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1 A brief intellectual history of SOC

So far we have covered diffusion and percolation, the phase transition, intermittency and

Levy distribution. There was story emerged from hydrology which address the question of

charactering time scales and time series, and eventually the story lead to Hurst (H) parameter

and the relation to Holder exponent. On the other hand, we also learn that intermittency

gains multiplicative processes and log-normality. Separate from that but related is the Pareto-

Levy distribution. Pareto was interested in concentrated distribution of the wealth in the

society. Levy was interested in generalizing central limited theorem – identify the broader

class of fixed points in function space and discover the levy walk.

See Fig. 1 for the flowchart of the storyline. Long story short, the hydrology line is

interested in time series and turbulence. The intermittency line is interested in random

walk and intermittency in dynamical systems. The two story lines were eventually united by

the ideas of fractals and the fractal model introduced by Mandelbrot and Wallis [1]. They

realized that the fractal model unifies the intermittency and turbulence with the concept of

the strange behavior in time series. A deeper meaning of it is the connection between spatial

and temporal self-similar structures.

Note that the H → 1 is ubiquitous phenomena of the 1/f “noise”. (It’s not really the

noise but instead a 1/f distribution/fluctuation). The H → 1 has ballistic propagation,

δl ∼ t, which suggests a self-similarity. This idea lead people to wonder if there was a simple

physical model that manifests 1/f noise. The story eventually leads to the development of

self-organized criticality (SOC) in the 80’s [2, 3].
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Figure 1: A brief history of the self-organized criticality.

2 Log-normal distribution, 1/f distribution and 1/f noise

Two critical factors in SOC are Zipf’s law and 1/f noise. They are related but different.

• Zipf’s law [4]: the probability of the event at x is P (x) ∼ 1/x – big event is rare

and small event is frequent. In Sec. 2.1, we will show that Zipf’s law is a good fit to

log-normal distribution for a broad range and is natural for the multiplicative processes.

• 1/f noise: the frequency spectrum is 〈(∆B)2〉ω ∼ 1/ω. In section 2.2, we will show

how to get 1/f noise from 1/f distribution.

Both suggest a self-similar structure, which indicates the absence of a clear scale and the

rarity of large events. 1/f is related to H → 1, which is persistent.

2.1 Zipf’s fit to log-normal distribution and 1/f distribution

Below we will follow Montroll & Shlesinger 1982 [5] to show that Zipf’s law is a good fit

to a log-normal to a wide range. An 1/f distribution function diverges in the full range

0 < f < ∞ since its normalization diverges as log f when f → 0 and f → ∞. As a result,
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a purely 1/f distribution is not normalizable. On the other hand, a distribution with large

dispersion can be mimicked by a 1/x distribution over a wide range of x. So to get an overall

normalizable distribution and a 1/f -like behavior in the intermediate range, one shall use

log-normal distribution of the variable log x [5]:

F (log x) =
exp
[
− (log x− log x̄)2 /2σ2

]
√

2πσ2
, (1)

where x̄ and σ stand for the mean and dispersion of the distribution, respectively. The

probability that x/x̄ lies in d (x/x̄) at x/x̄ is given by

P
(x
x̄

)
= g

(x
x̄

)
d
(x
x̄

)
=

exp
[
(− log x/x̄)2 /2σ2

]
√

2πσ2

1(
x
x̄

) d(x
x̄

)
,

(2)

where g (x/x̄) is the log-normal probability distribution function (PDF). Letting x ≡ fx̄ and

taking log g as a function of f , we obtain

log g (f) =
− (log f)2

2σ2
− 1

2
log
(
2πσ2

)
− log f

= − log f + variance corrections.

(3)

Equation (3) indicates that, for a large value of σ, the distribution function g (f) would

become more close to a 1/f distribution. This is achieved when the system has a large number

of multiplicative events. In the multiplicative processes, the square of the total dispersion is

scaled as the total number of event, N ,

σ2 ≡
N∑
j=1

σ2
j = Nσ̄2, (4)

so the larger N value, the greater the number of decades that the distribution function

g (f) mimics 1/f distribution. Therefore, the normalizable log-normal distribution is well-

approximated by a 1/f power-law distribution (relates to Zipf’s law) over a wide but finite

range in a large N limit.

