3-10 The energy per photon, $E=h f$ and the total energy E transmitted in a time t is Pt where power $P=100 \mathrm{~kW}$. Since $E=n h f$ where n is the total number of photons transmitted in the time t, and $f=94 \mathrm{MHz}$, there results $n h f=(100 \mathrm{~kW}) t=\left(10^{5} \mathrm{~W}\right) t$, or $\frac{n}{t}=\frac{10^{5} \mathrm{~W}}{h f}=\frac{10^{5} \mathrm{~J} / \mathrm{s}}{6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}}\left(94 \times 10^{6} \mathrm{~s}^{-1}\right)=1.60 \times 10^{30}$ photons $/ \mathrm{s}$.
$E=300 \mathrm{keV}, \theta=30^{\circ}$
(a) $\Delta \lambda=\lambda^{\prime}-\lambda_{0}=\frac{h}{m_{e} c}(1-\cos \theta)=(0.00243 \mathrm{~nm})\left[1-\cos \left(30^{\circ}\right)\right]=3.25 \times 10^{-13} \mathrm{~m}$ $=3.25 \times 10^{-4} \mathrm{~nm}$
(b) $E=\frac{h c}{\lambda_{0}} \Rightarrow \lambda_{0}=\frac{h c}{E_{0}}=\frac{\left(4.14 \times 10^{-15} \mathrm{eVs}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{300 \times 10^{3} \mathrm{eV}}=4.14 \times 10^{-12} \mathrm{~m}$; thus,

$$
\lambda^{\prime}=\lambda_{0}+\Delta \lambda=4.14 \times 10^{-12} \mathrm{~m}+0.325 \times 10^{-12} \mathrm{~m}=4.465 \times 10^{-12} \mathrm{~m} \text {, and }
$$

$$
E^{\prime}=\frac{h c}{\lambda^{\prime}} \Rightarrow E^{\prime}=\frac{\left(4.14 \times 10^{-15} \mathrm{eV} \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{4.465 \times 10^{-12} \mathrm{~m}}=2.78 \times 10^{5} \mathrm{eV} .
$$

(c) $\frac{h c}{\lambda_{0}}=\frac{h c}{\lambda^{\prime}}+K_{e}$, (conservation of energy)

$$
K_{e}=h c\left(\frac{1}{\lambda_{0}}-\frac{1}{\lambda^{\prime}}\right)=\frac{\left(4.14 \times 10^{-15} \mathrm{eV} \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\frac{1}{4.14 \times 10^{-12}}-\frac{1}{4.465 \times 10^{-12}}}=22 \mathrm{keV}
$$

(b) Using the Compton scattering relation $\lambda^{\prime}-\lambda_{0}=\lambda_{c}(1-\cos \theta)$ where
$\lambda_{c}=\frac{h}{m_{e} c}=0.00243 \mathrm{~nm}$ and $\lambda^{\prime}=\frac{h c}{E^{\prime}}=\frac{1240 \mathrm{~nm} \mathrm{eV}}{120 \times 10^{3} \mathrm{eV}}=10.3 \times 10^{3} \mathrm{~nm}=0.0103 \mathrm{~nm}$. Solving the Compton equation for $\cos \theta$, we find

$$
\begin{aligned}
-\lambda_{c} \cos \theta & =\lambda^{\prime}-\lambda_{0}-\lambda_{c} \\
\cos \theta & =1-\frac{\lambda^{\prime}-\lambda_{0}}{\lambda_{c}}=1-\frac{0.0103 \mathrm{~nm}-0.0075 \mathrm{~nm}}{0.00243 \mathrm{~nm}}=1-1.049=-0.049
\end{aligned}
$$

The principle angle is 87.2° or $\theta=92.8^{\circ}$.
(c) Using the conservation of momentum Equations 3.30 and 3.31 one can solve for the recoil angle of the electron.

$$
p=p^{\prime} \cos \theta+p_{e} \cos \phi
$$

$p_{e} \sin \phi=p^{\prime} \sin \theta$; dividing these equations one can solve for the recoil angle of the electron

$$
\begin{aligned}
\tan \phi & =\frac{p^{\prime} \sin \theta}{p-p^{\prime} \cos \theta}=\left(\frac{h}{\lambda^{\prime}}\right) \frac{\sin \theta}{\frac{h}{\lambda_{0}}-\frac{h}{\lambda^{\prime} \cos \theta}}=\left(\frac{h c}{\lambda^{\prime}}\right) \frac{\sin \theta}{\frac{h c}{\lambda_{0}}-\frac{h c}{\lambda^{\prime} \cos \theta}} \\
& =\frac{120 \mathrm{keV}(0.9988)}{160 \mathrm{keV}-120 \mathrm{keV}(-0.049)}=0.7232
\end{aligned}
$$

and $\phi=35.9^{\circ}$.
3-29 Symmetric Scattering, $\theta=\phi$. First, use the equations of conservations of momentum given by Equations 3.30 and 3.31 for this two dimensional scattering process with $\theta=\phi$:
(a) $\frac{h}{\lambda_{0}}=\left(\frac{h}{\lambda^{\prime}}\right) \cos \theta+p_{e} \cos \theta$

$$
\begin{equation*}
\frac{h}{\lambda^{\prime}} \sin \theta=p_{e} \sin \theta \text { or } p_{e}=\frac{h}{\lambda} \tag{2}
\end{equation*}
$$

