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1 Introduction

Previously, we have discussed the onset of Hamiltonian chaos by the overlapping of resonant
structures. This torus-centric topic led us naturally to transport due to stochastic magnetic
fields in another donut of interest, the tokamak. We introduced the notion of the Kubo
number, which, roughly speaking, is a ratio of nonlinear terms to linear ones. More precisely,
it is given by

Ku ≡ `ac
∆r

B̃r

B0

. (1)

Here, `ac is the (parallel) autocorrelation length beyond which field lines decohere from
perturbations, and ∆r is the radial correlation length of the scattering field. Ku is then the
ratio of the (coherent) radial excursion of field lines from ẑ, δr ' `acB̃r/B0, to ∆r.

For small Ku, the fields are scattered diffusively since there are many small radial “kicks”
per ∆r. We can define a magnetic diffusivity DM which gives the mean-square radial excur-
sion of the field lines per parallel length, i.e.

〈δr2〉 ∼ DMz. (2)

According to quasilinear theory, we can compute

DM =
∑
k

π

∣∣∣∣∣B̃r,k

B0

∣∣∣∣∣
2

δ(k‖) '

〈(
B̃r

B0

)2〉
`ac. (3)

Finally, we computed heat transport coefficients in the small-Kubo regime in both the
collisional and collisionless cases. A key takeaway in both cases was that the perpendicular
thermal diffusivity is proportional to the magnetic diffusivity and the electron thermal speed,
χ⊥ ∼ vthDM , and this perpendicular diffusion is due to the irreversible kicking of particles
off field lines. Note that this result differs strongly from the Spitzer result [1] χ ∼ `mfpvth.
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The dependence of thermal transport on particle motion motivates the investigation of
other transport channels, such as particles and momentum, and their effects on ambipolarity.
This discussion will include enlightening connections to zonal flows.

We will then begin to turn our attention to the case of Ku > 1, since, tragically, life
isn’t always so easy. We will study the example of the 2D guiding center plasma in thermal
equilibrium, which will serve as a gentle introduction to resonance broadening theory. Res-
onance broadening theory is perhaps the simplest and most intuitive approach to including
memory effects induced by strong nonlinear scattering. Ultimately, though, it is still a diffu-
sive approximation, and we will finally challenge this perspective on the large Kubo regime
with a brief discussion that will point towards percolation theory.

2 Particle transport

Consider the problem of particle transport in a stochastic magnetic field (as usual, take
Bz = B0ẑ to be large). It is important to distinguish between two cases:

1. The self-consistent case, i.e. the fluctuating field B̃ is produced by a fluctuating current
J̃‖ in the plasma in a way that is consistent with Maxwell’s equations, via electromag-
netic instabilities.

2. B̃ is produced by some external mechanism (a coil). A relevant example is resonant
magnetic perturbations (RMP), which are used in tokamaks to suppress ELMs. Note
that the plasma response is significant here; generally, we will have something like
B̃ ∼ B̃ext/ε for some screening factor ε.

We will focus on the first case in what follows, though we note that the key challenge
in the second is to calculate the response (both magnetic field and parallel current) in the
plasma.

(N.B. there are several calculational errors in Pat’s notes on the following, which we
rectify here.) A natural starting point is the electron drift kinetic equation. We have

∂tf + v‖∂‖f + v‖
B̃

B0

· ∇⊥f + (terms we don’t care about) = 0. (4)

We proceed by integrating over velocity space and averaging over the symmetry (poloidal
and toroidal) directions. The first term simply becomes ∂t〈ne〉. The second term becomes

1

LzLθ

∫
d3v

∫
dθdz v‖

B̃

B0

· ∇⊥f = − 1

LzLθ

∫
d3v

∫
dθdz f∇⊥ ·

(
v‖

B̃

B0

)
(5)

= −〈ne〉∂r

〈
ṽ‖
B̃r

B0

〉
, (6)

where in the last step we have used periodicity in θ and ignored the triple correlator 〈ṽ‖ñeB̃〉.
Finally, identifying the electron motion with the electron current ṽ‖ = −n0|e|J̃‖e , we have

∂t〈ne〉 − 〈ne〉∂r

〈
B̃r

B0

J̃‖,e
−n0|e|

〉
+ · · · = 0. (7)
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However, we must also enforce consistency with Ampère’s law

