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In the first part of the paper a modern presentation of scaling ideas is made. It 
includes a reformulation of Kolmogorov’s 1941 theory bypassing the universality 
problem pointed out by Landau and a presentation of the multifractal theory with 
emphasis on scaling rather than on cascades. In the second part, various historical 
aspects are discussed. The importance of Kolmogorov’s rigorous derivation of the 
— i  el law for the third order structure function in his last 1941 turbulence paper is 
stressed; this paper also contains evidence that he was aware of universality not 
being essential to the 1941 theory.

An inequality is established relating the exponents of the structure functions 
of order 2 pand the maximum velocity excursion. It follows that models (such as the 
Obukhov-Kolmogorov 1962 log-normal model), in which £2p does not increase 
monotonically, are inconsistent with the basic physics of incompressible flow. This 
result is independent of Novikov’s 1971 inequality; in particular, the proof presented 
here does not rely on the (questionable) relation, proposed by Obukhov and 
Kolmogorov, between instantaneous velocity increments and local averages of the 
dissipation.

1. Introduction
The statement that turbulence remains an unsolved problem can hardly be debated. 
Yet, there is no consensus on how the problem of turbulence should be formulated. 
Half a century after Kolmogorov’s work on the statistical theory of fully developed 
turbulence, we still wonder how his work can be reconciled with Leonardo’s half a 
millennium old drawings of eddy motion in the study for the elimination of rapids in 
the river Arno. Here, I shall not even attempt to face this challenge. My intention 
is to concentrate on one aspect of Kolmogorov’s work, namely scaling in fully 
developed turbulence. In the first part of this paper (§§1-4), I shall present a 
‘modern’ viewpoint of turbulence. Historical aspects and proper crediting will be 
postponed to the second part (§§5 and 6). I hope to make it clear that the ‘modern’ 
viewpoint is, to a large extent, contained in Kolmogorov’s manifold work of 1941. 
Yet my vision of the essence of that work is somewhat non-traditional. My frequent 
use of the first person in this essay is only meant to stress that I take full 
responsibility for my ‘revisionist’ perception of Andrei Nikolaevich. Through 
Batchelor’s (1990) contribution to his obituary and through the contributions of my 
colleagues in this volume, the reader will be able to put together a more balanced 
view.

Section 2 is about global scaling and lack of universality. Section 3 is about local, 
multifractal scaling and its implications. Section 4 contains a new exact result
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about the exponents of structure functions. Section 5 is about Kolmogorov’s (1941; 
hereafter referred to as K41) work and Landau. Section 6 is about intermittency and 
Kolmogorov. No conclusions will be presented.

2. Global scaling, a la Kolmogorov, and lack of universality
The Navier-Stokes equations for incompressible fluid flow possess a number of 

symmetries (invariance groups). When boundaries are ignored, the symmetries 
include: space and time translations, rotations, parity (space and velocity reversal) 
and galilean transformations. If the viscosity = 0, an infinite class of additional 
symmetries appears, the scaling transformations:

r^Ar ,  v->Ahv, A (1)

Here, t, r and v are, respectively, the time, position and velocity variables. It is 
assumed that pressure has been eliminated from the Navier-Stokes equation through 
use of the incompressibility constraint. The different scaling groups are labelled by 
the scaling exponent heR .

When a turbulent flow is set up in the laboratory, the production invariably 
involves mechanisms not consistent with some or all of the above symmetries. For 
example the presence of a rigid wall completely breaks the Galilean invariance and 
partially the translational invariance (perpendicular to the wall). Of course, the 
production mechanisms may be consistent with some symmetries. Non-moving 
boundaries are consistent with time translations; uniform flow incident upon a sphere 
is consistent with rotations around the diameter parallel to the flow, etc. An 
experimentally well-established fact is that when the control parameter (say, the 
Reynolds number) is increased, bifurcations occur which spontaneously break any 
such surviving symmetries. For example, a Hopf bifurcation may occur which turns 
the continuous time-translation symmetry into a discrete one. Eventually, after a 
suitable number of bifurcations, well-controlled flows are found to become chaotic. 
The flow then possesses a strange attractor. The continuous time-translation 
symmetry has thus been restored in a statistical sense, i.e. there is a measure in the 
phase space of the flow which is invariant under arbitrary time-translations. Our 
reformulation of K41 assumes that this statistical restoration of symmetries is not 
limited to time-translations, provided the infinite Reynolds number limit is taken, so 
as to allow the presence of motion on arbitrary small scales. Following Kolmogorov,
I shall present the reformulation in the form of numbered hypotheses.