Substituting (2) into (1) yields $\lambda^{\prime}=2 \lambda_{0} \cos \theta$
Next, express the Compton scattering formula as

$$
\begin{equation*}
\lambda^{\prime}-\lambda_{0}=\lambda_{c}(1-\cos \theta) \tag{4}
\end{equation*}
$$

where $\lambda_{c}=\frac{h}{m_{e} c}=0.00243 \mathrm{~nm}$. Combining (3) and (4) yields $\cos \theta=\frac{\lambda_{c}+\lambda_{0}}{\lambda_{c}+2 \lambda_{0}}$. In this case, because $E=1.02 \mathrm{MeV}$, and $E=\frac{h c}{\lambda_{0}}$ there results

$$
\lambda_{0}=\frac{h c}{E}=\frac{1240 \mathrm{eV} \mathrm{~nm}}{1.20 \times 106 \mathrm{eV}}=0.00122 \mathrm{~nm}
$$

Thus, $\cos \theta=\frac{0.00243 \mathrm{~nm}+0.00122 \mathrm{~nm}}{0.00242 \mathrm{~nm}+0.00244 \mathrm{~nm}}=0.7495$, and solving for the scattering angle, $\theta=41.5^{\circ}$.
(b) $\quad \lambda^{\prime}=\lambda_{0}+\lambda_{c}(1-\cos \theta)$

$$
\begin{aligned}
& \lambda^{\prime}=0.00122 \mathrm{~nm}+(0.00243 \mathrm{~nm})\left[1-\cos \left(41.5^{\circ}\right)\right]=0.00183 \mathrm{~nm} \\
& E=\frac{h c}{\lambda^{\prime}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{0.00183 \mathrm{~nm}}=0.679 \mathrm{MeV}
\end{aligned}
$$

Maximum energy transfer occurs when the scattering angle is 180 degrees. Assuming the electron is initially at rest, conservation of momentum gives

$$
h f+h f^{\prime}=p_{e} c=\sqrt{\left(m_{e} c^{2}+K\right)^{2}-m^{2} c^{4}}=\sqrt{(511+50)^{2}}=178 \mathrm{keV}
$$

while conservation of energy gives $h f-h f^{\prime}=K=30 \mathrm{keV}$. Solving the two equations gives $E=h f=104 \mathrm{keV}$ and $h f=74 \mathrm{keV}$. (The wavelength of the incoming photon is $\lambda=\frac{h c}{E}=0.0120 \mathrm{~nm}$.

3-31
(a) $E^{\prime}=\frac{h c}{\lambda^{\prime}}, \lambda^{\prime}=\lambda_{0}+\Delta \lambda$
$\lambda_{0}=\frac{h c}{E_{0}}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{0.1 \mathrm{MeV}}=1.243 \times 10^{-11} \mathrm{~m}$
$\Delta \lambda=\left(\frac{h}{m_{e} c}\right)(1-\cos \theta)=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(1-\cos 60^{\circ}\right)}{\left(9.11 \times 10^{-34} \mathrm{~kg}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.215 \times 10^{-12} \mathrm{~m}$
$\lambda^{\prime}=\lambda_{0}+\Delta \lambda=1.364 \times 10^{-11} \mathrm{~m}$
$E^{\prime}=\frac{h c}{\lambda^{\prime}}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{1.364 \times 10^{-11} \mathrm{~m}}=9.11 \times 10^{4} \mathrm{eV}$
(b) $\frac{h c}{\lambda_{0}}=\frac{h c}{\lambda^{\prime}}+K_{\mathrm{e}}$

$$
K_{\mathrm{e}}=0.1 \mathrm{MeV}-91.1 \mathrm{keV}=8.90 \mathrm{keV}
$$

(c) Conservation of momentum along $x: \frac{h}{\lambda_{0}}=\left(\frac{h}{\lambda^{\prime}}\right) \cos \theta+\gamma m_{e} v \cos \phi$. Conservation of momentum along $y:\left(\frac{h}{\lambda^{\prime}}\right) \sin \theta=\gamma m_{e} v \sin \phi$. So that

$$
\begin{aligned}
& \frac{\gamma m_{e} v \sin \phi}{\gamma m_{e} v \cos \phi}=\left(\frac{h}{\lambda^{\prime}}\right) \sin \theta\left[\left(\frac{h}{\lambda_{0}}\right)-\left(\frac{h}{\lambda^{\prime}}\right) \cos \theta\right] \\
& \tan \phi=\frac{\lambda_{0} \sin \theta}{\left(\lambda^{\prime}-\lambda_{0}\right) \cos \theta}
\end{aligned}
$$