2.2 1/f noise from 1/f distribution

A purely random process has the auto-correlation of the form:

〈φ (t1)φ (t2)〉 ∼ |φ0|2k e−iωk(t2−t1) e−|t2−t1|/τc

∼ e−|t2−t1|/τc ,
(5)
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where in the second step we ignore the real frequency part because the wave is not the concern

here. We can do the Fourier transform of e−|t2−t1|/τc from the time-domain to the frequency

domain and obtain

Sτc (ω) ∼ 1/τc
1/τ2

c + ω2

large τc−−−−→ 1

ω2
, (6)

which τc introduces a time scale in the problem. Now the problem is that 1/f distribution

is scale-free. To rescue the problem, on can consider an ensemble of random processes, each

with their own correlation time τc. The power spectrum is then given by

S (ω)eff =

∫ τc2

τc1

P (τc)Sτc (ω) , (7)

where P (τc) is the probability that τc lies in dτc at τc. It means τc is probabilistic-distributed

as oppose to a single characteristic correlation time. Since we are motivated by scale-

invariance, we can impose P (τc) to be scale-invariant, i.e.

P (τc) =
dτc
τc
. (8)

The power spectrum then becomes

S (ω)eff =

∫ τc2

τc1

dτc
τc

1/τc
1/τ2

c + ω2
=

tan−1 ωτ

ω

∣∣∣∣τc2
τc1

∼ 1

ω
, (9)

where the last step, S (ω)eff ∼ 1/ω, is valid when the scale invariance covers many decades,

that is, τc2/τc1 is a large ratio.

Naturally, we want a simple, intuitive model which displays 1/f noise and captures

“Joseph” effect (sustained, persistent events) and “’Noah” effect (big events) in the non-

Brownian random process. The self-organized criticality will do the job.

3 Self-organized criticality

In this section, we are going to see that a spatially extended dissipative, dynamical system

will naturally evolved to a self-organized critical state with no characteristic time and length

scales. The spatially extended dynamical system, i.e. system with both spatial and temporal

degrees of freedom, are everywhere in physics, biology, and economics. One class of the

system is the ubiquitous temporal effect known as “1/f” noise of which the power spectrum

shows a power-law behavior f−β over a wide range of time scales. (Note: in general, 1/f

means 1/fβ with β ≤ 1.) The other class of the system is based on empirical observations

that a spatially extended system tends to naturally evolve into scale-invariant, self-similar

fractal structures. These two classes show that the system evolves to a critical state with

power-law spatial correlation as well as 1/f temporal signature over several decades.
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In this section, we will mostly follow this PRL paper [2] (thereafter Paper 1) and this

PRA paper [3] (thereafter Paper 2), both written by Bak, Tang and Wiesenfeld (BTW). In

Papers 1 & 2, BTW have numerically demonstrated that a spatially extended dissipative

dynamical system naturally evolves into a self-organized critical state with both spatial and

temporal power-law scaling. As we will see quickly, the spatial degrees of freedom evolves to

a scale-invariant, self-similar fractal structure, and the temporal behavior is a 1/f noise with

a power-law spectrum S (f) ∼ f−β.

Before we jump into the sand pile model, let’s first summarize few key elements in the

SOC [2, 3]:

1. Motivated by ubiquity and challenge of 1/f noise (scale-invariant).

2. Spatially extended excitations (also known as avalanches).

3. Collective ensemble of avalanches

4. Evolve to self-organized critical structure of states which are barely stable. Note that

SOC state does not mean linearly marginal state.

5. The power-law for temporal fluctuations – the 1/f noise – is a combination of dynamical

minimal stability and spatial scaling.

6. SOC is about the noise propagation through the marginally stable cluster via the

“domino” effect. The noise is essential to probe the dynamic state.