ẑ · (∇× B̃) = ẑ · (∇×∇× Ã) = −∇2
⊥Ã‖ =

4π

c
J̃‖ =

4π

c
(J̃‖,i + J̃‖,e), (8)

(ignoring variation along ẑ). Thus,

J̃‖,e = − c

4π
A‖ − n0|e|ṽ‖,i, (9)

and an ion contribution will enter the calculation.
We now have

∂t〈ne〉 − 〈ne〉∂r ·

〈
B̃r

B0

(
c

4πn0|e|
∇2
⊥Ã‖ + ṽ‖,i

)〉
+ · · · = 0. (10)

Finally, we use B̃r = ∂θÃ‖ to write

∂t〈ne〉 =
c

4π|e|B0

∂r

〈
(∂θÃ‖)(∇2

⊥Ã‖)
〉

+ 〈ne〉∂r

〈
B̃r

B0

ṽ‖,i

〉
+ . . . . (11)

We’ve now identified two terms: one due to the autocorrelation of the fluctuating mag-
netic field, and one due to the magnetic “flutter” of the ion flow. We now invoke a trick
known as the Taylor identity, after G.I. Taylor [2], to simplify the former term (the Taylor
identity is commonly used to relate zonal flow production to the Reynolds stress). We have

〈
(∂θÃ‖)(∇2

⊥Ã‖)
〉

=
〈

(∂θÃ‖)(∂
2
θ Ã‖ + ∂2r Ã‖)

〉
(12)

=

〈
1

2
∂θ

(
(∂θÃ‖)

2
)

+ ∂r(∂θÃ‖∂rÃ‖)−
1

2
∂θ

(
(∂rÃ‖)

2
)〉

. (13)

The first and third terms vanish due to periodicity. This leaves ∂r

〈
B̃rB̃θ

〉
, the derivative

of the magnetic stress. Hence,

∂t〈ne〉 =
c

4π|e|B0

∂2r

〈
B̃rB̃θ

〉
+ 〈ne〉∂r

〈
B̃r

B0

ṽ‖,i

〉
+ . . . . (14)

Thus, we have related the electron particle transport to the magnetic stress due to
stochastic fields. This suggests the fluctuating fields may have an effect on zonal flows,
which are ultimately a charge transport phenomenon. Also note that there is no explicit
dependence on the (small) electron inertia, and that a combination of fluctuating parallel
ion flows and magnetic tilt changes the electron density. For more on this last idea, see [3].
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3 Zonal flows and ambipolarity

Let us say more on the topic of zonal flows, which are “benign” in the sense that they don’t
lead to radial transport and thus are the darlings of plasma physicists everywhere. ZFs
are the result of radial charge separation, which leads to a charge polarization flux and a
Reynolds force. We will see that stochastic magnetic fields will impact zonal flow formation
by inducing charge transport and a Maxwell force.

The total flux of charge is given by

Γcharge = |e|(〈ṽrñi〉 − 〈ṽrñe〉) + 〈ṽrQ̃pol〉, (15)

where the first two terms are due to guiding center motion and Qpol is the polarization
charge density. In absence of the polarization term, quasineutrality ñi = ñe guarantees
ambipolarity, i.e. Γcharge = 0. However, polarization charge flux introduces a new means of
charge transport, breaking ambipolarity.

To see how this results in ZF formation, recall the (2D) vorticity evolution equation, in
the absence of a stochastic field, from drift wave models such as Hasegawa-Mima:

∂t∇2φ+ vE · ∇∇2φ = ν∇2∇2φ. (16)

Here vE = ∇φ× ẑ is the E ×B drift, so ∇× vE = ∇2φ is the vorticity. Note that nonzero
∇2φ is equivalent to charge separation according to Gauss’s law:

∇2φ = −4πQpol. (17)

Equation (16) is electrostatic and assumes ∇ · J = ∇ · (Jpol + J‖ + JPS) = 0. Since ZFs
have toroidal and poloidal wavenumbers m,n = 0, the parallel and Pfirsch-Schlüter terms
are zero here, and ∂rJr,pol = 0.