HI. In the limit of infinite Reynolds numbers, all the possible symmetries of the 
Navier-Stokes equation, usually broken by the mechanisms producing the turbulent flow, 
are restored in a statistical sense at small scales and away from boundaries.

The words ‘small scales’ can be technically defined by considering velocity 
increments over a distance l small compared to the integral scale l0:

6 v(r,l) = v(r + l) — v(r) (2)

We may then define, for example, statistical invariance under space-translations 
(homogeneity) by:

5 v(r + q,l) = h bv{r,l),q < l0, (3)
where = L means ‘equality in law’ (identical statistical properties).
Proc. R. Soc. Loud. A (1991)



Since there is an infinity of different possible scaling exponents h, additional 
assumptions are needed.

H2. Under the same assumptions as in HI, the turbulent flow is assumed to be self- 
similar at small scales, i.e. to possess a single scaling exponent h.

The value of h is obtained from
H3. Under the same assumptions as in HI, the turbulent flow is assumed to have 

a finite non-vanishing mean rate of dissipation e per unit mass.'f
From H2 and H3, the value of the scaling exponent can be readily obtained. 

Indeed, Kolmogorov (1941c) has derived the following relation from the Navier— 
Stokes equation, under the sole assumptions of homogeneity, isotropy and finite 
mean energy dissipation:

S3(l) = <(8v||(r, 0)3 > = —f (4)
Here, denotes the component of the velocity increment parallel to the 
displacement vector l. The function S3 is called the third order (longitudinal) 
structure function. The increment l is assumed by Kolmogorov to be small compared 
to the integral scale l0. With the assumption H2, under rescaling of the increment l 
by a factor A, the left-hand side of (4) changes by a factor A3h while the right-hand 
side changes by a factor A. Hence,

h = l  (5)
Under the assumption that moments of arbitrary integer order p of the velocity 

increment exist (there is considerable experimental evidence for this assumption), 
the self-similarity hypothesis implies scaling laws for structure functions of arbitrary 
order:

s v(l) = <(8»,(IS«))»> = (6)

The presence of the factors e*p in the right-hand side ensures that the Cps are 
dimensionless. The Cvs cannot depend on the Reynolds number, since the limit of 
infinite Reynolds number is assumed. For p  = 3, it follows from (4) that = — §, 
which is clearly universal. All the Cps, except for 3, must, however, depend on 
the detailed geometry of the production of turbulence. In other words, they cannot 
be universal.

The non-universality of the Cps is a central question in the reappraisal of K41 and 
will thus be discussed in some detail. The e appearing in (6) is a mean dissipation rate, 
the mean being taken over the attractor of the flow, that is the mean is a time- 
average. Let us now construct a superensemble, made of 1 experiments
possessing different values of the mean dissipation rate, denoted = 1,..., The
differences could be caused, for example, by the flows having different integral scales. 
Let us tentatively assume that the Cps are universal. We denote by the
structure function for the ith flow. We have, by (6),

8>p(l) = Cp(e,)ipfip. (7)
|  H3 is made plausible by the observation th a t the drag coefficient for flow past a body, which is related to 

the energy dissipation, is approxim ately independent of the Reynolds number over a wide range of values 
(Landau & Lifshitz 1987, §45). H3 is also compatible with results of numerical simulations a t Reynolds numbers 
up to a few thousands. I t  is incorrect to infer H3 from the observation th a t in a statistical steady state, the mean 
energy dissipation equals the mean energy injection. Indeed, the la tter is not controlled externally, except in 
the unrealistic case where injection is through a random force with white-noise time dependence. I t  is my feeling 
th a t H3 leaves considerable room for questioning.
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Now, let us assume that it is legitimate to apply (6) to the superensemble (we shall 
come back to this). We define

and (8)

the superaveraged structure functions and dissipation rate respectively. From (6) 
and (7), we obtain:

|E ( e f) ^ = | s  («,)■». (9)

This relation is contradictory, except for p 3.
The preceding argument depends crucially on the ability to consider the different 

flows as being part of a single superflow. This can be justified by considering a single 
flow in which the characteristic parameters change slowly in space on a scale much 
larger than the integral scale. Let us for example consider a wind tunnel in which a 
uniform flow of speed U is incident on a grid made of parallel rods with a uniform 
mesh m. There are two types of rods; type A has diameter dx and type B has 
diameter d2 > dv In assembling the grid, type A and type B are selected at random 
in such a way that the type is changed on average every M  rods, where is a large 
number (say, 1000). The turbulence downstream (say, 100 meshes) behind type B 
rods has a larger integral scale than that behind type A rods. Hence, the dissipation 
rate per unit mass eB behind type B rods is smaller than the dissipation rate eA behind 
type A rods. (For dimensional reasons, e scales as IP/d.) In this example it is clear 
that the properties of the turbulent eddies at a given location can be significantly 
affected only by those rods behind which they are produced. Still, all the parts of the 
flow are coupled (for example by pressure effects), so that it is legitimate to treat the 
superensemble as a single flow.