7. The critical point is an attractor of the dynamics to the equilibrium state even the

system may start far from equilibrium. That is, no detailed specification of the initial

condition is needed.

8. Unlike the critical point at phase transitions in equilibrium statistical mechanics which

can only be obtained by fine-tuning a parameter, e.g. Ginzburg-Landau theory, the

SOC does not require any fine-tuning to get 1/f noise and fractal structure – the

critical structure is self-organized.

3.1 One dimension sand pile and minimal stability

Let’s reveal the outcome before we begin the 1D sand pile problem. Actually the 1D sand

pile evolves to a least stable metastable state and has no spatial structure and uninteresting

temporal behavior. It is similar to the 1D percolation problem where the only way to let the

cluster to percolate is to let all sites be occupied, that is, the percolation threshold be pc = 1.

In terms of the sand pile models, the more interesting results happen in 2D and 3D. But for

the pedagogical reason we will quickly go through the 1D sand pile model [3].
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Figure 2: The figure is taken from Ref. [3]. One-dimensional sand pile of length N . The

boundary condition is that the sands can leave the system at the right-hand side only. The

figure shows that one unit of sand at site n tumbles to the site n+ 1 when zn > zc.

We can build the sand by randomly adding a grain of sand at a time. Figure 2 shows the

configuration of a sand pile model of length N . The right-end is a loosely boundary so that

the sands can leave from the right-end. The vertical axis is the height of the sand pile; the

horizontal axis is discretized to N sites. The zn is defined as the height difference between

site n and site n+ 1, i.e. zn ≡ h (n)− h (n+ 1). The machinery to add one grain of sand at

the nth site is given by

zn → zn + 1,

zn−1 → zn−1 − 1.
(10)

Focus on site n for now. The sand pile will eventually grow to a critical slope where

adding any more sand will lead the sand pile to slide off. We expect that there is a critical

value zc that once the difference in height is higher than zc, one unit of sand at nth site

tumbles to the lower level (to the site n+ 1):

zn → zn − 2,

zn±1 → zn±1 + 1,
(11)

which is a discretized nonlinear diffusion equation. The cartoon is shown in Fig. 2. This

model is a cellular automation which describes the interaction of the state variable zn at time

t+ 1 with its neighbors at time t.

If we add more and more sands randomly in space, the sand pile will eventually reach

a critical state zc that any addition of sand grains will just fall from site to site, eventually

reaching the site N and exiting the system. The system then reaches the minimally stable

state. (The maximally stable state is, of course, an empty 1D sand pile system.) When the

1D sand pile system reaches the critical state, the falling grains (sandflow) as a transport will
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flow through the system, but the system is immune to the noise and eventually reaches the

globally minimally stable state again. This sandflow is a random white noise with the power

spectrum scaled as 1/f0. As a result, the 1D sand pile problem has no interesting temporal

signature and there is no spatial structure.

However, in the following subsection, we will show that in 2D and 3D sand pile systems

the minimally stable state is unstable with respect to small fluctuations and the spatial and

temporal structures stem from scale-invariant, self-similar fractal structures.

3.2 SOC in two and three dimensions

In two-dimension, the rules for adding one grain and the grain-tumbling in cellular automation

are given by [3]

z (x− 1, y)→ z (x− 1, y)− 1,

z (x, y − 1)→ z (x, y − 1)− 1,

z (x, y)→ z (x, y) + 2,

(12)

and
z (x, y)→ z (x, y)− 4,

z (x± 1, y)→ z (x± 1, y) + 1,

z (x, y ± 1)→ z (x, y ± 1) + 1, for z > zc,

(13)

respectively. We have assumed that the system is a 2D array (x, y) with 1 ≤ x, y ≤ N , and

the fixed boundary condition is used, i.e. z = 0 at the boundaries. Figure 3 demonstrates the

sand tumbling in Eq. 13 – four grains of sands at site (x, y) tumbles to 4 adjacent neighbors.