Taking zonal averages 〈· · · 〉, writing φ = 〈φ〉+ φ̃, and neglecting dissipation, we have

∂t∂
2
r 〈φ〉+ ∂r〈ṽE,r∇2φ̃〉 = 0, (18)

where we have used the fact that ṽE is divergence-free. This equation relates the time evolu-
tion of the mean polarization charge density to the divergence of the flux of the polarization
charge. Noting the second term is identical in form to the second term of Eq. (11) (since
ṽE,r = ∂θφ̃), we can apply the Taylor identity to find

〈ṽE,r∇2φ̃〉 = ∂r〈∂θφ̃∂rφ̃〉 = −∂r〈ṽE,rṽE,θ〉. (19)

Thus the flux of vorticity/polarization charge is equivalent to the Reynolds force and leads to
ZF production. The zonal flow production can then be found via a modulational instability
calculation. See, for example, [4].

Now, in the presence of a stochastic magnetic field perturbation, we can no longer neglect
parallel current, and ∇ · J = 0 now leads to

∇⊥ · Jpol + ∂‖J‖ = 0 (20)

with ∂‖ = ∂
(0)
‖ + B̃

B0
· ∇⊥.
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Figure 1: Zonal flow drive by Reynolds stress. Correlations between fluctuating radial flows
and charge separation self-amplify and generate a poloidal E ×B flow.

Including this correction in the vorticity evolution now results in the equation (which
also follows directly from reduced MHD)

∂t〈∂2rφ〉+ 〈ṽ · ∇∇2φ̃〉 = 〈B̃ · ∇J̃‖〉. (21)

The evolution is again governed by the advective transport of polarization charge (second
term on LHS), but now there is also a contribution (RHS) from the current flow along tilted
field lines. Note that, invoking the Taylor identity, the former term is the Reynolds stress
contribution and the latter is the Maxwell stress contribution:

∂t〈∂2rφ〉 = −∂2r (ΠReynolds + ΠMaxwell). (22)

Thus the stochastic fields contribute to ZF production, but note that the sign (flow growth
or damping) is not a priori clear. In the case of pure Alfvénic fluctuations, it turns out that
the fields act to cancel the electrostatic field and damp the ZFs, but this is beyond the scope
of these notes. See Figs. 1–2.

4 A word on electron momentum transport

Let us briefly mention the topic of electron momentum transport. In the collisionless regime,
it can be argued that stochastic magnetic perturbations leads to transport of electron parallel
momentum across magnetic surfaces with the same strength as the heat transport:

∂tJ‖ = ∇⊥ · (µ∇⊥J‖), (23)

where µ is approximately equal to the anomalous heat diffusivity χ⊥ ∼ DMvth. This requires
including the electron inertia term in the Ohm’s law

E + v ×B/c = ηJ︸︷︷︸
resistivity

+
me

ne|e|2
∂tJ︸ ︷︷ ︸

electron inertia

, (24)
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Figure 2: Zonal flow drive by Maxwell stress. Correlations between parallel current and
radial magnetic field fluctuations self-amplify and generate a poloidal E×B flow; this effect
tends to oppose that of the Reynolds stress for Alfvènic turbulence.

so that
E‖ = ηJ‖ −

me

ne|e|2
∇⊥ · (µ∇⊥J‖). (25)

Refer to [5] for more details.
The coefficient µ is referred to as the “electron viscosity” or the “hyper-resistivity,” and it

can indeed be important in the collisionless regime. In particular, by modifying the effective
resistivity it can have a significant impact on magnetic reconnection.

Recall that the reconnection of magnetic field lines results in the inflow of plasma into
the dissipation region where reconnection is occurring (see Fig. reffig:rec). According to the
classical Sweet-Parker theory for resistive MHD, the inflow speed is given by v = vA/Rm1/2,
where vA is the Alfvén speed and Rmeff = vAL/η is the magnetic Reynolds number (at the
Alfvén speed).

The Sweet-Parker result is generally very slow compared to observations of real-world
reconnection, a phenomenon known as “fast reconnection.” Hyper-resistivity represents one
possible avenue to resolving this issue. It can be shown that the inclusion of the electron
inertia term modifies this result to vin ∼ vA/(Rmeff )

1/4, where Rmeff = vAL/µ, resulting in
significantly stronger reconnection.

