
6-24 After rearrangement, the Schrödinger equation is 
      

! 

d
2"

dx
2

=
2m

h
2

# 

$ % 
& 

' ( 
U x( ) )E{ }" x( )  with 

    

! 

U x( ) =
1

2
m"

2
x

2  for the quantum oscillator. Differentiating 
    

! 

" x( ) = Cxe
#$ x

2

 gives  
 

 
    

! 

d"

dx
= #2$ x" x( ) + C

#$ x
2

 
 
 and 
 

 
    

! 

d
2
"

dx
2

= #
2$ xd"

dx
# 2$" x( ) # 2$ x( )Ce

#$ x
2

= 2$ x( )
2

" x( ) # 6$" x( ) . 
 

Therefore, for 
  

! 

" x( )  to be a solution requires 
      

! 

2" x( )2

# 6" =
2m

h
2

U x( ) #E{ } =
m$

h

% 

& ' 
( 

) * 

2

x
2 #

2mE

h
2

. 

Equating coefficients of like terms gives 
      

! 

2" =
m#

h
 and 

      

! 

6" =
2mE

h
2

. Thus, 
      

! 

" =
m#

2h
 and 

      

! 

E =
3" h

2

m
=

3

2
h# . The normalization integral is 

    

! 

1 = " x( )
2

dx

#$

$

% = 2C
2

x
2
e
#2& x

2

% dx  where 

the second step follows from the symmetry of the integrand about     

! 

x = 0 . Identifying a 

with   

! 

2" in the integral of Problem 6-32 gives 
    

! 

1 = 2C
2 1

8"

# 

$ % 
& 

' ( 
)

2"

# 

$ % 
& 

' ( 

1 2

 or 
    

! 

C =
32"3

#

$ 

% 
& 

' 

( 
) 

1 4

. 

6-25 At its limits of vibration   

! 

x = ±A  the classical oscillator has all its energy in potential form: 

    

! 

E =
1

2
m"

2
A

2  or 
    

! 

A =
2E

m" 2

# 

$ % 
& 

' ( 

1 2

. If the energy is quantized as 
      

! 

En = n +
1

2

" 

# $ 
% 

& ' 
h( , then the 

corresponding amplitudes are 
      

! 

An =
2n + 1( )h

m"

# 

$ 
% 

& 

' 
( 

1 2

. 

6-32 The probability density for this case is 
    

! 

" 0 x( )
2

= C0

2
e
#ax

2

 with 
    

! 

C0 =
a

"

# 

$ % 
& 

' ( 

1 4

 and 
    

! 

a =
m"

h
. 

For the calculation of the average position 
    

! 

x = x" 0 x( )
2

dx

#$

$

%  we note that the integrand 

is an odd function, so that the integral over the negative half-axis     

! 

x < 0  exactly cancels 
that over the positive half-axis (    

! 

x > 0 ), leaving 
    

! 

x = 0 . For the calculation of 
    

! 

x
2 , 

however, the integrand 
    

! 

x
2
" 0

2

 is symmetric, and the two half-axes contribute equally, 
giving 

 

 
    

! 

x
2

= 2C0

2
x

2
e
"ax

2

dx

0

#

$ = 2C0

2 1

4a

% 

& ' 
( 

) * 
+

a

% 

& ' 
( 

) * 

1 2

. 

 

 Substituting for 
    

! 

C0  and a gives 
      

! 

x
2

=
1

2a
=

h

2m"
 and 

      

! 

"x = x
2 # x

2( )
1 2

=
h

2m$

% 

& ' 
( 

) * 

1 2

. 

 



6-33 (a) Since there is no preference for motion in the leftward sense vs. the rightward 
sense, a particle would spend equal time moving left as moving right, suggesting 

    

! 

px = 0 . 
 
(b) To find 

    

! 

px
2  we express the average energy as the sum of its kinetic and 

potential energy contributions: 
    

! 

E =
px

2

2m
+ U =

px
2

2m
+ U . But energy is sharp 

in the oscillator ground state, so that 
      

! 

E = E0 =
1

2
h" . Furthermore, remembering 

that 
    

! 

U x( ) =
1

2
m"

2
x

2  for the quantum oscillator, and using 
      

! 

x
2

=
h

2m"
 from 

Problem 6-32, gives 
      

! 