Figure 3: The tumbling of four grains at the site (x, y).

As we have shown in the last subsection, the 1D sand pile system will eventually evolve

to a minimally stable state where the slope reaches a critical value. Any newly added grain

of sand will just tumble from one site to the next site and to the next, eventually reach to the

boundary and exit the system. The critical state is stable with respect to small fluctuations.

However, the 2D and 3D sand pile systems have very different behavior. Assuming a 2D sand

pile at a minimally stable state, when the site (x, y) topples, four grains of sand tumbles to

four adjacent points. Immediately, the four adjacent points become unstable with respect
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Figure 4: Figure is taken from Ref. [2]. The domain structure of local perturbations. The

grid size is a 100× 100 array.

to this toppling and they each tumbles 4 grains of sand to the adjacent neighbors. The

noise spread out to the neighbors, then their neighbors, and eventually the noise propagate

throughout the entire system. Comparing to 1D sand pile problem, we find that the 2D sand

pile does not have a stable minimally stable state with respect to small fluctuations and thus

the minimally stable state is not an attractor of the dynamics to the equilibrium. Instead of

getting minimally stable states in 2D problem, we expect to get a lot of more-than-minimally

stable states and these states will prevent the propagation of noise.

When will the system become stable? As observed by BTW in Paper 1 and 2, the

stability will be reached precisely at the point when all the minimally stable states cascade to

an ensemble of more-than-minimally stable states at the level where the noise can no longer

spread out to infinity. This dynamical system naturally evolve to a self-organized critical

state with no characteristic length and time scales.

Figure 4 shows the domain structure resulted from several single-site-induced perturba-

tions. The dark areas represent the clusters affected by the toppling of a single site interior.

Figure 5a shows the distribution of cluster size of a 2D sand pile system, averaged over

200 samples. The distribution of cluster size sticks to a power-law for at least two decades,

D (s) ≈ sτ , τ ≈ 1.0 for 2-dimension, (14)

which suggests the system is actually at a critical state with spatial scaling of the clusters.

The deviation at small size comes from the discreteness effect of the lattice. The deviation

from the power-law at large cluster size is a finite-size effect.

Figure 5b shows the distribution of lifetime weighted by the average response s/t. The

numerical simulation result also shows a temporal power-law scaling:

D (t) ≈ t−α, α ≈ 0.43 for 2-dimension. (15)
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(a) (b)

Figure 5: Figures are taken from Ref. [2]. (a) Distribution of cluster size at the critical state.

The grid size is 50×50, averaged over 200 samples. (b) Distribution of lifetimes of the clusters

corresponding to (a).

We can interpret the sliding as energy dissipation. The cluster of size s represents the total

energy dissipation due to a single avalanche. If each sliding has it own correlation time T ,

the autocorrelation has the form ∼ e−t/T and the Fourier transformation representation is

∼ T/
(

1 + (ωT )2
)

. The power spectrum is then given by

S (ω) =

∫
T

1 + (ωT )2D (T ) dT ∼ ω−2+α = ω−β. (16)

The 2D sand pile has α = 0.43 and β = 1.57 for a 5o × 50 grid. The 3D sand pile has

α ≈ 0.92 and β ≈ 1.08 for a 20× 20× 20 grid. Both models indicates a temporal power-law

scaling – the 1/f noise.

The numerical simulation clearly indicates that the dynamical, dissipative system evolves

to a self-organized critical state with a scale-invariant fractal structure and the 1/f noise.

Physically this result means the dynamical system self-organizes itself to minimally stable

states on all length scales with power-law spatial scaling, and the energy dissipation of each

cluster avalanche is turned into temporal power-law fluctuations on all time scales.

3.3 Analogies between the sandpile transport and turbulent transport

The sandpile problem, or the Kadanoff model [6], only receives interesting dynamics if

the system size is much larger than the interspacing between two consecutive sites, i.e.

L/∆ ∼ N � 1. This is precisely analogous to ρ∗ � 1 condition in turbulent transport.

