A particle of mass \(m \) moves in one dimension subject to the potential

\[U(x) = \frac{k}{\sin^2(x/a)} \]

(a) Obtain an integral expression for Hamilton’s characteristic function.

(b) Under what conditions may action-angle variables be used?

(c) Assuming that action-angle variables are permissible, determine the frequency of oscillation by the action-angle method.

(d) Check your result for the oscillation frequency in the limit of small oscillations.

Consider one-dimensional motion in the potential \(V(x) = -V_0 \text{sech}^2(x/a) \) with \(V_0 > 0 \).

(a) Sketch the potential \(V(x) \). Over what range of energies may action-angle variables be used?

(b) Find the action \(J \) and the Hamiltonian \(H(J) \).

(c) Find the angle variable \(\phi \) in terms of \(x \) and the energy \(E \).

(d) Find the Solution for \(x(t) \) by first solving for the motion of the action-angle variables.

Helpful mathematical identities:

\[
\int_0^{\bar{u}(E)} du \sqrt{E + V_0 \text{sech}^2 u} = \frac{\pi}{2} \left(\sqrt{V_0} - \sqrt{-E} \right) \text{ if } -V_0 < E < 0
\]

\[
\int du \left(E + V_0 \text{sech}^2 u \right)^{-1/2} = \begin{cases}
(-E)^{-1/2} \sin^{-1} \left(\frac{-E}{\sqrt{V_0+E}} \sinh u \right) & \text{if } -V_0 < E < 0 \\
E^{-1/2} \sinh^{-1} \left(\frac{E}{\sqrt{V_0+E}} \sinh u \right) & \text{if } E > 0
\end{cases}
\]

where \(\bar{u}(E) = \cosh^{-1} \sqrt{V_0/(-E)} \) in the first integral.

A particle of mass \(m \) moves in the potential \(U(q) = A|q| \). The Hamiltonian is thus

\[H_0(q, p) = \frac{p^2}{2m} + A|q| \]

where \(A \) is a constant.

(a) List all independent conserved quantities.
(b) Show that the action variable J is related to the energy E according to $J = \beta E^{3/2}/A$, where β is a constant, involving m. Find β.

(c) Find $q = q(\phi, J)$ in terms of the action-angle variables.

(d) Find $H_0(J)$ and the oscillation frequency $\nu_0(J)$.

(e) The system is now perturbed by a quadratic potential, so that

$$H(q, p) = \frac{p^2}{2m} + A|q| + \epsilon Bq^2,$$

where ϵ is a small dimensionless parameter. Compute the shift $\Delta\nu$ to lowest nontrivial order in ϵ, in terms of ν_0 and constants.

[4] Consider the nonlinear oscillator described by the Hamiltonian

$$H(q, p) = \frac{p^2}{2m} + \frac{1}{2}kq^2 + \frac{1}{4}\epsilon aq^4 + \frac{1}{4}\epsilon b p^4,$$

where ϵ is small.

(a) Find the perturbed frequencies $\nu(J)$ to lowest nontrivial order in ϵ.

(b) Find the perturbed frequencies $\nu(A)$ to lowest nontrivial order in ϵ, where A is the amplitude of the q motion.

(c) Find the relationships $\phi = \phi(\phi_0, J_0)$ and $J = J(\phi_0, J_0)$ to lowest nontrivial order in ϵ.