
U

x

      

! 

3h2

mL2

 
 
6-6 

      

! 

" x( ) = Acos kx + Bsin kx
#"
# x

= $kA sin kx + kB cos kx

#2"

# x2 = $k2 Acos kx$ k2Bsin kx

$2m

h2

% 
& 
' 

( 
) 
* E $U( )" =

$2mE

h2

% 
& 
' 

( 
) 
* Acoskx + Bsin kx( )

 

 

 The Schrödinger equation is satisfied if 
      

! 

"2#

" x2 =
$2m
h2

% 
& ' 

( 
) * 

E $U( )#  or  

 

      

! 

"k2 Acos kx + Bsin kx( ) =
"2mE

h2

# 
$ % 

& 
' ( 

Acos kx + Bsin kx( ) . 

 

 Therefore 
      

! 

E =
h2 k2

2m . 

6-9 
    

! 

En =
n2 h2

8mL2 , so 
    

! 

"E = E2 #E1 =
3h2

8mL2  

 

    

! 

"E = 3( )
1240 eV nm c( )2

8 938.28 # 106  eV c2( ) 10$5  nm( )2 = 6.14 MeV  

 
    

! 

" =
hc
# E =

1240 eV nm
6.14 $ 106  eV

= 2.02 $ 10%4  nm  

 This is the gamma ray region of the electromagnetic spectrum. 
 

6-10 
    

! 

En =
n2 h2

8mL2  

 

    

! 

h2

8mL2 =
6.63 " 10#34  Js( )2

8 9.11 " 10#31  kg( ) 10#10  m( )2 = 6.03 " 10#18  J = 37.7  eV  

 
(a)     

! 

E1 = 37.7 eV  

 

    

! 

E2 = 37.7 " 22 = 151 eV
E3 = 37.7 " 32 = 339 eV
E4 = 37.7 " 42 = 603 eV

 

 

(b) 
    

! 

hf =
hc
"

= En i
#En f

 



 
    

! 

" =
hc

En i
#En f

=
1 240 eV $nm

En i
#En f

 

 For     

! 

ni = 4 ,     

! 

nf = 1 ,     

! 

Eni
"En f

= 603 eV " 37.7  eV = 565 eV ,   

! 

" = 2.19 nm  
     

! 

ni = 4 ,     

! 

nf = 2 ,   

! 

" = 2.75 nm  
     

! 

ni = 4 ,     

! 

nf = 3 ,   

! 

" = 4.70 nm  
     

! 

ni = 3 ,     

! 

nf = 1 ,   

! 

" = 4.12 nm  
     

! 

ni = 3 ,     

! 

nf = 2 ,   

! 

" = 6.59 nm  
     

! 

ni = 2 ,     

! 

nf = 1 ,   

! 

" = 10.9 nm  
 

6-11 In the present case, the box is displaced from (0, L) by 
    

! 

L
2 . Accordingly, we may obtain the 

wavefunctions by replacing x with 
    

! 

x "
L
2  in the wavefunctions of Equation 6.18. Using  

 

 
    

! 

sin
n"
L

# 
$ % 

& 
' ( 

x )
L
2

# 
$ % 

& 
' ( 

* 

+ 
, 

- 

. 
/ = sin

n" x
L

# 

$ 
% 

& 

' 
( )

n"
2

* 

+ 
, 
, 

- 

. 
/ 
/ 

= sin
n" x

L
# 

$ 
% 

& 

' 
( cos

n"
2

# 
$ % 

& 
' ( 
) cos

n" x
L

# 

$ 
% 

& 

' 
( sin

n"
2

# 
$ % 

& 
' ( 

 

 

 we get for 
    

! 

"
L
2 # x #

L
2  

 

 
    

! 

" 1 x( ) =
2
L
# 
$ % 
& 
' ( 

1 2

cos
) x
L

# 

$ 
% 

& 

' 
( ; 

    

! 

