8-1 $\quad E=\frac{\hbar^{2} \pi^{2}}{2 m}\left[\left(\frac{n_{1}}{L_{x}}\right)^{2}+\left(\frac{n_{2}}{L_{y}}\right)^{2}+\left(\frac{n_{3}}{L_{z}}\right)^{2}\right]$
$L_{x}=L, L_{y}=L_{z}=2 L$. Let $\frac{\hbar^{2} \pi^{2}}{8 m L^{2}}=E_{0}$. Then $E=E_{0}\left(4 n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)$. Choose the quantum numbers as follows:

n_{1}	n_{2}	n_{3}	$\frac{E}{E_{0}}$		
1	1	1	6		ground state
1	2	1	9	$*$	first two excited states
1	1	2	9	$*$	
2	1	1	18		
1	2	2	12	$*$	next excited state
2	1	2	21		
2	2	1	21		
2	2	2	24		
1	1	3	14	$*$	next two excited states
1	3	1	14	$*$	

Therefore the first 6 states are $\psi_{111}, \psi_{121}, \psi_{112}, \psi_{122}, \psi_{113}$, and ψ_{131} with relative energies $\frac{E}{E_{0}}=6,9,9,12,14,14$. First and third excited states are doubly degenerate.

8-2 (a) $n_{1}=1, n_{2}=1, n_{3}=1$

$$
E_{0}=\frac{3 \hbar^{2} \pi^{2}}{2 m L^{2}}=\frac{3 h^{2}}{8 m L^{2}}=\frac{3\left(6.626 \times 10^{-34} \mathrm{Js}\right)^{2}}{8\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(2 \times 10^{-10} \mathrm{~m}\right)^{2}}=4.52 \times 10^{-18} \mathrm{~J}=28.2 \mathrm{eV}
$$

(b) $n_{1}=2, n_{2}=1, n_{3}=1$ or

$$
n_{1}=1, n_{2}=2, n_{3}=1 \text { or }
$$

$$
n_{1}=1, n_{2}=1, n_{3}=2
$$

$$
E_{1}=\frac{6 h^{2}}{8 m L^{2}}=2 E_{0}=56.4 \mathrm{eV}
$$

8-3 $\quad n^{2}=11$
(a) $\quad E=\left(\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}\right) n^{2}=\frac{11}{2}\left(\frac{\hbar^{2} \pi^{2}}{m L^{2}}\right)$
(b)

n_{1}	n_{2}	n_{3}
1	1	3

$\begin{array}{llll}1 & 3 & 1 & 3 \text {-fold degenerate }\end{array}$

| 3 | 1 |
| :--- | :--- | :--- |

(c) $\quad \psi_{113}=A \sin \left(\frac{\pi x}{L}\right) \sin \left(\frac{\pi y}{L}\right) \sin \left(\frac{3 \pi z}{L}\right)$

$$
\begin{aligned}
& \psi_{131}=A \sin \left(\frac{\pi x}{L}\right) \sin \left(\frac{3 \pi y}{L}\right) \sin \left(\frac{\pi z}{L}\right) \\
& \psi_{311}=A \sin \left(\frac{3 \pi x}{L}\right) \sin \left(\frac{\pi y}{L}\right) \sin \left(\frac{\pi z}{L}\right)
\end{aligned}
$$

8-4 (a) $\quad \psi(x, y)=\psi_{1}(x) \psi_{2}(y)$. In the two-dimensional case, $\psi=A\left(\sin k_{1} x\right)\left(\sin k_{2} y\right)$ where $k_{1}=\frac{n_{1} \pi}{L}$ and $k_{2}=\frac{n_{2} \pi}{L}$.
(b) $\quad E=\frac{\hbar^{2} \pi^{2}\left(n_{1}^{2}+n_{2}^{2}\right)}{2 m L^{2}}$

If we let $E_{0}=\frac{\hbar^{2} \pi^{2}}{m L^{2}}$, then the energy levels are:
$\left.\begin{array}{lllll}\hline n_{1} & n_{2} & \frac{E}{E_{0}} & & \\ \hline 1 & 1 & 1 & \rightarrow & \psi_{11} \\ 1 & 2 & \frac{5}{2} & \rightarrow & \psi_{12} \\ 2 & 1 & \frac{5}{2} & \rightarrow & \psi_{21}\end{array}\right]$ doubly degenerate

8-5 (a) $n_{1}=n_{2}=n_{3}=1$ and

$$
E_{111}=\frac{3 h^{2}}{8 m L^{2}}=\frac{3\left(6.63 \times 10^{-34}\right)^{2}}{8\left(1.67 \times 10^{-27}\right)\left(4 \times 10^{-28}\right)}=2.47 \times 10^{-13} \mathrm{~J} \approx 1.54 \mathrm{MeV}
$$

(b) States 211, 121, 112 have the same energy and $E=\frac{\left(2^{2}+1^{2}+1^{2}\right) h^{2}}{8 m L^{2}}=2 E_{111} \approx 3.08 \mathrm{MeV}$ and states 221, 122, 212 have the energy $E=\frac{\left(2^{2}+2^{2}+1^{2}\right) h^{2}}{8 m L^{2}}=3 E_{111} \approx 4.63 \mathrm{MeV}$.
(c) Both states are threefold degenerate.