U =
1

2
m"

2
x

2
=

1

4
h" . Then 

      

! 

px
2

= 2m E0 " U( ) = 2m
h#

4

$ 

% & 
' 

( ) 
=

mh#

2
. 

 

(c) 
      

! 

"px = px
2 # px

2( )
1 2

=
mh$

2

% 

& ' 
( 

) * 

1 2

 

6-34 From Problems 6-32 and 6-33, we have 
      

! 

"x =
h

2m#

$ 

% & 
' 

( ) 

1 2

 and 
      

! 

"px =
mh#

2

$ 

% & 
' 

( ) 

1 2

. Thus, 

      

! 

"x"px =
h

2m#

$ 

% & 
' 

( ) 

1 2
mh#

2

$ 

% & 
' 

( ) 

1 2

=
h

2
 for the oscillator ground state. This is the minimum 

uncertainty product permitted by the uncertainty principle, and is realized only for the 
ground state of the quantum oscillator. 

 

6-35 Applying the momentum operator 
    

! 

px[ ] =
h

i

" 

# $ 
% 

& ' 
d

dx
 to each of the candidate functions 

yields 
 

(a) 
      

! 

px[ ] Asin kx( ){ } =
h

i

" 

# $ 
% 

& ' 
k Acos kx( ){ }  

 

(b) 
      

! 

px[ ] Asin kx( ) "Acos kx( ){ } =
h

i

# 

$ % 
& 

' ( 
k Acos kx( ) + Asin kx( ){ }  

 

(c) 
      

! 

px[ ] Acos kx( ) + iAsin kx( ){ } =
h

i

" 

# $ 
% 

& ' 
k (Asin kx( ) + iAcos kx( ){ }  

 

(d) 
    

! 

px[ ] e
ik x "a( ){ } =

h

i

# 

$ % 
& 

' ( 
ik e

ik x "a( ){ }  

 
 In case (c), the result is a multiple of the original function, since 
 

    

! 

"Asin kx( ) + iAcos kx( ) = i Acos kx( ) + iAsin kx( ){ } . 
 



 The multiple is 
    

! 

h

i

" 

# $ 
% 

& ' 
ik( ) = hk  and is the eigenvalue. Likewise for (d), the operation 

  

! 

px[ ] 

returns the original function with the multiplier     

! 

hk . Thus, (c) and (d) are eigenfunctions 
of 

  

! 

px[ ] with eigenvalue     

! 

hk , whereas (a) and (b) are not eigenfunctions of this operator. 
 
 
 

7-1 (a) The reflection coefficient is the ratio of the reflected intensity to the incident 

wave intensity, or 

    

! 

R =
1 2( ) 1 " i( )

2

1 2( ) 1 + i( )
2

. But 

    

! 

1 " i
2

= 1 " i( ) 1 " i( )* = 1 " i( ) 1 + i( ) = 1 + i
2

= 2 , so that     

! 

R = 1  in this case. 
 
(b) To the left of the step the particle is free. The solutions to Schrödinger’s equation 

are   

! 

e
±ikx  with wavenumber 

      

! 

k =
2mE

h
2

" 

# $ 
% 

& ' 

1 2

. To the right of the step 
  

! 

U x( ) =U  and 

the equation is 
      

! 

d
2
"

dx
2

=
2m

h
2

U #E( )" x( ) . With 
  

! 

" x( ) = e
#kx , we find 

    

! 

d
2
"

dx
2

= k
2
" x( ) , 

so that 
      

! 

k =
2m U "E( )

h
2

# 

$ 
% 

& 

' 
( 

1 2

. Substituting 
      

! 

k =
2mE

h
2

" 

# $ 
% 

& ' 

1 2

 shows that 
    

! 

E

U "E( )

# 

$ 
% 
% 

& 

' 
( 
( 

1 2

= 1  

or 
    

! 

E

U
=

1

2
. 

 

(c) For 10 MeV protons,     

! 

E = 10 MeV  and 
    

! 

m =
938.28 MeV

c
2

. Using 

      

! 

h = 197.3 MeV fm c 1 fm = 10
"15

 m( ) , we find 

      

! 

" =
1

k
=

h

2mE( )1 2
=

197.3  MeV fm c

2( ) 938.28 MeV c
2( ) 10 MeV( )[ ]

1 2
= 1.44 fm . 

 
7-2 (a) To the left of the step the particle is free with kinetic energy E and corresponding 

wavenumber 
      

! 

k1 =
2mE

h
2

" 

# $ 
% 

& ' 

1 2

: 

 

    

! 