P1 x( ) =
2
L
" 
# $ 
% 
& ' 

cos2 ( x
L

" 

# 
$ 

% 

& 
'  

 
    

! 

" 2 x( ) =
2
L

# 
$ % 

& 
' ( 

1 2

sin
2) x

L
# 

$ 
% 

& 

' 
( ; 

    

! 

P2 x( ) =
2
L
" 
# $ 

% 
& ' 

sin2 2( x
L

" 

# 
$ 

% 

& 
'  

 
    

! 

" 3 x( ) =
2
L

# 
$ % 

& 
' ( 

1 2

cos
3) x

L
# 

$ 
% 

& 

' 
( ; 

    

! 

P3 x( ) =
2
L
" 
# $ 

% 
& ' 

cos2 3( x
L

" 

# 
$ 

% 

& 
'  

 

6-12 
    

! 

"E =
hc
#

=
h2

8mL2
$ 

% 
& 

' 

( 
) 22 *12[ ]  and 

    

! 

L =
3 8( )h"

mc
# 

$ 
% 
% 

& 

' 
( 
( 

1 2

= 7.93 ) 10*10  m = 7.93 Å. 

 
6-13 (a) Proton in a box of width     

! 

L = 0.200 nm = 2 " 10#10  m  
 

    

! 

E1 =
h2

8mpL2 =
6.626 " 10#34  J $ s( )2

8 1.67 " 10#27  kg( ) 2 " 10#10  m( )2 = 8.22 " 10#22  J

=
8.22 " 10#22  J

1.60 " 10#19  J eV
= 5.13 " 10#3  eV

 

 
(b) Electron in the same box: 
 

    

! 

E1 =
h2

8meL2 =
6.626 " 10#34  J $s( )2

8 9.11" 10#31  kg( ) 2 " 10#10  m( )2 = 1.506 " 10#18  J = 9.40 eV . 

 
(c) The electron has a much higher energy because it is much less massive. 

 



6-16 (a) 
    

! 

" x( ) = Asin
# x
L

$ 

% 
& 

' 

( 
) ,     

! 

L = 3  Å. Normalization requires  

 

 
    

! 

1 = "
2 dx

0

L

# = A2 sin2 $ x
L

% 

& 
' 

( 

) 
* dx

0

L

# =
LA2

2  

 

 so 
    

! 

A =
2
L
" 
# $ 
% 
& ' 

1 2

 

 

 
    

! 

P = "
2 dx

0

L 3

# =
2
L

$ 
% & 

' 
( ) 

sin2 * x
L

$ 

% 
& 

' 

( 
) dx

0

L 3

# =
2
*

sin2 +d+
0

* 3

# =
2
*

*
6 ,

3( )1 2

8
- 

. 
/ 
/ 

0 

1 
2 
2 

= 0.195 5 . 

 

(b) 
    

! 

" = Asin
100# x

L
$ 

% 
& 

' 

( 
) , 

    

! 

A =
2
L
" 
# $ 
% 
& ' 

1 2

 

 

 

    

! 

P =
2
L

sin2 100" x
L

# 

$ 
% 

& 

' 
( dx

0

L 3

) =
2
L

L
100"
# 
$ % 

& 
' ( 

sin2 *d*
0

100" 3

) =
1

50"
100"

6
+

1
4

sin 200"
3

# 
$ % 

& 
' ( 

, 

- 
. 

/ 

0 
1 

=
1
3
+

1
200"
, 

- 
. 

/ 

0 
1 sin 2"

3
# 
$ % 

& 
' ( 

=
1
3
+

3
400"

= 0.331 9
 

 

(c) Yes: For large quantum numbers the probability approaches 
  

! 

1
3 . 

 
6-18 Since the wavefunction for a particle in a one-dimension box of width L is given by 

    

! 

" n = Asin
n# x

L
$ 

% 
& 

' 

( 
)  it follows that the probability density is 

    

! 