The Kadanoff model naturally motivates an analogy with magnetic fusion energy (MFE).

We will compare sand pile with confinement.
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Analogies between sandpile transport & turbulent transport

Sand pile MFE confinement

Grid site Local fluctuations

Toppling rules Local turbulence mechanism

∆zcrit “’Critical gradient” for local instability

Number of unstable grains N Local eddy-induced transport

Random rain of grains External heating

Sand flux Heat/particle flux

Average slope Mean profile

Avalanche Transport event

Fractal profile Choppy profile

Sheared wind Sheared electric field

Local rigidity Profile stiffness

3.4 Definition of SOC

Now let’s give SOC a more precise definition. The reader is encouraged to read Jenson’s

book [7]. There are two types of definition:

• The constructive definition: a slowly driven, interaction dominated threshold system.

The classic example is sand pile.

• The phenomenological definition: the system exhibit a power-law scaling without tun-

ing. The special note is 1/f noise, also known as flicker shot noise.

The elements in SOC are:

1. Slowly driven, interaction-dominated threshold system, e.g. sand pile.

2. Many degree of freedom

3. The dynamics are dominated by degree of freedom couplings, i.e. cell-cell interaction

dominated.

4. Need threshold and slow drive. (“Strong” v.s “slow” is set by toppling rules.)

5. Local criterion for excitation (otherwise you will lose spatial separation).

6. Large number of accessible meta-stable sates.

7. Local profile rigidity, which is analogous to “profile stiffness” in MFE confinement.
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Figure 6: Generic power spectrum of over-turnings 〈(∆Z)2〉ω v.s frequency.

3.5 Generic spectra of SOC

There is a generic spectra that emerges from the SOC. As shown in Fig. 6, the ω−1 manifests

in middle range of the frequency. At higher frequency, we get ω−4 or some much higher

power of ω, and at the lower frequency range we have ω0. The ω−1 range is hand-in-hand

with H → 1, which suggests avalanche. In the language of Mandelbrot [1], they suggest

“Joseph” – that avalanche is a persistent event. The ω0 range corresponds to large events

and the lower frequency events get most power. In the Mandelbrot terminology, they are

“Noah”. The ω−4 range corresponds to uncorrelated overturning (localized events) so the

self-correlation dominates the dynamics.

4 Continuum hydrodynamic models

There are similarities between SOC and cascades in fluid turbulence. One may ask: is there a

hydrodynamical model for the SOC? Can we describe the system on scale l which is less than

system size, L, but much greater than grain size, ∆? We want to develop a hydrodynamical

model of the mean field criticality. The classic paradigm is Ginzburg-Landau theory, which

the key idea is symmetry. Takethe magnetization for example:

dn

dt
− c∇2n = −a (T − Tc)n− bn3. (17)

When T < Tc, the ground state changes, and this is known as external tuning. The critical

feature is the use of symmetry. Also there is an implicit universality that any thing that has

the right symmetry and the right general structure can be written in the form of Ginzburg-

Landau theory. Note that the classic Ginzburg-Landau theory is externally tuned, i.e. it has

an externally tuned criticality.

The idea above brings us to the hydrodynamical theory of SOC. We are interested in a

continuum model which is reminiscent to Burger turbulence. The criteria for SOC continuum
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Figure 7: An 1D box with ejecting boundary on the right-hand side. The dashed line is the

SOC profile. The red curve is the deviation from SOC.

hydro model is L� l� ∆. In terms of time scale, the time has to be much longer than the

time for a step but much shorter than the confinement time, i.e. τconfinement � τ � τstep.

Consider a 1D box with ejecting boundary on the right-hand side and accumulating

boundary on left-hand side. See Fig. 7. Imagine there is a SOC profile, the dashed line, and

the random grains fall in. The deviation from SOC profile is made by bumps, “’blobs”, and

the voids, ”holes”, and is shown as the red curve.