8-8 Inside the box the electron is free, and so has momentum and energy given by the de Broglie relations $|\mathbf{p}|=\hbar|\mathbf{k}|$ and $E=\hbar \omega$ with $E=\left(c^{2}|\mathbf{p}|^{2}+m^{2} c^{4}\right)^{1 / 2}$ for this, the relativistic case. Here $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}\right)$ is the wave vector whose components k_{1}, k_{2}, and k_{3} are wavenumbers along each of three mutually perpendicular axes. In order for the wave to vanish at the walls, the box must contain an integral number of half-wavelengths in each direction. Since $\lambda_{1}=\frac{2 \pi}{k_{1}}$ and so on, this gives

$$
\begin{array}{llll}
L=n_{1}\left(\frac{\lambda_{1}}{2}\right) & \text { or } & k_{1}=\frac{n_{1} \pi}{L} \\
L=n_{2}\left(\frac{\lambda_{2}}{2}\right) & \text { or } & k_{2}=\frac{n_{2} \pi}{L} \\
L=n_{3}\left(\frac{\lambda_{3}}{2}\right) & \text { or } & k_{3}=\frac{n_{3} \pi}{L}
\end{array}
$$

Thus, $|\mathbf{p}|^{2}=\hbar|\mathbf{k}|^{2}=\hbar^{2}\left\{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right\}=\left(\frac{\pi \hbar}{L}\right)^{2}\left\{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right\}$ and the allowed energies are $=\left[\left(\frac{\pi \hbar c}{L}\right)^{2}\left\{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right\}+\left(m c^{2}\right)^{2}\right]^{1 / 2}$. For the ground state $n_{1}=n_{2}=n_{3}=1$. For an electron confined to $L=10 \mathrm{fm}$, we use $m=0.511 \mathrm{MeV} / c^{2}$ and $\hbar c=197.3 \mathrm{MeV} \mathrm{fm}$ to get $E=\left\{3\left[\frac{(\pi)(197.3 \mathrm{MeV} \mathrm{fm})}{10 \mathrm{fm}}\right]^{2}+(0.511 \mathrm{MeV})^{2}\right\}^{1 / 2}=107 \mathrm{MeV}$.
$n=4, l=3$, and $m_{l}=3$
(a) $L=[l(l+1)]^{7 / 2} \hbar=[3(3+1)]^{72} \hbar=2 \sqrt{3} \hbar=3.65 \times 10^{-34} \mathrm{Js}$
(b) $L_{z}=m_{l} \hbar=3 \hbar=3.16 \times 10^{-34} \mathrm{Js}$

8-12 $\quad \psi(r)=\left(\frac{1}{\pi}\right)^{1 / 2}\left(\frac{1}{a_{0}}\right)^{3 / 2} e^{-r / a_{0}}$
(a)

(b) The probability of finding the electron in a volume element $\mathrm{d} V$ is given by $|\psi|^{2} d V$. Since the wave function has spherical symmetry, the volume element $\mathrm{d} V$ is identified here with the volume of a spherical shell of radius $r, d V=4 \pi r^{2} d r$. The probability of finding the electron between r and $r+d r$ (that is, within the spherical shell) is $P=|\psi|^{2} d V=4 \pi r^{2}|\psi|^{2} d r$.
(c)

(d)

$$
\int|\psi|^{2} d V=\left.4 \pi| | \psi\right|^{2} r^{2} d r=4 \pi\left(\frac{1}{\pi}\right)\left(\frac{1}{a_{0}^{3}}\right)_{0}^{\infty} \int_{0}^{-2 r \mid a_{0}} r^{2} d r=\left(\frac{4}{a_{0}^{3}} \int_{0}^{\infty} \int_{0}^{-2 \eta a_{0}} r^{2} d r\right.
$$

Integrating by parts, or using a table of integrals, gives

$$
\int|\psi|^{2} d V=\left(\frac{4}{a_{0}^{3}}\right)\left[2\left(\frac{a_{0}}{2}\right)^{3}\left(\frac{2}{a_{0}}\right)^{3}\right]=1
$$

(e) $\quad P=4 \pi \int_{r_{1}}^{r_{2}}|\psi|^{2} r^{2} d r$ where $r_{1}=\frac{a_{0}}{2}$ and $r_{2}=\frac{3 a_{0}}{2}$

$$
\begin{aligned}
P & =\left(\frac{4}{a_{0}^{3}}\right)_{r_{1}}^{r_{2}} r^{2} e^{-2 r a_{0}} d r \quad \text { let } z=\frac{2 r}{a_{0}} \\
& =\frac{1}{2} \int_{1}^{3} z^{2} e^{-z} d z \\
& \left.=-\left.\frac{1}{2}\left(z^{2}+2 z+2\right) e^{-z}\right|_{1} ^{3} \quad \text { (integrating by parts }\right) \\
& =-\frac{17}{2} e^{-3}+\frac{5}{2} e^{-1}=0.496
\end{aligned}
$$