Here, $\theta=60^{\circ}, \lambda_{0}=1.243 \times 10^{-11} \mathrm{~m}$, and $\lambda^{\prime}=1.364 \times 10^{-11} \mathrm{~m}$. Consequently,
(a) The energy vs wavelength relation for a photon is $E=\frac{h c}{\lambda}$. For a photon of wavelength given by $\lambda_{0}=0.0711 \mathrm{~nm}$ the photon's energy is

$$
E=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(0.0711 \times 10^{-9} \mathrm{~m}\right)\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=17.4 \mathrm{keV}
$$

(b) For the case of back scattering, $\theta=\pi$ the Compton scattering relation becomes

$$
\begin{aligned}
& \lambda^{\prime}-\lambda_{0}=\left(\frac{2 h c}{m_{\mathrm{e}} c^{2}}\right) \text {. Setting } \lambda_{0}=0.0711 \mathrm{~nm} \text { we obtain } \\
& \lambda^{\prime}=0.711 \mathrm{~nm}+\frac{2 h c}{m_{\mathrm{e}} c^{2}}=7.60 \times 10^{-11}
\end{aligned}
$$

or 0.0760 nm .
(c) $E^{\prime}=\frac{h c}{\lambda^{\prime}}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(7.60 \times 10^{-11} \mathrm{~m}\right)\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=16.3 \mathrm{keV}$.
(d) $\quad \Delta E=17.45 \mathrm{keV}-16.33 \mathrm{keV}=1.12 \mathrm{keV} \sim 1.1 \mathrm{keV}$.

3-36 A scattered photon has an energy of 80 keV and the recoiled electron has an energy of 25 keV.
(a) From conservation of energy we require that:

$$
\begin{aligned}
& E_{\text {photon }}=80 \mathrm{keV}=25 \mathrm{keV}=105 \mathrm{keV} . \mathrm{As} E_{0}=\frac{h c}{\lambda_{0}} \text {, we have } \\
& \lambda_{0}=\frac{h c}{E_{0}}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{(105 \mathrm{keV})\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=0.0118 \mathrm{~nm} .
\end{aligned}
$$

(b) The incident photon energy is $E_{0}=\frac{h c}{\lambda_{0}}$, and the energy of the scattered photon is $E^{\prime}=\frac{h c}{\lambda^{\prime}}$. One can then take their ratio,

$$
\frac{E_{0}}{E^{\prime}}=\frac{\lambda^{\prime}}{\lambda_{0}} \Rightarrow \lambda^{\prime}=\frac{\lambda_{0} E_{0}}{E^{\prime}}=0.0118 \mathrm{~nm} \times\left(\frac{105 \mathrm{keV}}{80 \mathrm{keV}}\right)=0.0154 \mathrm{~nm} .
$$

4-1 $\quad \mathrm{F}$ corresponds to the charge passed to deposit one mole of monovalent element at a cathode. As one mole contains Avogadro's number of atoms,
$e=\frac{96500 \mathrm{C}}{6.02 \times 10^{23}}=1.60 \times 10^{-19} \mathrm{C}$.

4-3 Thomson's device will work for positive and negative particles, so we may apply $\frac{q}{m} \approx \frac{V \theta}{B^{2} l d}$.
(a) $\frac{q}{m} \approx \frac{V \theta}{B^{2} l d}=(2000 \mathrm{~V}) \frac{0.20 \text { radians }}{\left(4.57 \times 10^{-2} \mathrm{~T}\right)^{2}}(0.10 \mathrm{~m})(0.02 \mathrm{~m})=9.58 \times 10^{7} \mathrm{C} / \mathrm{kg}$
(b) As the particle is attracted by the negative plate, it carries a positive charge and is a proton. $\left(\frac{q}{m_{p}}=\frac{1.60 \times 10^{-19} \mathrm{C}}{1.67 \times 10^{-27} \mathrm{~kg}}=9.58 \times 10^{7} \mathrm{C} / \mathrm{kg}\right)$
(c) $\quad v_{x}=\frac{E}{B}=\frac{V}{\mathrm{~d} B}=\frac{2000 \mathrm{~V}}{0.02 \mathrm{~m}}\left(4.57 \times 10^{-2} \mathrm{~T}\right)=2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(d) As $v_{x} \sim 0.01 \mathrm{c}$ there is no need for relativistic mechanics.