P x( ) = " n
2

= A2 sin2 n# x
L

$ 

% 
& 

' 

( 
) , 

which is sketched below: 
 

   

! 

"
2   

! 

3"
2   

! 

5"
2

" 2" 3"

P(x)

  

! 

n" x
L  

 

 From this sketch we see that   

! 

P x( )  is a maximum when 
      

! 

n" x
L

=
"
2 , 3"

2 , 5"
2 , K =" m +

1
2

# 
$ % 

& 
' ( 

 

or when 
 

 
    

! 

x =
L
n

m +
1
2

" 
# $ 

% 
& ' 

        

! 

m = 0, 1, 2, 3, K , n . 

 



 Likewise,   

! 

P x( )  is a minimum when 
      

! 

n" x
L

= 0, " , 2" , 3" , K = m"  or when 
 

 
  

! 

x =
Lm
n

        

! 

m = 0, 1, 2, 3, K , n  
 

6-20 The Schrödinger equation, after rearrangement, is 
      

! 

d2"

dx2 =
2m
h2

# 
$ % 

& 
' ( 

U x( ) )E{ }" x( ) . In the well 

interior,     

! 

U x( ) = 0  and solutions to this equation are     

! 

sin kx  and     

! 

cos kx , where 
      

! 

k2 =
2mE
h2 . 

The waves symmetric about the midpoint of the well (    

! 

x = 0 ) are described by  
 

     

! 

" x( ) = Acos kx     

! 

"L < x < +L  
 
 In the region outside the well,   

! 

U x( ) =U , and the independent solutions to the wave 

equation are   

! 

e ±" x  with 
      

! 

"2 =
2m
h2

# 
$ % 

& 
' ( 

U )E( ) . 

 
(a) The growing exponentials must be discarded to keep the wave from diverging at 

infinity. Thus, the waves in the exterior region, which are symmetric about the 
midpoint of the well are given by 

 
   

! 

" x( ) = Ce #$ x     

! 

x > L  or   

! 

x < "L . 
 
 At   

! 

x = L  continuity of 

! 

"  requires     

! 

AcoskL = Ce "# L . For the slope to be 
continuous here, we also must require     

! 

"Ak sin kL = "Ce"# L . Dividing the two 
equations gives the desired restriction on the allowed energies:     

! 

k tan kL =" . 
 

(b) The dependence on E (or k) is made more explicit by noting that 
      

! 

k2 +"2 =
2mU
h2 , 

which allows the energy condition to be written 
      

! 

k tan kL =
2mU
h2 " k2# 

$ 
% 

& 
' 
( 

1 2

. 

Multiplying by L, squaring the result, and using   

! 

tan2 " + 1 = sec2 "  gives 

      

! 

kL( )2 sec2 kL( ) =
2mUL2

h2  from which the desired form follows immediately, 

      

! 

k sec kL( ) =
2mU
h

. The ground state is the symmetric waveform having the 
lowest energy. For electrons in a well of height     

! 

U = 5 eV  and width     

! 

2L = 0.2  nm , 
we calculate 

 

 
      

! 

2mUL2

h2 =
2( ) 511" 103  eV c2( ) 5 eV( ) 0.1 nm( )2

197.3 eV #nm c( )2 = 1.312 7 . 

 
 With this value, the equation for   

! 

" = kL  
 

 
  

! 

"
cos"

= 1.312 7( )1 2
= 1.145 7  

 



 can be solved numerically employing methods of varying sophistication. The 
simplest of these is trial and error, which gives   

! 

" = 0.799  From this, we find 
    

! 

k = 7.99 nm "1 , and an energy  
 

 
      

! 

E =
h2 k2

2m =
197.3  eV "nm c( )2 7.99 nm#1( )2

2 511$ 103  eV c2( )
= 2.432 eV . 

 
6-29 (a) Normalization requires 

    

! 

