After rearrangement, the Schrödinger equation is $\frac{d^{2} \psi}{d x^{2}}=\left(\frac{2 m}{\hbar^{2}}\right)\{U(x)-E\} \psi(x)$ with $U(x)=\frac{1}{2} m \omega^{2} x^{2}$ for the quantum oscillator. Differentiating $\psi(x)=C x e^{-\alpha x^{2}}$ gives

$$
\frac{d \psi}{d x}=-2 \alpha x \psi(x)+C^{-\alpha x^{2}}
$$

and

$$
\frac{d^{2} \psi}{d x^{2}}=-\frac{2 \alpha x d \psi}{d x}-2 \alpha \psi(x)-(2 \alpha x) C e^{-\alpha x^{2}}=(2 \alpha x)^{2} \psi(x)-6 \alpha \psi(x)
$$

Therefore, for $\psi(x)$ to be a solution requires $(2 \alpha x)^{2}-6 \alpha=\frac{2 m}{\hbar^{2}}\{U(x)-E\}=\left(\frac{m \omega}{\hbar}\right)^{2} x^{2}-\frac{2 m E}{\hbar^{2}}$.
Equating coefficients of like terms gives $2 \alpha=\frac{m \omega}{\hbar}$ and $6 \alpha=\frac{2 m E}{\hbar^{2}}$. Thus, $\alpha=\frac{m \omega}{2 \hbar}$ and $E=\frac{3 \alpha \hbar^{2}}{m}=\frac{3}{2} \hbar \omega$. The normalization integral is $1=\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=2 C^{2} \int x^{2} e^{-2 \alpha x^{2}} d x$ where the second step follows from the symmetry of the integrand about $x=0$. Identifying a with 2α in the integral of Problem 6-32 gives $1=2 C^{2}\left(\frac{1}{8 \alpha}\right)\left(\frac{\pi}{2 \alpha}\right)^{1 / 2}$ or $C=\left(\frac{32 \alpha^{3}}{\pi}\right)^{1 / 4}$.
At its limits of vibration $x= \pm A$ the classical oscillator has all its energy in potential form: $E=\frac{1}{2} m \omega^{2} A^{2}$ or $A=\left(\frac{2 E}{m \omega^{2}}\right)^{1 / 2}$. If the energy is quantized as $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$, then the corresponding amplitudes are $A_{n}=\left[\frac{(2 n+1) \hbar}{m \omega}\right]^{1 / 2}$.
6-32 The probability density for this case is $\left|\psi_{0}(x)\right|^{2}=C_{0}^{2} e^{-a x^{2}}$ with $C_{0}=\left(\frac{a}{\pi}\right)^{1 / 4}$ and $a=\frac{m \omega}{\hbar}$.
For the calculation of the average position $\langle x\rangle=\left.\int_{-\infty}^{\infty} x \psi_{0}(x)\right|^{2} d x$ we note that the integrand is an odd function, so that the integral over the negative half-axis $x<0$ exactly cancels that over the positive half-axis $(x>0)$, leaving $\langle x\rangle=0$. For the calculation of $\left\langle x^{2}\right\rangle$, however, the integrand $x^{2}\left|\psi_{0}\right|^{2}$ is symmetric, and the two half-axes contribute equally, giving

$$
\left\langle x^{2}\right\rangle=2 C_{0}^{2} \int_{0}^{\infty} x^{2} e^{-a x^{2}} d x=2 C_{0}^{2}\left(\frac{1}{4 a}\right)\left(\frac{\pi}{a}\right)^{1 / 2}
$$

Substituting for C_{0} and a gives $\left\langle x^{2}\right\rangle=\frac{1}{2 a}=\frac{\hbar}{2 m \omega}$ and $\Delta x=\left(\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right)^{1 / 2}=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}$.
(a) Since there is no preference for motion in the leftward sense vs. the rightward sense, a particle would spend equal time moving left as moving right, suggesting $\left\langle p_{x}\right\rangle=0$.
(b) To find $\left\langle p_{x}^{2}\right\rangle$ we express the average energy as the sum of its kinetic and potential energy contributions: $\langle E\rangle=\left\langle\frac{p_{x}^{2}}{2 m}\right\rangle+\langle U\rangle=\frac{\left\langle p_{x}^{2}\right\rangle}{2 m}+\langle U\rangle$. But energy is sharp in the oscillator ground state, so that $\langle E\rangle=E_{0}=\frac{1}{2} \hbar \omega$. Furthermore, remembering that $U(x)=\frac{1}{2} m \omega^{2} x^{2}$ for the quantum oscillator, and using $\left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}$ from Problem 6-32, gives $\langle U\rangle=\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle=\frac{1}{4} \hbar \omega$. Then $\left\langle p_{x}^{2}\right\rangle=2 m\left(E_{0}-\langle U\rangle\right)=2 m\left(\frac{\hbar \omega}{4}\right)=\frac{m \hbar \omega}{2}$.
(c) $\quad \Delta p_{x}=\left(\left\langle p_{x}^{2}\right\rangle-\left\langle p_{x}\right\rangle^{2}\right)^{1 / 2}=\left(\frac{m \hbar \omega}{2}\right)^{1 / 2}$