" x( ) = Ae
ik

1
x

+ Be
#ik

1
x      

! 

x " 0  
 
 To the right of the step the kinetic energy is reduced to   

! 

E "U  and the 

wavenumber is now 
      

! 

k2 =
2m E "U( )

h
2

# 

$ 
% 

& 

' 
( 

1 2

 

 

    

! 

" x( ) = Ce
ik

2
x

+ De
#ik

2
x      

! 

x " 0  

 with     

! 

D = 0  for waves incident on the step from the left. At     

! 

x = 0  both 

! 

"  and 
  

! 

d"

dx
 

must be continuous: 
    

! 

" 0( ) = A + B = C  
 

    

! 

d"

dx
0

= ik1 A #B( ) = ik2C . 

 



(b) Eliminating C gives 
    

! 

A + B =
k1

k2

A "B( )  or 
    

! 

A
k1

k2

" 1
# 

$ % 
& 

' ( 
= B

k1

k2

+ 1
# 

$ % 
& 

' ( 
. Thus, 

 

    

! 

R =
B

A

2

=
k1 k2 "1( )

2

k
1

k
2

+ 1( )
2

=
k1 " k2( )2

k1 + k2( )2

T = 1 " R =
4k

1
k

2

k1 + k2( )2

 

 
(c) As   

! 

E "U , 
    

! 

k2 " 0 , and     

! 

R "1 ,     

! 

T " 0  (no transmission), in agreement with the 
result for any energy   

! 

E < U . For   

! 

E "# , 
    

! 

k1 " k2  and     

! 

R " 0 ,     

! 

T " 1  (perfect 
transmission) suggesting correctly that very energetic particles do not see the step 
and so are unaffected by it. 

 
7-3 With     

! 

E = 25 MeV  and     

! 

U = 20 MeV , the ratio of wavenumber is 

    

! 

k1

k2

=
E

E "U

# 

$ % 
& 

' ( 

1 2

=
25

25 " 20

# 

$ % 
& 

' ( 

1 2

= 5 = 2.236 . Then from Problem 7-2 

    

! 

R =
5 " 1( )

2

5 + 1( )
2

= 0.146  

and     

! 

T = 1 " R = 0.854 . Thus, 14.6% of the incoming particles would be reflected and 85.4% 
would be transmitted. For electrons with the same energy, the transparency and 
reflectivity of the step are unchanged. 

 
7-4 The reflection coefficient for this case is given in Problem 7-2 as 
 

    

! 

R =
B

A

2

=
k1 k2 "1( )

2

k
1

k
2

+ 1( )
2

=
k

1
" k

2( )
2

k
1

+ k
2( )

2
. 

 
 The wavenumbers are those for electrons with kinetic energies     

! 

E = 54.0 eV  and 
    

! 

E "U = 54.0 eV + 10.0 eV = 64.0 eV : 
 

    

! 

k1

k2

=
E

E "U

# 

$ % 
& 

' ( 

1 2

=
54 eV

64 eV

# 

$ % 
& 

' ( 

1 2

= 0.918 6 . 

 

 Then, 
    

! 

R =
0.918 6 "1( )

2

0.918 6 + 1( )
2

= 1.80 # 10
"3  is the fraction of the incident beam that is reflected 

at the boundary. 
 
7-5 (a) The transmission probability according to Equation 7.9 is 

    

! 

1

T E( )
= 1 +

U
2

4E U "E( )

# 

$ 
% 
% 

& 

' 
( 
( 
sinh

2)L  with 
      

! 

" =
2m U #E( )[ ]

1 2

h
. For   

! 

E <<U , we find 

      

! 

" L( )
2

#
2mUL

2

h
2

>> 1  by hypothesis. Thus, we may write 
    

! 

sinh" L #
1

2
e
" L . Also 

  

! 

U "E #U , giving 
    

! 

1

T E( )
" 1 +

U

16E

# 

$ % 
& 

' ( 
e

2) L "
U

16E

# 

$ % 
& 

' ( 
e

2) L  and a probability for 

transmission 
    

! 

P = T E( ) =
16E

U

" 

# $ 
% 

& ' 
e
(2) L . 

 
(b) Numerical Estimates: 

    

! 

h = 1.055" 10
#34

 Js( )  



1) For     

! 

m = 9.11" 10#31  kg ,     

! 