3. Local, multifractal scaling
One possible weakness of the global scaling theory of §2 is that it ignores all the 

scaling symmetries not having h = |. An alternative is provided by multifractal 
scaling, in which, instead of H2, one uses

Hmf. Under the same assumptions as in HI §2), the turbulent flow is assumed to 
possess a range of scaling exponents I  = (^min, hmax). For each h in this range, there is 
a set £FhERz of Hausdorff dimension D(h), such that, ->0

hv(r,l)cclh, rG^Uh. (10)

Assumptions HI and H3 are kept unchanged.

The statement about the set 9 ?h and its dimension should be understood in
a probabilistic sense: the probability of finding the scaling exponent h when varying 
the scale l at which the flow is observed is proportional to l3~DW. (It takes 0(l~D) balls 
of radius l to cover a set of dimension D. Together, they cover a volume

Expressions for structure functions of arbitrary order p are now easily derived. It 
is convenient to non-dimensionalize spatial increments l and velocity increments 8v 
by the integral scale l0 and the root mean square (r.m.s.) velocity fluctuation v0
Proc. R. Soc. Loud. A (1991)
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respectively. The symbol ~ is then used to denote order one constants (mostly not 
universal). From Hmf, we obtain;

S„(DK = <(8»,(«))”) / <  ~  \  (11)

The exponent ph comes from the contribution of scaling with exponent the 
additional exponent 3 —D(h) comes from the averaging process. The argument r has 
been omitted in 8v, because of homogeneity. The measure d corresponds to the 
weight of the different scalings. The weight is not known but this does not affect the 
scaling properties of structure functions. Indeed, as 0, a steepest descent 
argument indicates that, of all the exponents the smallest one
dominates. Hence

Sp{l)M  ~  (Wo)̂ > £p = min (12)
Thus, the scaling exponents of the structure function of order p is the Legendre 
transform of the dimension function D(h). Since the inverse of a Legendre transform 
is also a Legendre transform, one obtains easily:
3 ~D(h) = ma (13)
Kolmogorov’s relation (4) for the structure function of third order becomes simply:

£3 =  min h(3h + 3—D(h)) = 1. (14)

4. An inequality for the exponents of structure functions
We shall show here that consistency with the basic physics of incompressible flow 

requires that the exponent £2p of the structure function of order 2 should not 
decrease withp. The only assumptions made for the proof are the following, (i) In the 
limit R  = l0v0/v-+ co, the structure functions of even order 2 possess the scaling 
exponents £2p, that is, for l̂ 0, one has to leading order:

«8  (15)
where A 2p is a positive numerical constant (not necessarily universal), (ii) For large 
finite R, the scaling (15) still holds, as intermediate asymptotics, over a range of 
scales (inertial range) increasing with R  at least as a power law:

i^> l/l0 $>R~a, a > 0. (16)
We now establish two propositions.
Proposition 1. Under the assumptions (i), if  there exists two consecutive even numbers 

2 pand 2p + 2 such that
£ 2 v'>  £ 2 2 5 + 2 *  ( 1 7 )

then the velocity of the flow ( measured in the reference frame of the mean flow) cannot be 
bounded.

Proposition 2. Under the assumptions (ii) and those of Proposition 1, i f  the Mach 
number based on v0 is held fixed, and the Reynolds number is increased , then
the maximum Mach number of the flow also increases indefinitely.

t  For example, by considering a sequence of grid-generated tu rbulent flows with ever-increasing mesh, all 
using the same fluid and the same flow velocity.

From global to local scaling in fu lly  developed turbulence 93

Proc. R. Soc. Loud. A (1991)



Proof. Let us denote by t/max the maximum velocity, taken over space and time. 
We have, at any instant of time

Vr,Z. (18)

The average being over time, it follows from (18) that

« H W )2l,+2> 405^  <(8vn(Z))2p>. (19)
Assuming l l0and using (15), we obtain

^max/^o >  l ( A 2 p + 2 / A 2 (20)

Using (17) and letting 0, we find that Umax = oo. This establishes Proposition 1. 
We now define

M, = v j c s,Jfmax = Umax/cs, (21)
which are respectively the Mach number based on the r.m.s. velocity and on the 
maximum velocity (in the frame of the mean flow). We select a scale l by

l/l„ = « + ,  (22)

which by (16) is in the inertial range. Substituting (22) into (20) and using (21), we 

°btam ' > l (A 2p+2/A2p)M llfrbp-M * ' (23)

Proposition 2 follows readily. QED.