6-34 From Problems 6-32 and 6-33, we have $\Delta x=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}$ and $\Delta p_{x}=\left(\frac{m \hbar \omega}{2}\right)^{1 / 2}$. Thus, $\Delta x \Delta p_{x}=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}\left(\frac{m \hbar \omega}{2}\right)^{1 / 2}=\frac{\hbar}{2}$ for the oscillator ground state. This is the minimum uncertainty product permitted by the uncertainty principle, and is realized only for the ground state of the quantum oscillator.

6-35 Applying the momentum operator $\left[p_{x}\right]=\left(\frac{\hbar}{i}\right) \frac{d}{d x}$ to each of the candidate functions yields
(a) $\left[p_{x}\right]\{A \sin (k x)\}=\left(\frac{\hbar}{i}\right) k\{A \cos (k x)\}$
(b) $\quad\left[p_{x}\right]\{A \sin (k x)-A \cos (k x)\}=\left(\frac{\hbar}{i}\right) k\{A \cos (k x)+A \sin (k x)\}$
(c) $\quad\left[p_{x}\right]\{A \cos (k x)+i A \sin (k x)\}=\left(\frac{\hbar}{i}\right) k\{-A \sin (k x)+i A \cos (k x)\}$
(d) $\quad\left[p_{x}\right]\left\{e^{i k(x-a)}\right\}=\left(\frac{\hbar}{i}\right) i k\left\{e^{i k(x-a)}\right\}$

In case (c), the result is a multiple of the original function, since

$$
-A \sin (k x)+i A \cos (k x)=i\{A \cos (k x)+i A \sin (k x)\}
$$

The multiple is $\left(\frac{\hbar}{i}\right)(i k)=\hbar k$ and is the eigenvalue. Likewise for (d), the operation $\left[p_{x}\right]$ returns the original function with the multiplier $\hbar k$. Thus, (c) and (d) are eigenfunctions of $\left[p_{x}\right]$ with eigenvalue $\hbar k$, whereas (a) and (b) are not eigenfunctions of this operator.

7-1 (a) The reflection coefficient is the ratio of the reflected intensity to the incident wave intensity, or $R=\frac{|(1 / 2)(1-i)|^{2}}{|(1 / 2)(1+i)|^{2}}$. But $|1-i|^{2}=(1-i)(1-i)^{*}=(1-i)(1+i)=|1+i|^{2}=2$, so that $R=1$ in this case.
(b) To the left of the step the particle is free. The solutions to Schrödinger's equation are $e^{ \pm i k x}$ with wavenumber $k=\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2}$. To the right of the step $U(x)=U$ and the equation is $\frac{d^{2} \psi}{d x^{2}}=\frac{2 m}{\hbar^{2}}(U-E) \psi(x)$. With $\psi(x)=e^{-k x}$, we find $\frac{d^{2} \psi}{d x^{2}}=k^{2} \psi(x)$, so that $k=\left[\frac{2 m(U-E)}{\hbar^{2}}\right]^{1 / 2}$. Substituting $k=\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2}$ shows that $\left[\frac{E}{(U-E)}\right]^{1 / 2}=1$ or $\frac{E}{U}=\frac{1}{2}$.
(c) For 10 MeV protons, $E=10 \mathrm{MeV}$ and $m=\frac{938.28 \mathrm{MeV}}{c^{2}}$. Using $\hbar=197.3 \mathrm{MeV} \mathrm{fm} / c\left(1 \mathrm{fm}=10^{-15} \mathrm{~m}\right)$, we find $\delta=\frac{1}{k}=\frac{\hbar}{(2 m E)^{1 / 2}}=\frac{197.3 \mathrm{MeV} \mathrm{fm} / c}{\left[(2)\left(938.28 \mathrm{MeV} / c^{2}\right)(10 \mathrm{MeV})\right]^{1 / 2^{2}}}=1.44 \mathrm{fm}$.

