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1 Overview

Intermittency denotes the rare occurrence of very spiky events. These events are patchy and bursty.

In terms of statistics, in intermittent systems, higher order moments do not converge, suggesting

significant departure from Gaussian statistics. In fact, intermittency emerges from multiplicative

processes, such as chemical reaction, and particle distribution with a random potential. Three

examples of intermittent systems are discussed.

• Multiplicative noise, which is often seen in Vlasov turbulence and MHD turbulence, leads to

log-normal distribution of fluctuations, which suggests the correlation between intermittency

and multiplicative processes.

• Particle occupation density in a random media shows that occupation density is concentrated

in space. Moments are controlled by both the order and the most probable potential. The

resulting large kurtosis, which departs from order 1, invalidates most existing closure theories.

• Reaction-diffusion systems with random reactions exhibit concentration in the diffusion tra-

jectory space. In particular, diffusion trajectories are controlled by the random reaction, as

the latter is in a ”stronger” state of randomness.

Given the patchy and bursty nature of intermittent systems, interest is in the geometrical

dimensions of these systems. Further, the fraction of active volume in Navier-Stokes turbulence

leads to inhomogeneous dissipation and modified dissipation scale, and thus induces memory of

larger scales. This will be left for the following notes on intermittency.
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Figure 1: Intermittent jumping between two potential wells in the driven Duffing oscillator.

2 What is intermittency?

Some events have probability distribution function (PDF) that is concentrated in widely spaced

patches or intervals where the local PDF is much larger than the mean PDF, i.e. f � f . For

example, jumping between two potential wells in the driven Duffing osscillator (Fig.1). Other

examples of intermittent systems include: flares in the solar corona, magnetic sub-storms in the

magnetosphere, and edge-localized modes (ELMs) in the edge of H-mode tokamak plasmas. The

appearance of such patchy and bursty structures is called intermittency. Percolation theory aims

at developing models of transport in intermittent systems. Thus, we first discuss intermittency.

In terms of states of randomness, intermittency comes along with slow or wild randomness, not

mild. In order to deal with real world turbulence, i.e. financial modeling, Mandelbrot broadens the

scope of statistical models by introducing three main states of randomness: mild, slow, and wild

(Fig.2-4). Mild randomness deals with Gaussian distribution, i.e. systems with well defined mean

and variance (2nd order moment). Slow randomness denotes the state of randomness with growing

higher order moments, e.g. the intermittent system discussed here as well as other systems with

lognormal distribution. Wild randomness is charactered by the absence of convergence for even

the lowest order moment (i.e. variance), e.g. power law distribution. Percolation threshold may

be related to the change in state of randomness from mild to wild.
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Figure 2: Random draws from an exponential distribution with mean=1. (Mild randomness)

Figure 3: Random draws from a lognormal distribution with mean=1. (Slow randomness)

Figure 4: Random draws from a Pareto distribution with mean=1 and α=1.5. (Wild randomness)
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3 How to identify and deal with intermittency?

Characters of intermittency imply departure from familiar world of Central Limit Theorem (CLT)

and Law of Large Numbers (LLN). This means a departure from Gaussian statistics, i.e. smooth

distribution. First, we’ll recall the basics of CLT.

3.1 Additive Process: Recall Central Limit Theorem

Let x1, x2, ... be a sequence of independent and identically distributed random variables, each with

mean µ, and standard deviation σ, so:

xi = µ,

〈(xi − xi)2〉 = σ2,

then, the addition of these random variables, i.e.

x1 + x2 + ...+ xN −Nµ√
Nσ

is distributed as a Gaussian (Fig.5). This is to say, sum of a sequence of random variables converges

to Gaussian distribution of width
√
Nσ, if these variables have:

• No correlations;

• Same distribution, i.e. there are no ”special” steps;

• Well defined σ2, i.e. there are no fat tails in the distributions.

