Problem Set 1: Due 1/23

1) Complete the calculation of the induced mass of potential flow around a sphere, which was begun and discussed in class. In particular, show the energy of potential flow is

\[E = \rho \left[4\pi (A \cdot u) - V_0 \frac{u^2}{2} \right] = m_{ik} \frac{u_i u_k}{2} , \]

where \(A \) is the dipole moment of the flow and \(V_0 \) is the volume of the body in motion at \(u \). Compute \(m_{ik} \), the induced mass tensor. What is its value for a sphere?

2) Consider a small body immersed in a fluid flow which oscillates. Derive the general relation between the velocity of the body and that of the fluid. What is the result for a spherical body of density \(\rho_0 \)?

3) Derive the energy relation

\[\frac{\partial}{\partial t} \left(\frac{\rho v^2}{2} + \rho \epsilon \right) = -\nabla \cdot \left(\rho v \left(\frac{v^2}{2} + \omega \right) \right) \]

from the continuity, Euler and energy equations. Here, \(\omega \) is the enthalpy density.

4) a) Derive the dispersion relation for an azimuthally symmetric wave propagating along the \(\hat{z} \) axis and in radius in an ideal incompressible, unbounded fluid rotating at \(\Omega = \Omega_0 \hat{z} \).

b) Now assume the fluid is bounded by a cylindrical wall at \(r = R \). What is the profile of radial velocity?