Assuming the conservation of “stuff” in the profile up to the boundary losses, we write

the density of “stuff” as P , which can be interpreted as the pile or system occupation. The

idea is then to write the dynamics of deviation from SOC state as

P ≡ Psoc + δP. (18)

We are interested in the evolution of δP . The governing equation for δP is the conservation

of P ,

∂tδP + ∂x

[
Γ (δP )−D0∂xδP

]
= S̃, (19)

where Γ (δP ) is the flux induced by deviation from SOC profile. (Note that Eq. 19 can

be extended to higher order dimension, see Ref. [8].) Obviously, P is conserved up to the

boundary, so δP evolution is governed by ∇ · Γ term. To constrain Γ (δP ), we shall seek

symmetry, in the spirit of Ginzburg-Landau prescription.

Suppose we have a flat system, and now we make a bump. The bump will spread out but

still conserve the area. Likewise, the void will be filled by two sides. For the case of a bump

on a slope, the downslope extends, and the bump goes down and to the left. Likewise, the

void on the slope has greater extend on upslope, and the void will go up and to the left. See

the red arrows in Fig. 7.

In the mind of symmetry, we observe the joint reflection, x → −x. The other symmetry

is the flip of bumps and voids, which is described as δP → −δP . The bump is going down
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Figure 8: Bump-void interaction.

and to the right, and the void is going up and to the right. So either way, they go to the right

– they have the same flux direction. See Fig. 8 for cartoon explanation. This observation

brings us to the principe of Joint Reflection Symmetry (JRS), i.e.

Γ (δP )
∣∣ x→−x
δP→−δP

= Γ (δP ) , (20)

which actually puts quite a big constraint on the form of Γ (δP ).

We are interested in seeking the flux in the large scale (l � ∆grain) and long time (τ �
τstep). However, the structure of full flux is, in principle, very complicated. To make progress,

we can once again learn from our beloved Ginzburg-Landau theory – write down the general

form of the free-energy and eliminate terms that don’t satisfy the symmetry criteria. In the

case of SOC, the general form of flux is given by

Γ (δP ) =
∑

m,n,q,r,α

{
An (δP )n︸ ︷︷ ︸

1

+Bm (∂xδP )m︸ ︷︷ ︸
2

+Dα

(
∂2
xδP

)α︸ ︷︷ ︸
3

+Cq,r (δP )q (∂xδP )r︸ ︷︷ ︸
4

+ . . .

}
.

(21)

There are four terms in Eq. 21. Let’s apply JRS, x→ −x and δP → −δP , to all of them.

1. n = 1 violates JRS because δP → −δP ; on the other hand, n = 2 preserves it.

2. m = 1 is ok because the product of x and δP is invariant under JRS, so as m = 2.

3. α = 1 violates JRS. While α = 2 is ok, there are two dependence on the fine scales so

we don’t consider it.

4. q = 1 and r = 1 violates JRS. If we go to higher power, the dependence on δP would

be too high, so we ignore them.

To the lowest order, we have

∂tδP + ∂x

[
A2 (δP )2 +B1∂xδP +B2 (∂xδP )2 +D2

(
∂2
xδP

)2 −D0∂xδP

]
= S̃. (22)
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We can combine B1 and D0 since they have the same form. For (∂xδP )2 and
(
∂2
xδP

)2
, they

are fine at the lowest order, but since they have an extra order of derivative, meaning they

are probing the smaller scale, we ignore them. After some simplification, we obtain

∂tδP + ∂x

[
α (δP )2 −D∂xδP

]
= S̃, (23)

which is widely known as Noisy Burger’s Equation1. The noisy Burger’s equation also sup-

ports the discontinuity solution that has shock properties.

The classical Burger’s equation is the one-dimensional Navier-Stoke equation for a pressure-

less fluid,

∂tv + v∂x − ν∂2
xv = S̃. (24)

For S̃ = 0, the exact solvable Burger’s equation is shock. Note that the speed of the shock is

proportional to the amplitude. Big guys go faster and eat smaller guys.
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1“If you work in classical theoretical physics, sooner or later you will be flipping burgers” – P. H. Diamond
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