U "E = 1.60 # 10
"21

 J ,     

! 

L = 10
"10

 m ; 

      

! 

" =
2m U #E( )[ ]

1 2

h
= 5.12 $ 10

8
 m

#1  and     

! 

e
"2# L

= 0.90  

2) For     

! 

m = 9.11" 10#31  kg ,     

! 

U "E = 1.60 # 10
"19

 J ,     

! 

L = 10
"10

 m ; 
  

! 

" = 5.12 # 10
9

 m
$1  and     

! 

e
"2# L

= 0.36  
3) For     

! 

m = 6.7 " 10#27  kg ,     

! 

U "E = 1.60 # 10
"13

 J ,     

! 

L = 10
"15

 m ; 
  

! 

" = 4.4 # 10
14

 m
$1  and     

! 

e
"2# L

= 0.41  
4) For     

! 

m = 8 kg ,     

! 

U "E = 1 J ,     

! 

L = 0.02 m ;   

! 

" = 3.8 # 10
34

 m
$1  and 

    

! 

e
"2# L

= e
"1.5$10

33

% 0  
 
7-16 Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about 

    

! 

3 755.8 MeV c
2 , the first approximation to the decay length 

! 

"  is 
 

      

! 

" #
h

2mU( )1 2
=

197.3 MeV fm c

2 3 755.8 MeV c
2( ) 30 MeV( )[ ]

1 2
= 0.415 6 fm . 

 
 This gives an effective width for the (infinite) well of 

    

! 

R + " = 9.415 6 fm , and a ground 

state energy 
    

! 

E1 =
"

2
197.3 MeV fm c( )

2

2 3 755.8 MeV c
2( ) 9.415 6 fm( )

2
= 0.577  MeV . From this E we calculate 

    

! 

U "E = 29.42 MeV  and a new decay length  
 

    

! 

" =
197.3 MeV fm c

2 3 755.8  MeV c
2( ) 29.42 MeV( )[ ]

1 2
= 0.419 7  fm . 

 
 This, in turn, increases the effective well width to 9.419 7 fm and lowers the ground state 

energy to 
    

! 

E1 = 0.576 MeV . Since our estimate for E has changed by only 0.001 MeV, we 
may be content with this value. With a kinetic energy of 

    

! 

E1 , the alpha particle in the 

ground state has speed 
    

! 

v1 =
2E1

m

" 

# $ 
% 

& ' 

1 2

=
2 0.576 MeV( )

3 755.8 MeV c
2( )

( 

) 

* 
* 

+ 

, 

- 
- 

1 2

= 0.017 5c . In order to be 

ejected with a kinetic energy of 4.05 MeV, the alpha particle must have been preformed 
in an excited state of the nuclear well, not the ground state. 

 
7-17 The collision frequency f is the reciprocal of the transit time for the alpha particle crossing 

the nucleus, or 
    

! 

f =
v

2R
, where v is the speed of the alpha. Now v is found from the 

kinetic energy which, inside the nucleus, is not the total energy E but the difference   

! 

E "U  
between the total energy and the potential energy representing the bottom of the nuclear 
well. At the nuclear radius     

! 

R = 9 fm , the Coulomb energy is 
 

 
    

! 

k Ze( ) 2e( )
R

= 2Z
ke

2

a0

" 

# 
$ 

% 

& 
' 

a0

R

" 

# $ 
% 

& ' 
= 2 88( ) 27.2 eV( )

5.29 ( 10
4

 fm

9 fm

" 

# 
$ 

% 

& 
' = 28.14 MeV . 

 
 From this we conclude that     

! 

U = "1.86 MeV  to give a nuclear barrier of   

! 

30 MeV  overall. 
Thus an alpha with     

! 

E = 4.05 MeV has kinetic energy   

! 

4.05 + 1.86 = 5.91 MeV  inside the 
nucleus. Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or 
about 

    

! 

3 755.8 MeV c
2  this kinetic energy represents a speed 



 

    

! 

v =
2Ek

m

" 

# $ 
% 

& ' 

1 2

=
2 5.91( )

3 755.8 MeV c
2

( 

) 
* 
* 

+ 

, 
- 
- 

1 2

= 0.056c . 

 

 Thus, we find for the collision frequency 
    

! 

f =
v

2R
=

0.056c

2 9 fm( )
= 9.35" 10

20
 Hz . 

 
 

 
 
 

 
 