To see this, note that the inertia term of the ohmic power dissipation is ∼ µJ2
‖/∆

2.

Equating this to the magnetic energy influx (and applying Ampère’s law) yields vin ∼ µ/∆3.
Finally, employing vin ∼ vA∆/L (from pressure balance and mass balance) gives the stated
result.

Fast reconnection plays a role in the bane of every confinement physicist, the edge lo-
calized mode (ELM) crash. See [6] for results on the impact fast reconnection, induced by
hyper-resistivity, has on ELM crashes.

Finally, we mention another prominent perspective on fast reconnection: the formation
of intense current layers in the reconnection region can drive instabilities, resulting in a
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Figure 3: Basic schematic of magnetic reconnection. Reconnection occurs in a dissipation
region of width ∆ and length L, and plasma flows into and out of this region.

dependence of µ on the current gradient and introducing a nonlinearity into the electron
inertia term. See, for example, [7] or [8] for more on this subject.

5 Towards Ku > 1

We have up until this point been concerned with transport in the Ku < 1 regime, with the
Kubo number

Ku =
[∆(k‖)]

−1

∆r

B̃r

B0

(26)

set by the magnitude of the magnetic fluctuations, the parallel bandwidth, and the radial
correlation length of the scatterer. In this regime, the field experiences many radial kicks
per coherence length and thus can be modeled as a diffusion process. The key quantity
governing the transport has been the magnetic diffusivity

DM =

∫ ∞
0

d`
1

B2
0

〈B̃r(0)B̃r(`)〉 (27)

=

∫ ∞
0

d`
∑
k

∣∣∣∣∣B̃r,k

B0

∣∣∣∣∣
2

eik‖` (28)

'

〈(
B̃r

B0

)2〉
`ac (29)

(recall that the first expression is the Green-Kubo form of the diffusion coefficient). The
field lines are scattered diffusively via k‖ = 0 resonances, and the spectral width of linear
wave packets is the controlling spatial lengthscale.

Now, what happens for larger Kubo number? Note that we may rewrite

Ku ∼ `ac
`NL

, (30)
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where `−1NL ∼ B̃r

B0
∂r ∼ B̃r

B0
∆−1r is known as the “nonlinear mixing length.”1 This lengthscale

is set by the nonlinear term of the DKE (Eq. (4)) ∼ B̃r

B0
∂r. When the parallel lengthscale

`ac exceeds the mixing length, the nonlinear term begins to dominate the linear term. Thus,
the large Kubo regime is one where spatial/time scales set by nonlinear scattering processes
become important. Clearly, quasilinear theory is of dubious value here and the above result
for DM is no longer valid.

The effect of the nonlinear processes may be modeled by the entrance of finite time
memory into the system:

D⊥ =

∫ ∞
0

dτ 〈ṽ(0)ṽ(τ)〉 '
∫ ∞
0

dτ
∑
k

|ṽk|2R(τ), (31)

where R(τ) is the memory kernel or resonance function. A typical expression is one of the
form

R(τ) = Rω(τ) = ei(ω−k‖v‖)τe−τ/τ⊥ , (32)

where ω − k‖v‖ is the contribution from unperturbed orbits. The nonlinear effects have
broadened the linear wave-particle resonance and set the characteristic decoherence time τ⊥
(though generally there may be multiple nonlinear time scales). We may similarly replace
the exponential in Eq. (28) with a more general dependence on `.

In the following section, we will explore this idea by computing the perpendicular dif-
fusivity in the 2D guiding center plasma, recovering the Bohm result D⊥ ∼ 1/B0 (even for
thermal equilibrium!). This discussion is based on the classic paper by Taylor and McNa-
mara [9]. It will serve as introduction to resonance broadening theory (RBT) [10], which is
perhaps the simplest approach to attacking the Ku > 1 regime. The calculation that follows
will be performed in the limit Ku� 1 and k‖ → 0, ω → 0.

