at d=3. It would be interesting
to extend to dynamics some of the other methods which
have been applied successfully to the static theory in
three dimensions, such as the finite-lattice renormaliza-
tion group. Apart from calculations of exponents and
scaling functions, it is also necessary to develop tech-
niques for obtaining the corrections to the asymptotic
critical behavior, in terms of a small number of non-
universal parameters which can be fit to experiments on
different materials. In this way, it is hoped that a more
rigorous confrontation between experiment and theory
can be achieved. :
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