7-2 (a) To the left of the step the particle is free with kinetic energy E and corresponding wavenumber $k_{1}=\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2}$:

$$
\psi(x)=A e^{i k_{1} x}+B e^{-i k_{1} x} \quad x \leq 0
$$

To the right of the step the kinetic energy is reduced to $E-U$ and the wavenumber is now $k_{2}=\left[\frac{2 m(E-U)}{\hbar^{2}}\right]^{1 / 2}$

$$
\psi(x)=C e^{i k_{2} x}+D e^{-i k_{2} x} \quad x \geq 0
$$

with $D=0$ for waves incident on the step from the left. At $x=0$ both ψ and $\frac{d \psi}{d x}$ must be continuous: $\psi(0)=A+B=C$

$$
\left.\frac{d \psi}{d x}\right|_{0}=i k_{1}(A-B)=i k_{2} C
$$

(b) Eliminating C gives $A+B=\frac{k_{1}}{k_{2}}(A-B)$ or $A\left(\frac{k_{1}}{k_{2}}-1\right)=B\left(\frac{k_{1}}{k_{2}}+1\right)$. Thus,

$$
\begin{aligned}
& R=\left|\frac{B}{A}\right|^{2}=\frac{\left(k_{1} \mid k_{2}-1\right)^{2}}{\left(k_{1} / k_{2}+1\right)^{2}}=\frac{\left(k_{1}-k_{2}\right)^{2}}{\left(k_{1}+k_{2}\right)^{2}} \\
& T=1-R=\frac{4 k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}}
\end{aligned}
$$

(c) As $E \rightarrow U, k_{2} \rightarrow 0$, and $R \rightarrow 1, T \rightarrow 0$ (no transmission), in agreement with the result for any energy $E<U$. For $E \rightarrow \infty, k_{1} \rightarrow k_{2}$ and $R \rightarrow 0, T \rightarrow 1$ (perfect transmission) suggesting correctly that very energetic particles do not see the step and so are unaffected by it.

7-3 With $E=25 \mathrm{MeV}$ and $U=20 \mathrm{MeV}$, the ratio of wavenumber is

$$
\frac{k_{1}}{k_{2}}=\left(\frac{E}{E-U}\right)^{1 / 2}=\left(\frac{25}{25-20}\right)^{1 / 2}=\sqrt{5}=2.236 . \text { Then from Problem } 7-2 R=\frac{(\sqrt{5}-1)^{2}}{(\sqrt{5}+1)^{2}}=0.146
$$

and $T=1-R=0.854$. Thus, 14.6% of the incoming particles would be reflected and 85.4% would be transmitted. For electrons with the same energy, the transparency and reflectivity of the step are unchanged.

7-4 The reflection coefficient for this case is given in Problem 7-2 as

$$
R=\left|\frac{B}{A}\right|^{2}=\frac{\left(k_{1} \mid k_{2}-1\right)^{2}}{\left(k_{1} / k_{2}+1\right)^{2}}=\frac{\left(k_{1}-k_{2}\right)^{2}}{\left(k_{1}+k_{2}\right)^{2}} .
$$

The wavenumbers are those for electrons with kinetic energies $E=54.0 \mathrm{eV}$ and $E-U=54.0 \mathrm{eV}+10.0 \mathrm{eV}=64.0 \mathrm{eV}$:

$$
\frac{k_{1}}{k_{2}}=\left(\frac{E}{E-U}\right)^{1 / 2}=\left(\frac{54 \mathrm{eV}}{64 \mathrm{eV}}\right)^{1 / 2}=0.9186
$$

Then, $R=\frac{(0.9186-1)^{2}}{(0.9186+1)^{2}}=1.80 \times 10^{-3}$ is the fraction of the incident beam that is reflected at the boundary.
(a) The transmission probability according to Equation 7.9 is

$$
\begin{aligned}
& \frac{1}{T(E)}=1+\left[\frac{U^{2}}{4 E(U-E)}\right] \sinh ^{2} \alpha L \text { with } \alpha=\frac{[2 m(U-E)]^{1 / 2}}{\hbar} . \text { For } E \ll U, \text { we find } \\
& (\alpha L)^{2} \approx \frac{2 m U L^{2}}{\hbar^{2}} \gg 1 \text { by hypothesis. Thus, we may write } \sinh \alpha L \approx \frac{1}{2} e^{\alpha L} . \text { Also } \\
& U-E \approx U \text {, giving } \frac{1}{T(E)} \approx 1+\left(\frac{U}{16 E}\right) e^{2 \alpha L} \approx\left(\frac{U}{16 E}\right) e^{2 \alpha L} \text { and a probability for } \\
& \text { transmission } P=T(E)=\left(\frac{16 E}{U}\right) e^{-2 \alpha L} .
\end{aligned}
$$

(b) Numerical Estimates: $\left(\hbar=1.055 \times 10^{-34} \mathrm{Js}\right)$

1) For $m=9.11 \times 10^{-31} \mathrm{~kg}, U-E=1.60 \times 10^{-21} \mathrm{~J}, L=10^{-10} \mathrm{~m}$;

$$
\alpha=\frac{[2 m(U-E)]^{1 / 2}}{\hbar}=5.12 \times 10^{8} \mathrm{~m}^{-1} \text { and } e^{-2 \alpha L}=0.90
$$

