3-2 Assume that your skin can be considered a blackbody. One can then use Wien's displacement law, $\lambda_{\max } T=0.2898 \times 10^{-2} \mathrm{~m} \cdot \mathrm{~K}$ with $T=35{ }^{0} \mathrm{C}=308 \mathrm{~K}$ to find

$$
\lambda_{\max }=\frac{0.2898 \times 10^{-2} \mathrm{~m} \cdot \mathrm{~K}}{308 \mathrm{~K}}=9.41 \times 10^{-6} \mathrm{~m}=9410 \mathrm{~nm}
$$

3-4 (a) From Stefan's law, one has $\frac{P}{A}=\sigma T^{4}$. Therefore,

$$
\frac{P}{A}=\left(5.7 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4}\right)(3000 \mathrm{~K})^{4}=4.62 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}
$$

(b) $\quad A=\frac{P}{4.62 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}}=\frac{75 \mathrm{~W}}{4.62 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}}=16.2 \mathrm{~mm}^{2}$.

3-5 (a) Planck's radiation energy density law as a function of wavelength and temperature is given by $u(\lambda, T)=\frac{8 \pi h c}{\lambda^{5}\left(e^{h c \mid \lambda_{B} T}-1\right)}$. Using $\frac{\partial u}{\partial \lambda}=0$ and setting $x=\frac{h c}{\lambda_{\max } k_{B} T}$, yields an extremum in $u(\lambda, T)$ with respect to λ. The result is $0=-5+\left(\frac{h c}{\lambda_{\max } k_{B} T}\right)\left(e^{h c \mid \lambda_{\max } k_{B} T}\right)\left(e^{h c \mid \lambda_{\max } k_{B} T}-1\right)^{-1}$ or $x=5\left(1-e^{-x}\right)$.
(b) Solving for x by successive approximations, gives $x \cong 4.965$ or $\lambda_{\max } T=\left(\frac{h c}{k_{B}}\right)(4.965)=2.90 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}$.
(a) In general, $L=\frac{n \lambda}{2}$ where $n=1,2,3, \ldots$ defines a mode or standing wave pattern with a given wavelength. As we wish to find the number of possible values of n between 2.0 and 2.1 cm , we use $n=\frac{2 L}{\lambda}$

$$
\begin{aligned}
n(2.0 \mathrm{~cm}) & =(2) \frac{200}{2.0}=200 \\
n(2.1 \mathrm{~cm}) & =(2) \frac{200}{2.1}=190 \\
|\Delta n| & =10
\end{aligned}
$$

As n changes by one for each allowed standing wave, there are 10 standing waves of different wavelength between 2.0 and 2.1 cm .

(b) The number of modes per unit wavelength per unit length is
$\frac{\Delta n}{L \Delta \lambda}=\frac{10}{0.1}(200)=0.5 \mathrm{~cm}^{-2}$.
(c) For short wavelengths n is almost a continuous function of λ. Thus one may use calculus to approximate $\frac{\Delta n}{L \Delta \gamma}=\left(\frac{1}{L}\right)\left(\frac{d n}{d \lambda}\right)$. As $n=\frac{2 L}{\lambda},\left|\frac{d n}{d \lambda}\right|=\frac{2 L}{\lambda^{2}}$ and $\left(\frac{1}{L}\right)\left(\frac{d n}{d \lambda}\right)=\frac{2}{\lambda^{2}}$. This gives approximately the same result as that found in (b): $\left(\frac{1}{L}\right)\left(\frac{d n}{d \lambda}\right)=\frac{2}{\lambda^{2}}=\frac{2}{(2.0 \mathrm{~cm})^{2}}=0.5 \mathrm{~cm}^{-2}$.
(d) For short wavelengths n is almost a continuous function of $\lambda, n=\frac{2 L}{\lambda}$ is a discrete function.