3.2 Multiplicative Process with 2-Point Distributed Components

Define

X =
N∏
i=1

xi = x1x2...xj...xN ,

with

xj =


0, p = 1/2;

2, p = 1/2.
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Figure 5: Histogram of 10,000 times of Monte Carlo simulation. In each simulation, sum of 1,000

samples are recorded. For each sample, one of {1, 2, 3} is randomly chosen.

We are seeking to obtain 〈X〉 and 〈X2〉. An observation is that X = 0 unless all xi’s are 2. Then,

we have

X =


2N , p = 2−N ;

0, p = 1− 2−N .

So from this probability distribution of X,

〈X〉 =
∑
j

Xjp(Xj) = 1, (1)

〈X2〉 =
∑
j

X2
j p(Xj) = 2N , (2)

where the index j corresponds to realizations of X. This result means that as the number of mul-

tiplicative components N →∞, the variance blows up while the mean stays constant. This departs

from the CLT, which requires variance to be convergent as the number of additive components

increases.

More generally, higher order moments of the above distribution grow faster as the the order

goes up. Explicitly,

〈Xp〉 =
∑
j

Xp
j p(Xj) = 2(p−1)N . (3)
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The growth rate with N (like time) is

γp =
log2〈Xp〉

N
= p− 1. (4)

Here, N is surrogate for time or number of time steps. Note that higher order moments grow

faster.

The increasing growth of higher moments is the signature of an intermittent process. Thus, X

is an intermittent random quantity. It is also import to note that intermittent random quantity is

the result of multiplying, not adding, many random numbers.

3.3 Multiplicative Process with Log-Normal Distributed Components

Consider a sequence of random numbers distributed around unity, {xi}. Define

X =
N∏
i=1

xi.

This multiplicative process can be transformed into a additive process by taking the logarithm,

i.e.

lnX =
N∑
i=1

lnxi.

Now, we can apply CLT to this sum of log’s. As N →∞, lnX is distributed as

p(lnX) ∼ exp
[
−(lnX)2/Nη2

]
. (5)

with lnX ∼
√
Nη, where η is a Gaussian random quantity with unit dispersion. So X ∼

exp(
√
Nη). This means X has a log-normal distribution:

p(X) =
1

Xσ
√

2π
exp

[
−(lnX − µ)2

2σ2

]
, (6)

as shown in Fig.6.

As N goes up, magnitude of X depends on the sign of η. Since η is a Gaussian random quantity

with unit dispersion, its value lies within the range of one standard deviation, (−σ, σ). So if η < 0,

X is exponentially small, as N increases. More interestingly, when η > 0, X ∼ exp(
√
Nσ) so X is

large. This implies a very spiky distribution, with probability concentrated in place.
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Figure 6: PDF of log-normal and Gaussian distributions with various scale parameters σ.

With η > 0, the mean value of X is

〈X〉 =

∫
X(η)p(η)dη =

∫
exp(
√
Nη)exp(−η2/2σ2) ∼ exp(Nσ2/2). (7)

Thus, the average 〈X〉 grows exponentially with N . Moreover, higher moments also grow expo-

nentially, since

〈Xp〉 ∼ exp[p2Nσ2/2]. (8)

The grow rate is

γp ∼ lim
N→∞

ln〈Xp〉
N

=
p2σ2

2
. (9)

Note that γp ∼ p2.

To summarize, log-normal distribution is a prototype distribution for multiplicative intermit-

tent random variables. The rapid growth of higher moments with N is a symptom of concentration.

By log-normal distribution, we mean lnX ∼
√
Nη and thus X ∼ exp(

√
Nη), with η is a Gaussian

random variable. For log-normal distribution, moments of all orders grow exponentially as N goes

up, e.g. 〈X〉 ∼ exp(Nσ2/2).