$Z=2$ for He^{+}
(a) For $n=3, l$ can have the values of $0,1,2$

$$
\begin{aligned}
& l=0 \rightarrow m_{l}=0 \\
& l=1 \rightarrow m_{l}=-1,0,+1 \\
& l=2 \rightarrow m_{l}=-2,-1,0,+1,+2
\end{aligned}
$$

(b) All states have energy $E_{3}=\frac{-Z^{2}}{3^{2}}(13.6 \mathrm{eV})$

$$
E_{3}=-6.04 \mathrm{eV}
$$

8-16 For a d state, $l=2$. Thus, m_{l} can take on values $-2,-1,0,1,2$. Since $L_{z}=m_{l} \hbar, L_{z}$ can be $\pm 2 \hbar, \pm \hbar$, and zero.

8-17 (a) For a d state, $l=2$

$$
L=[l(l+1)]^{1 / 2} \hbar=(6)^{1 / 2}\left(1.055 \times 10^{-34} \mathrm{Js}\right)=2.58 \times 10^{-34} \mathrm{Js}
$$

(b) For an f state, $l=3$

$$
L=[l(l+1)]^{1 / 2} \hbar=(12)^{1 / 2}\left(1.055 \times 10^{-34} \mathrm{Js}\right)=3.65 \times 10^{-34} \mathrm{Js}
$$

8-18 The state is $6 g$
(a) $n=6$
(b) $\quad E_{n}=-\frac{13.6 \mathrm{eV}}{n^{2}} \quad E_{6}=\frac{-13.6}{6^{2}} \mathrm{eV}=-0.378 \mathrm{eV}$
(c) For a g-state, $l=4$

$$
L=[l(l+1)]^{7 / 2} \hbar=(4 \times 5)^{1 / 2} \hbar=\sqrt{20} \hbar=4.47 \hbar
$$

(d) $\quad m_{l}$ can be $-4,-3,-2,-1,0,1,2,3$, or 4

| L_{z} | $=m_{l} \hbar ; \cos \theta=\frac{L_{z}}{L}=\frac{m_{l}}{[l(l+1)]^{12}} \hbar=\frac{m_{l}}{\sqrt{20}}$ | | | | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m_{l} | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| L_{z} | $-4 \hbar$ | $-3 \hbar$ | $-2 \hbar$ | $-\hbar$ | 0 | \hbar | $2 \hbar$ | $3 \hbar$ | $4 \hbar$ |
| θ | 153.4° | 132.1° | 116.6° | 102.9° | 90° | 77.1° | 63.4° | 47.9° | 26.6° |

(a) $\quad \psi_{2 s}(r)=\frac{1}{4(2 \pi)^{1 / 2}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(2-\frac{r}{a_{0}}\right) e^{-r / 2 a_{0}}$. At $r=a_{0}=0.529 \times 10^{-10} \mathrm{~m}$ we find

$$
\begin{aligned}
\psi_{2 s}\left(a_{0}\right) & =\frac{1}{4(2 \pi)^{1 / 2}}\left(\frac{1}{a_{0}}\right)^{3 / 2}(2-1) e^{-1 / 2}=(0.380)\left(\frac{1}{a_{0}}\right)^{3 / 2} \\
& =(0.380)\left[\frac{1}{0.529 \times 10^{-10} \mathrm{~m}}\right]^{3 / 2}=9.88 \times 10^{14} \mathrm{~m}^{-3 / 2}
\end{aligned}
$$

(b) $\quad \mid \psi_{2 s}\left(a_{0}\right)^{2}=\left(9.88 \times 10^{14} \mathrm{~m}^{-3 / 2}\right)^{2}=9.75 \times 10^{29} \mathrm{~m}^{-3}$
(c) Using the result to part (b), we get $P_{2 s}\left(a_{0}\right)=4 \pi a_{0}^{2} \mid \psi_{2 s}\left(a_{0}\right)^{2}=3.43 \times 10^{10} \mathrm{~m}^{-1}$.

8-22 $\quad R_{2 p}(r)=A r e^{-1 / 2 a_{0}}$ where $A=\frac{1}{2(6)^{1 / 2} a_{0}^{5 / 2}}$

$$
\begin{aligned}
& P(r)=r^{2} R_{2 p}^{2}(r)=A^{2} r^{4} e^{-r a_{0}} \\
& \langle r\rangle=\int_{0}^{\infty} r P(r) d r=A^{2} \int_{0}^{\infty} r^{5} e^{-r a_{0}} d r=A^{2} a_{0}^{6} 5!=5 a_{0}=2.645 \AA
\end{aligned}
$$