6 Diffusion in the 2D guiding center plasma

Recall that the 2D guiding center model corresponds to the limit where the magnetic field
is so large that the Larmor radius is smaller than the Debye length, so that the plasma may
be represented as an ensemble of rods with charge per unit length ±e/` moving in the plane
perpendicular to B0. The particle trajectories are determined by E ×B drift

vE =
c

B0

ẑ ×∇φ. (33)

We work in an electrostatic approximation where φ is determined by the Poisson equation

∇2φ = −4πρ. (34)

The charge density evolves according to

∂tρ+ vE · ∇ρ = D0∇2ρ. (35)

1Analogously, for fluid turbulence we may write Ku ∼ τacṽ/∆ ∼ τac/τNL with τNL the eddy circulation
time. For collisional drift waves, the autocorrelation time is set by parallel electron motion τ−1ac ∼ ∆|χ‖k2‖|.
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How does the fluctuating electric field affect particle transport? We seek the diffusion
coefficient

D⊥ =

∫ ∞
0

dτ 〈ṽ(0)ṽ(τ)〉 (36)

=

∫ ∞
0

dτ
∑
k

|ṽk|2eik·r0e−ik·r(τ) (37)

=

∫ ∞
0

dτ
∑
k

|ṽk|2e−ik·δr(τ), (38)

where we have formally decomposed the particle orbit r(τ) as the sum of the unperturbed
orbit and a “fluctuating” contribution due to scattering by the spectrum of electric fields

r(τ) = r0 + δr(τ). (39)

This expression for D⊥ is stochastic; how do we make progress? This brings us to the key
step of RBT, which is to replace the expression with an ensemble average over the perturbed
orbits:

D⊥ ' 〈D⊥〉 =

∫ ∞
0

dτ
∑
k

|ṽk|2〈e−ik·δr(τ)〉. (40)

We have thus replaced the exact propagator with the “effective” propagator that the particle
feels due to the ensemble of electric field fluctuations; this is very similar to renormalization
methods from field theory.

Of course, actually computing this ensemble average requires further approximation: we
assume the distribution of orbits is Gaussian and thus the particles obey a diffusion process.
Now:

〈e−ik·δr(τ)〉 = 〈1− ik · δr(τ)− (k · δr(τ))2

2
+ . . . 〉 ' 1− k2⊥〈δr(τ)2〉

2
, (41)

where the linear term vanishes because it is odd. Finally, we employ the diffusive approxi-
mation 〈δr(τ)2〉 ' 2D⊥τ and obtain

〈e−ik·δr(τ)〉 ' 1− k2⊥D⊥τ ' e−k
2
⊥D⊥τ , (42)

so that

D⊥ '
∫ ∞
0

dτ
∑
k

|ṽk|2e−k
2
⊥D⊥τ =

∑
k

|ṽk|2
1

k2⊥D⊥
. (43)

We have come upon an interesting result: the scattering process itself sets the decorrelation
time τ−1c = k2⊥D⊥

2, so that the diffusivity D⊥ is expressed recursively. This feature is generic
to strong scattering processes. Moreover, we see that τc becomes large at large spatial scales,
which will introduce a dependence on the system size. This behavior is the effect of “slow
modes” which originate from the conservation of ρ (the jargon is that ρ is a “conserved order
parameter”).

2This is closely related to the mixing length estimate of the saturation level for drift wave turbulence,
D⊥ = γk/k

2
⊥.
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Assuming a symmetric spectrum, we now have

D2
⊥ '

∑
k

|ṽk|2

k2⊥
'
∫
k⊥dk⊥

|ṽk|2

k2⊥
=

∫ kmax

kmin

dk⊥
|ṽk|2

k⊥
(44)

where the infrared cutoff is given by the system size kmin ∼ L−1 and the ultraviolet by the
Debye length kmin ∼ λ−1D .

We now employ ṽk = c
B0

Ek × ẑ, and find

D⊥ '
c

B0

(∫ kmax

kmin

dk⊥
|Ẽk|2

k⊥

)1/2

. (45)

The Bohm-like scaling ∼ 1/B0 is now apparent, and the remainder of the problem is reduced
to determining the electric field spectrum. If we assume thermal equilibrium, we can compute
the spectrum using a test particle model3

〈|Ẽk|2〉 =
4πkBT

`

1

1 + k2⊥λ
2
D

(46)

(note the contribution from Debye screening). As a reminder, ` is again the parallel scale
length such that each rod has charge per unit length is ±e/`. Plugging into Eq. (45) and
integrating yields

D⊥ ∼
ckBT

eB

[
1

nλ2D
ln(L/λD)

]1/2
. (47)

This recovers the Bohm result DB ∝ ckBT/eB (with α a numerical coefficient); surprisingly,
this holds even at thermal equilibrium, so the Bohm diffusion is not anomalous in the usual
sense. Moreover, we find a (weak) dependence on the system size L, a simple example
of non-locality. As mentioned before, the non-locality is due to the presence of slow modes
(ω ∼ k2⊥D⊥ is small at large scales), which are associated with the conserved order parameter
ρ.