4 Examples of Intermittent Systems

Three intermittent systems are introduced as examples: evolution with multiplicative noise, the

particle distribution in random media, and reaction-diffusion systems with random reaction.
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4.1 Evolution with Multiplicative Noise

Multiplicative random quantities arise in evolutionary problems. For example, in Vlasov plasmas

with evolution of phase space distribution with a random electric field, i.e.

∂f

∂t
+ v · ∇f +

qẼ

m
· ∂f
∂v

= 0,

and various MHD phenomena whose dynamics are governed by

∂B

∂t
∼ ∇× (ṽ ×B) + η∇2B.

This induction equation can be treated as a linear stochastic PDE.

First, consider a simple comparison between evolution with additive noise

dψ

dt
= ε(t) (10)

and with multiplicative noise

dψ

dt
= ε(t)ψ, (11)

where ε(t) is noise with Gaussian distribution with dispersion σ2 and small correlation time, i.e.

〈ε(t)ε(t′)〉 ∼ δ(t − t′), which means each single time step (∼ τc) is statistically independent from

others.

The additive noise clearly results in a diffusion process, since

〈ψ2〉 ∼
∫ t

0

ε(t1)dt1

∫ t

0

ε(t2)dt2 ∼ 〈ε2〉τct,

with τ as the correlation time of the noise. In detail, assume ε re-sets after very time step τc, so

ψ =

∫ t

0

ε(t′)dt′ =

∫ τc

0

ε(t′)dt′ +

∫ 2τc

τc

ε(t′)dt′ + ... (12)

Using CLT, we can obtain a random variable η with Gaussion distribution with unit dispersion

(〈η2〉 ∼ 1) such that

ψ = 〈ε〉t+ τcσ

(
t

τ

)1/2

η, (13)

with σ is the standard deviation of ε distribution. Taking 〈ε〉 ∼ 0 for ε Gaussian, the diffusion

given in the beginning of this paragraph is retrieved, which is

〈ψ2〉 ∼ τcσ
2t. (14)
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The evolution with multiplicative noise requires nonlinear models. Here, by using the logarithm,

a linear stochastic PDE is revealed as a model of nonlinear PDE:

d

dt
lnψ = ε(t), (15)

with

ψ(t) ∼ ψ0 exp

[∫ t

0

ε(s)ds

]
∼

t/τc∏
n=0

exp

∫ (n+1)τc

nτc

ε(s)ds. (16)

Note here, the random process ψ is the multiplication of a sequence of uncorrelated random

variables. Thus, lnψ is a process with additive noise and follows CLT:

lnψ ∼ 〈ε〉t+ στc

(
t

τc

)1/2

η, (17)

where η is distributed according to a Gaussian with unit dispersion. Using 〈ε〉 = 0, we find ψ has

a log-normal distribution

ψ ∼ exp

[
στc

(
t

τc

)1/2

η

]
. (18)

Therefore, ψ has all the properties that have been discussed in Sec.3.3. This means that ψ grows

exponentially with time as exp
(
t1/2
)
. Thus, ψ is an example of an intermittent, random quantity.

One lesson learned for this intermittent system is the fluctuations grow in time as exp(t/τc)
1/2.

This would invalidate most of the closure theories, which all assume small fluctuations. So we

want to compare the above stochastic approach to usual closure calculation, i.e. quasilinear theory

(QLT) or mean field theory (MFT).

By MFT, first separate fluctuations from the slowly varying mean profile

ψ = 〈ψ〉+ ψ̃.

Here,

ψ̃ � 〈ψ〉

is assumed. Thus, by matching the orders, we can obtain the evolution of mean profile and the

fluctuation:

d〈ψ〉
dt

= 〈εψ̃〉, (19)

dψ̃

dt
= ε〈ψ〉. (20)
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From the fluctuation equation, linear response of ψ̃ is, in QLT:

ψ̃ =

∫
ε〈ψ〉dt. (21)

Using this linear response, the evolution of mean profile is

d〈ψ〉
dt
∼= 〈ε2〉τc〈ψ〉, (22)

for small τc. So the mean profile grows as

〈ψ〉 ∼ ψ0 exp
(
σ2τct

)
. (23)

In comparison, if we take the result for ψ from the stochastic approach and take the average, we

can obtain

〈ψ〉 ∼
∫
dη exp

[
στc(t/τc)

1/2η
]

exp(−η2) ∼ exp
(
σ2τct

)
, (24)

which agrees with the MFT result. But, MFT won’t get higher order moments right!

