Stochastic population genetics: homework 2 To be returned on April 18

April 11, 2019

1 Demographic noise

In this exercise we consider a population of clones (individuals with the same genetic code) evolving in time. $N(t)$ is the number of individuals in the population at time t. At each time step δt, the population can increase by one unit through division with probability $N \nu \delta t$ or it can decrease by one unit through death with probability $N \mu \delta t$. Every time the the population goes extinct, i.e. the process hits zero, the process is restarted from $N=N_{0}$. The death rate is greater than the reproduction rate, i.e. $\mu>\nu$.
a. Write down the master equation for $P(N, t+\delta t)$ in terms of $P(N, t)$, $P(N+1, t)$ and $P(N-1, t)$. Write down explicitly the relation for the special indices $N=1$ and $N=N_{0}$, where a source term is present.
b. The index $N=N_{0}$ has a source term, which reflects the restarting mentioned above. Express the amplitude of the source. Verify that the total probability $\sum_{i=1}^{\infty} P(N, t)$ is conserved in time.
c. At the steady state, for large N one expects an exponential decays $P(N) \propto \lambda^{N}$. Use the master equation derived in (a) to calculate the rate of decay λ.
d. Using results derived in class (and assuming that moments higher than 2 are negligible), show that the Fokker-Planck equation for the process in the continuous time limit can be written as
$\partial_{t} \rho(N, t)=(\mu-\nu) \partial_{N}(N \rho(N, t))+\frac{1}{2}(\mu+\nu) \partial_{N}^{2}(N \rho(N, t))+\delta\left(N-N_{0}\right) s_{N}$,
where δ is the Dirac distribution and s_{N} is the rate of the process' restarting.
e. What is the relation between s_{N} and the flux of probability J_{0} at the boundary 0 ?
f. Solve the steady-state Fokker-Planck equation for large N. In what limit are the decay exponents of the discrete and continuous solutions equivalent?
g. We now consider the process without a source and want to compute the statistics of the first exit time through the absorbing barrier at 0 . Use what you learnt in class to write down the equation for the current of probability J_{0} at 0 . What is the mean first passage time of the process in 0 ? Discuss the limit of $\mu-\nu=0$.

