3-16. Find the temperature of a blackbody if its spectrum has its peak at $(a) \lambda_{m}=700 \mathrm{~nm}$ (visible), (b) $\lambda_{m}=3 \mathrm{~cm}$ (microwave region), and (c) $\lambda_{m}=3 \mathrm{~m}$ (FM radio waves).
3-17. If the absolute temperature of a blackbody is doubled, by what factor is the total emitted power increased?
3-18. Calculate the average energy \bar{E} per mode of oscillation for (a) a long wavelength $\lambda=10 h c / k T$, (b) a short wavelength $\lambda=0.1 h c / k T$, and compare your results with the classical prediction $k T$ (see Equation 3-9). (The classical value comes from the equipartition theorem discussed in Chapter 8.)

3-19. A particular radiating cavity has the maximum of its spectra distribution of radiated power at a wavelength of $27.0 \mu \mathrm{~m}$ (in the infrared region of the spectrum). The temperature is then changed so that the total power radiated by the cavity doubles. (a) Compute the new temperature. (b) At what wavelength does the new spectral distribution have its maximum value? 3-20. A certain very bright star has an effective surface temperature of 20,000 K. (a) Assuming that it radiates as a blackbody, what is the wavelength at which $u(\lambda)$ is maximum? (b) In what part of the electromagnetic spectrum does the maximum lie?
3-21. The energy reaching Earth from the Sun at the top of the atmosphere is $1.36 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}$, called the solar constant. Assuming that Earth radiates like a blackbody at uniform temperature, what do you conclude is the equilibrium temperature of Earth?
3-22. A $40-\mathrm{W}$ incandescent bulb radiates from a tungsten filament operating at 3300 K . Assuming that the bulb radiates like a blackbody, (a) what are the frequency f_{m} and the wavelength λ_{m} at the maximum of the spectral distribution? (b) If f_{m} is a good approximation of the average frequency of the photons emitted by the bulb, about how many photons is the bulb radiating per second? (c) If you are looking at the bulb from 5 m away, how many photons enter your eye per second? (The diameter of your pupil is about 5.0 mm .)