In conclusion, MFT gets the first moment (average) right, but if we want to reveal fundamental

nature and structure of higher moments, we need to consider intermittency buried in multiplicative

processes. Intermittency leads to occurrence of rare but intense peaks in the behavior of a random

quantity. Such peaks are represented by higher order moments.

4.2 Particle Density Distribution in Random Media

In this section, we consider the example of the particle density distribution in a random media, i.e.

a continuum of random quantities. Random media can be defined by a random potential: U(x, ω)

at temperature T . ω enumerates realizations of the media. Fixed ω corresponds to a specific

configuration of particle density distribution. Here, we consider the case that U is Gaussian

distributed with variance σ2.

Given a potential U , particles are distributed according to:

n = n0 exp[−U/kbT ], (25)

where n is the occupation density of particles, and kb is the Boltzmann constant. Thus, distribution

n is non-Gaussian, as its dependence on U is nonlinear.
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The PDF of concentration is

p (n (U)) = n(U)p(U) = n0 exp(−U/kbT ) exp(−U2/2σ2). (26)

So the most probable concentration is at

Umax/σ ∼ −σ/kbT (27)

with probability density

Pmax = n0 exp(−σ2/k2bT
2). (28)

Moreover, higher moments of density distribution are

〈n〉 = n0 exp(σ2/2k2bT
2), (29)

〈n2〉1/2 = n0 exp(σ2/k2bT
2), (30)

〈np〉1/p = n0 exp(pσ2/2k2bT
2). (31)

Note that 〈n2〉 > 〈n〉2, which suggests a fluctuation dominated system. In fact, higher moments

become even larger, e.g. 〈n4〉 � 〈n2〉2. Successive moments are not determined by the most

probable density, at U ∼ σ/kbT but by the density at U ∼ p1/2σ/kbT . These behaviors are

signatures of an intermittent distribution of density. In such intermittent systems, normal closure

models fail because most of them assume kurtosis of order 1. Kurtosis is defined as

K(x) =
E{(x− x)4}

(E{(x− x)2})2
. (32)

It is a measure of the ”tailedness” of the probability distribution of a random variable. Large

kurtosis that significantly departs from order 1 suggests a ”fat” tail in the distribution function.

Fat tail is another way to describe the rarely occurring, very spiky events in a intermittent system.

After all, why the interest in higher moments? Because ”Progressive growth of statistical

moments with order can be explained only by a much more pronounced dominance of rare intense

peaks in the concentration distribution.”
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Figure 7: Spiral waves in colonies of the mold Dictyostelium discoideum. (BALL, 1994)

4.3 Reaction-Diffusion Process with Random Reaction

In this section, we consider the statistics and moments of linear scalar equations that contain both

random growth (potential) and diffusion, i.e. stochastic reaction-diffusion processes with random

reaction. While diffusion–an additive process–falls in the state of mild randomness, reaction is a

multiplicative process and would lead to intermittency. Being a ”stronger” state of randomness,

the intermittent reaction dominates the reaction-diffusion system. Thus, this kind of systems

demonstrate patchy and bursty events, such as spiral wave patterns in Fig.7.

The equation for this system is

∂ψ

∂t
= D∇2ψ + U(x, ω)ψ, (33)

with initial condition ψ(x, 0) = ψ0. Here, U denotes stochastic interaction and is distributed as

Gaussian with correlation 〈U(x)U(x′)〉 → 0 as |x− x′| > lc.