1 = "
2 dx

#$

$

% = C2 e#2x 1 # e#x( )2
dx

0

$

% = C2 e#2x # 2e#3x + e#4x( )dx
0

$

% . The integrals are 

elementary and give 
    

! 

1 = C2 1
2 " 2 1

3
# 
$ % 
& 
' ( 

+
1
4

) 
* 
+ 

, 
- 
. 

=
C2

12 . The proper units for C are those 

of   

! 

length( )"1 2  thus, normalization requires     

! 

C = 12( )1 2  nm "1 2 . 
 
(b) The most likely place for the electron is where the probability   

! 

"
2  is largest. This 

is also where 

! 

"  itself is largest, and is found by setting the derivative 
  

! 

d"
dx

 equal 
zero: 

 

 
    

! 

0 =
d"
dx

= C #e#x + 2e#2x{ } = Ce #x 2e#x # 1{ } . 

 
 The RHS vanishes when   

! 

x = "  (a minimum), and when     

! 

2e"x = 1 , or     

! 

x = ln 2 nm . 
Thus, the most likely position is at     

! 

xp = ln 2 nm = 0.693 nm . 
 
(c) The average position is calculated from 
 

 
    

! 

x = x" 2 dx
#$

$

% = C2 xe#2x 1 # e#x( )2
dx

0

$

% = C2 x e#2x # 2e#3x + e#4x( )dx
0

$

% . 

 

 The integrals are readily evaluated with the help of the formula 
    

! 

xe"ax dx
0

#

$ =
1
a2  to 

get 
    

! 

x = C2 1
4 " 2 1

9
# 
$ % 
& 
' ( 

+
1

16
) 
* 
+ 

, 
- 
. 

= C2 13
144
) 
* 
+ 

, 
- 
. 

. Substituting     

! 

C2 = 12 nm "1  gives  

 

 
    

! 

x =
13
12  nm = 1.083  nm . 

 
 We see that   

! 

x  is somewhat greater than the most probable position, since the 
probability density is skewed in such a way that values of x larger than   

! 

xp  are 
weighted more heavily in the calculation of the average. 

 
 
6-31 The symmetry of     

! 

" x( )2  about     

! 

x = 0  can be exploited effectively in the calculation of 
average values. To find   

! 

x  
 

 
    

! 

x = x" x( ) 2
dx

#$

$

%  



 
 We notice that the integrand is antisymmetric about     

! 

x = 0  due to the extra factor of x (an 
odd function). Thus, the contribution from the two half-axes     

! 

x > 0  and     

! 

x < 0  cancel 
exactly, leaving     

! 

x = 0 . For the calculation of     

! 

x2 , however, the integrand is symmetric 
and the half-axes contribute equally to the value of the integral, giving 

 

 
    

! 

x = x2"
2 dx

0

#

$ = 2C2 x2e%2x x0 dx
0

#

$ . 

 

 Two integrations by parts show the value of the integral to be 
    

! 

2 x0
2

" 
# $ 

% 
& ' 

3

. Upon substituting 

for     

! 

C2 , we get 
    

! 

x2 = 2 1
x0

" 

# $ 
% 

& ' 
2( ) x0

2
" 
# $ 

% 
& ' 

3

=
x0

2

2  and 
    

! 

"x = x2 # x 2( )1 2
=

x0
2

2
$ 

% 
& 

' 

( 
) 

1 2

=
x0

2
. In 

calculating the probability for the interval   

! 

"#x  to   

! 

+"x  we appeal to symmetry once 
again to write 

 

 
    

! 

P = "
2 dx

#$x

+$x

% = 2C2 e#2x x 0 dx
0

$x

% = #2C2 x0
2

& 
' ( 

) 
* + 
e#2x x0

0

$x

= 1 # e# 2 = 0.757  

 
 or about 75.7% independent of     

! 

x0 . 
 
 