2) For $m=9.11 \times 10^{-31} \mathrm{~kg}, U-E=1.60 \times 10^{-19} \mathrm{~J}, L=10^{-10} \mathrm{~m}$;

$$
\alpha=5.12 \times 10^{9} \mathrm{~m}^{-1} \text { and } e^{-2 \alpha L}=0.36
$$

3) For $m=6.7 \times 10^{-27} \mathrm{~kg}, U-E=1.60 \times 10^{-13} \mathrm{~J}, L=10^{-15} \mathrm{~m}$;

$$
\alpha=4.4 \times 10^{14} \mathrm{~m}^{-1} \text { and } e^{-2 \alpha L}=0.41
$$

4) For $m=8 \mathrm{~kg}, U-E=1 \mathrm{~J}, L=0.02 \mathrm{~m} ; \alpha=3.8 \times 10^{34} \mathrm{~m}^{-1}$ and $e^{-2 \alpha L}=e^{-1.5 \times 10^{33}} \approx 0$

7-16 Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about $3755.8 \mathrm{MeV} / c^{2}$, the first approximation to the decay length δ is

$$
\delta \approx \frac{\hbar}{(2 m U)^{1 / 2}}=\frac{197.3 \mathrm{MeV} \mathrm{fm} / c}{\left[2\left(3755.8 \mathrm{MeV} / c^{2}\right)(30 \mathrm{MeV})\right]^{1 / 2}}=0.4156 \mathrm{fm}
$$

This gives an effective width for the (infinite) well of $R+\delta=9.4156 \mathrm{fm}$, and a ground state energy $E_{1}=\frac{\pi^{2}(197.3 \mathrm{MeV} \mathrm{fm} / c)^{2}}{2\left(3755.8 \mathrm{MeV} / c^{2}\right)(9.4156 \mathrm{fm})^{2}}=0.577 \mathrm{MeV}$. From this E we calculate $U-E=29.42 \mathrm{MeV}$ and a new decay length

$$
\delta=\frac{197.3 \mathrm{MeV} \mathrm{fm} / c}{\left[2\left(3755.8 \mathrm{MeV} / c^{2}\right)(29.42 \mathrm{MeV})\right]^{1 / 2}}=0.4197 \mathrm{fm}
$$

This, in turn, increases the effective well width to 9.4197 fm and lowers the ground state energy to $E_{1}=0.576 \mathrm{MeV}$. Since our estimate for E has changed by only 0.001 MeV , we may be content with this value. With a kinetic energy of E_{1}, the alpha particle in the ground state has speed $v_{1}=\left(\frac{2 E_{1}}{m}\right)^{1 / 2}=\left[\frac{2(0.576 \mathrm{MeV})}{\left(3755.8 \mathrm{MeV} / c^{2}\right)}\right]^{1 / 2}=0.0175 c$. In order to be ejected with a kinetic energy of 4.05 MeV , the alpha particle must have been preformed in an excited state of the nuclear well, not the ground state.

7-17 The collision frequency f is the reciprocal of the transit time for the alpha particle crossing the nucleus, or $f=\frac{v}{2 R}$, where v is the speed of the alpha. Now v is found from the kinetic energy which, inside the nucleus, is not the total energy E but the difference $E-U$ between the total energy and the potential energy representing the bottom of the nuclear well. At the nuclear radius $R=9 \mathrm{fm}$, the Coulomb energy is

$$
\frac{k(Z e)(2 e)}{R}=2 Z\left(\frac{k e^{2}}{a_{0}}\right)\left(\frac{a_{0}}{R}\right)=2(88)(27.2 \mathrm{eV})\left(\frac{5.29 \times 10^{4} \mathrm{fm}}{9 \mathrm{fm}}\right)=28.14 \mathrm{MeV}
$$

From this we conclude that $U=-1.86 \mathrm{MeV}$ to give a nuclear barrier of 30 MeV overall. Thus an alpha with $E=4.05 \mathrm{MeV}$ has kinetic energy $4.05+1.86=5.91 \mathrm{MeV}$ inside the nucleus. Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about $3755.8 \mathrm{MeV} / c^{2}$ this kinetic energy represents a speed

$$
v=\left(\frac{2 E_{k}}{m}\right)^{1 / 2}=\left[\frac{2(5.91)}{3755.8 \mathrm{MeV} / c^{2}}\right]^{1 / 2}=0.056 c .
$$

Thus, we find for the collision frequency $f=\frac{v}{2 R}=\frac{0.056 \mathrm{c}}{2(9 \mathrm{fm})}=9.35 \times 10^{20} \mathrm{~Hz}$.