To solve the equation, first rewrite the equation in terms of operators (as we do in quantum

mechanics):
∂ψ

∂t
= D∇2ψ + Uψ

= Hψ = (H0 + U)ψ.

(34)

Thus, we have

ψ = exp

(∫
Hdt

)
= exp(H0t) exp

(∫
Uds

)
.
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Thus, we can obtained the average 〈ψ〉 over the trajectories of H0, which is

〈ψ〉 = 〈exp

(∫
Uds

)
〉. (35)

Therefore, the evolution of ψ can be obtained by the path integral:

ψ(x, t) = Mx

[
exp

(∫ t

0

U(εs)ds

)
ψ0(εs)

]
, (36)

where the operator Mx ≡ average over trajectories of Brownian motion:

εs(x) = (2D)1/2Ws(x) (37)

which begins at εl at s = 0 and ends at x at s = t. This is similar to cumulants in resonance-

broadening theory.

The message here is that dominant contributions are from that trajectory which encounters

high value of potential, leading to concentration ”points” in the trajectory space. Therefore, in

the spirit of fastest descent for asymptotic approximation, the path integral is dominated by the

height of maximum U .

Now, consider a region of radius R, such that R� l, then the number of cells in the R3 ball is

(R/l)3. The maximum U requires (R/l)3p(Umax) ∼ 1. Therefore, for U with Gaussian distribution,

p(Umax) ∼ exp(−U2
max/2σ

2), the maximum U is

Umax ∼
[
6σ2 ln(R/l)

]1/2
. (38)

With R controlled by diffusion, i.e. R/l ∼ (Dt)1/2/l ∼ (Dt/l2)
1/2

, the evolution of ψ is

ψ ∼ exp

(∫
Uds

)
∼ exp

{
t
[
3σ2 ln(Dt/l2)

]1/2}
. (39)

This evolution is a super-exponential growth (∼ exp(t ln t)) in time, even for the typical (most

probable) trajectory which has been considered here.

Note that even for D = 0, higher moments still grow super-exponentially. This is because for

∂ψ

∂t
= Uψ, (40)

we have

ψ = exp(Ut)ψ0. (41)
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Thus, following the process in Sec.3.3,

〈ψp〉 = 〈exp(pUt)〉ψp0 = ψp0 exp(p2σ2t2/2). (42)

Finally, we can obtain the higher moments:

〈ψp〉1/p = 〈exp(pUt)〉ψp0 = ψ0 exp(pσ2t2/2). (43)

Therefore, higher moments exhibit super-exponential growth and they grow faster than ψ itself!

However, without diffusion fluctuations grow faster as ψ ∼ exp(t2), compared to ψ ∼ exp(t ln t)

with diffusion. This means diffusion moderates the growth of fluctuations and the diffusion tra-

jectories are controlled by the maximum reaction potential.

5 Summary and What’s Next?

So far, we have seen the characteristics of intermittent systems with three examples: evolution with

multiplicative noise, particle distribution in random media, and reaction-diffusion with random

reaction. All these systems demonstrate growing higher order moments and concentration. In

particular, the lessons learned here are:

• Intermittency is the result of multiplicative processes, not additive processes.

• Growing higher order moments is the signature of intermittency. Higher order moments grow

as ∼ exp(p). The resulting large kurtosis invalidates most existing closure theories.

• Intermittency is a stronger randomness than diffusion. Diffusion trajectories are modified by

intermittent reaction processes in a reaction-diffusion system with random reactions.

We have seen one character of intermittency is spatial concentration, which may lead to fractal

geometries. In particular, concentration is related to vortex tube stretching, which may explain

the higher order moments in Navier-Stokes turbulence (NST). What is the active volume resulting

from the concentration? As of NST with concentration, fractal geometry will lead to nonuniform

dissipation, raising the problem of dissipative structure dimension as well as reduction in the

fraction of active volume. These will come up in the following lectures on intermittency.
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