Taylor and McNamara also derive the electric field spectrum for a purely random array
of discrete charges/rods (Fig. 4).

We have
∇ · E = 4πρ = 4π

∑
i

qi
`
δ(x− xi). (48)

Fourier transforming,

ik · Ek =
4π

`

∑
i

qi exp(−ik · xi). (49)

3The test particle picture in the 2D GC plasma actually suffers from some complications compared to the
3D Vlasov plasma. The essence of the difficulty is that the continuity equation yields a trivial linearization;
in the absence of interactions, the particles are at rest and unperturbed orbits have zero length, and in the
uniform plasma, electric field perturbations fail to produce a charge imbalance. As a result, the calculation
of the dielectric function ε(k, ω) is a bit more involved (see [11, 12, 13] for details). Ultimately, however, it
yields the same answer for the spectrum as what Taylor and McNamara wrote down using pure statistical
mechanics arguments.
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Figure 4: A random array of thin charged rods. This system exhibits strong nonlocality.

Then

〈|Ek|2〉 =
1

k2⊥

(
4π

`

)2
〈∑

i,j

qiqj exp(ik · (xj − xi))

〉
(50)

=
16π2ne2

k2⊥`
2
. (51)

This result may also be found by simply taking T →∞ in the thermal equilibrium expression
Eq. (46).

Now, once again plugging this into Eq. (45) and integrating, we obtain

D⊥ '
c

B0

4π(ne2)1/2

`
L. (52)

Note that the dependence on the system size is now strong (linear instead of logarithmic).
Evidently, the random ensemble exhibits strong non-locality!

7 Aside on resonance broadening theory

Let us say a little more about RBT. It rests on a few fundamental assumptions: first, the
excursions from unperturbed orbits are assumed to be purely stochastic, so it is only valid
in regions of overlap of resonant surfaces. Furthermore, as previously mentioned, it assumes
the pdf of δr is Gaussian, so that the scattering is a diffusion process. There is absolutely
no reason why this should be true, and indeed no reason even that the pdf should have a
finite second moment. Finally, it also employs an approximation known as the “test wave
hypothesis” (similar to the test particle model): the ensemble of interacting modes Ek is large
and statistically homogenous, so that any one mode may be removed from the ensemble and
treated independently without altering the spectrum. This assumption ignores the effects of
coherent mode coupling.
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To go beyond RBT in a systematic way requires the tools of renormalization (beyond
the scope of these notes), which is considerably more involved and necessarily includes un-
controlled approximations. Certainly, the appeal of RBT is its intuitiveness and ease of
application.

8 More high Kubo: transport in random media and

percolation

The above discussion treats the high Kubo regime diffusively, using resonance broadening
theory. A few questions linger:

• Can we connect the Ku < 1 and Ku > 1 regimes in a unified treatment? This is
partly the goal of renormalization theory, though it is unclear how well it works in this
context.

• What about higher order corrections to χ⊥?

• How do ambient collisional diffusion and nonlinear/turbulent scattering synergize?

• Is the diffusive approximation valid at high Kubo?

We will now discuss this last question at length (the second to last will be discussed in the
next lecture). Some references for this topic are [14, 15, 16, 17, 18].

We have previously considered the strongly magnetized plasma with magnetic pertur-
bations in the limit of small Kubo, wherein `ac is finite, and there is an inhomogeneity in
the ẑ direction. Let us now consider the opposite extreme, where Ku → ∞. In this limit,
the magnetic field perturbations are completely random in the perpendicular plane, and
homogenous in ẑ.

We can then introduce a scalar potential A so that b = B̃⊥/B0 = ∇⊥A× ẑ. A field line
is described by the equation

dx

dz
= br =

∂A

∂y
(53)

dy

dz
= bθ = −∂A

∂x
(54)

This problem (Fig. 5) is structurally equivalent to the guiding center plasma problem of
Taylor and McNamara, where we have

dx

dt
= − c

B0

∂φ

∂y
(55)

dy

dt
=

c

B0

∂φ

∂x
. (56)

With this in mind, we might charge forward without fear and compute the magnetic
diffusivity with resonance broadening corrections:

DM =
∑
k

π

∣∣∣∣∣B̃r,k

B0

∣∣∣∣∣
2

δ(k‖)→
∑
k

∣∣∣∣∣B̃r,k

B0

∣∣∣∣∣
2

i

k‖ + ik2⊥DM

(57)
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Figure 5: The static, homogeneous system with random perpendicular magnetic field is akin
to a system of rods of magnetic potential A, and is structurally identical to the Taylor-
McNamara problem.

so that

ReDM =
∑
k

∣∣∣∣∣B̃r,k

B0

∣∣∣∣∣
2

k2⊥DM

k2‖ + (k2⊥DM)2
. (58)

For Ku < 1, k⊥ is small and the Lorentzian becomes a delta function δ(k‖) and we recover
the RSTZ result. For Ku � 1, k‖ ∼ 0 and we attain a result analogous to that of Taylor
and McNamara:

DM '
∑
k

∣∣∣∣∣B̃r,k

B0

∣∣∣∣∣
2

1

k2⊥DM

(59)

and DM '
∣∣∣ B̃r,k

B0

∣∣∣∆⊥.
But now we challenge the notion that the Ku > 1 regime can be treated diffusively like

this. For simplicity, take the magnetic field perturbation to be stationary in time (as well as
independent of ẑ). Then from Eqs. (53)-(54)

dy

dx
= −∂xA

∂yA
. (60)

Hence ∇A·dx = 0, and field lines traverse contours of constant A, as in a topographical map.
Now, the subject of “statistical topography” enters the physics. That is, given a random
perturbation A, what can we say about the statistical distribution of hills and valleys in the
topography of A? We will soon see that this influences the large-scale transport properties.

We may set 〈A〉 = 0 and 〈A2〉 = A2
0, where 〈· · · 〉 denotes an ensemble average. A0 then

sets the average height of a hill or valley in A.
A typical set of isocontours is illustrated in Fig. (6). Most contours are closed and isolated

and do not contribute significantly to transport. However, certain special contours which
we might call “passes” take on long path lengths and allow particles to traverse the system

13



Figure 6: Isocontours of A. One expects most contours to be small and localized, like (1)
and (2). However, some — like (3) — are long and allow a particle to traverse the system
size.

size. Transport in this system then primarily occurs along these passes. In Fig. (7), this
concept is illustrated in a system with a gradient that breaks isotropy. Transport down the
gradient is isolated to contour (c), which is the only pass that connects the endpoints. If (b)
corresponds to the plasma-facing component in a tokamak, the signature of such behavior
would be a strongly localized strike mark on the plasma facing component.

Like a lightning bolt, the transport is sharply localized to a small number of chan-
nels/strike marks. This type of transport is clearly not diffusive: instead, it is emblematic
of percolation, which we will discuss in greater detail in coming lectures. Playing the role of
the mean free path, we have the mean length of the largest contour

`A ∼ |A|−γ. (61)

Figure 7: Illustration of isocontours in a system with a temperature gradient. Contour (c)
is the only channel for transport from (a) to (b).
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Percolation is characterized by the extension of this length as A→ 0.

9 Summary

We have discussed anomalous particle transport due to magnetic fluctuations in the low Kubo
regime, invoking the Taylor identity to show that the transport is driven by the magnetic
stress and the fluctuating parallel ion flow. We have applied this to show that magnetic
fluctuations impact zonal flow formation by inducing charge separation. We briefly discussed
momentum transport, bringing us to the idea of hyper-resistivity, which can profoundly affect
magnetic reconnection. We then turned our attention to the high Kubo regime. We first
treated this regime diffusively, introducing the theory of resonance broadening and applying
it to the 2D guiding center plasma à la Taylor and McNamara. Finally, we challenged this
diffusive treatment by arguing that transport in the high Kubo limit is at least partially
governed by topography and exhibits percolation, which will we study in depth in future
lectures.
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