A Mach number, measured in the reference frame of the mean flow, which becomes 
arbitrarily large violates a basic assumption needed in obtaining the incompressible 
Navier-Stokes equation.

In deriving the above propositions, we have assumed scaling for structure 
functions ((i) and (ii)), but not any Kolmogorov-type assumption such as HI, H2 and 
H3, or multifractal assumption such as Hmf. Still, let us observe that if we accept the 
multifractal formalism, then (17) implies (by (13)) the presence of negative scaling 
exponents h and thus again unbounded velocities at small scales.

5. Kolmogorov and Landau
Kolmogorov wrote three papers on turbulence in 1941 (Kolmogorov 1941 

In the first paper, the derivation of the § law for the second order structure function 
is done via his first and second hypotheses of similarity. The first hypothesis states 
that inertial range and dissipation range statistical properties are uniquely and 
universally determined by v and e. The second hypothesis states that the inertial 
range statistical properties are uniquely and universally determined by e. 
Kolmogorov does not explicitly derive expressions for structure functions of order 
higher than two. It is however a straightforward consequence of his hypotheses that 
their inertial range behaviour is given by (6) with universal constants Cp.

In 1942 Kolmogorov presented his work at a seminar in the city of Kazan (on the 
Volga). Lev Landau was present and made a remark. What exactly he told 
Kolmogorov we can only try to reconstruct from the footnote which was inserted in 
the first (Russian) edition of the book on fluid mechanics Landau was writing with 
Evgeni Lifshitz, which appeared in 1944. In later editions this footnote found its way 
to the main text. It is worth quoting the full text of the remark. I am taking the
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95
English from the most recent version of the book (Landau & Lifshitz 1987) and 
substituting my own notation for velocity increments, structure functions and 
integral scale.

It might be thought that the possibility exists in principle of obtaining a 
universal formula, applicable to any turbulent flow, which should give S 2(l) for 
all distances l that are small compared with l0. In fact, however, there can be 
no such formula, as we see from the following argument. The instantaneous 
value of (5vj|(Z))2 might in principle be expressed as a universal function of the 
dissipation e at the instant considered. When we average these expressions, 
however, an important part will be played by the manner of variation of e over 
times of the order of the periods of the large eddies (with size ~ /0), and this 
variation is different for different flows. The result of the averaging therefore 
cannot be universal.
Landau’s remark has been interpreted in many different ways. Often it is taken as 

an argument in favour of intermittency at scales small compared with the integral 
scale. I shall come back to this aspect in §6. My viewpoint is that Landau was 
concerned only with large scales. The essence of Landru’s argument, as explained by 
Kraichnan (1974), is that ‘the constant C2 is not invariant to the composition of sub­
ensembles... ’. Landau formulated his argument in the temporal domain, but it can 
equally be recast in the spatial domain, as I have done in §2.

I stress that Landau’s argument in no way rules out the § law, but just the 
universality of the constant in front of (el)%. (A Landau-type argument has also been 
used to show the existence of intermittency in the far dissipation range (Kraichnan 
1967) and its non-universality (Frisch & Morf 1981).) The presentation I used in §2 
bypasses Landau’s objection, because it postulates scale-invariance rather than 
universality. The hypothesis HI about basic symmetries of the Navier-Stokes 
equation being recovered at small scales, may be found in the 1981 Les Houches 
lectures (Frisch 1983). Earlier, Orszag (1966) observed that the hierarchy of 
cumulant equations possesses scale-invariant solutions with (what amounts to) 
scaling exponent |.

Actually, Kolmogorov himself was probably aware of the crucial role of scale- 
invariance. To support this statement, let us consider the third 1941 paper 
(Kolmogorov 1941c). In this paper he begins by deriving (4) from the Karman- 
Howarth equation. He makes the assumptions of homogeneity, isotropy and of finite 
non-vanishing energy dissipation (H3 of §2). Scale-invariance is not used. A full- 
derivation may be found in §34 of Landau & Lifshitz (1987). I consider this ‘four 
fifth ’ law as perhaps the most important rigorous result in fully developed 
turbulence. After this derivation Kolmogorov makes the following statement 
(translated to my notation).

It is natural to assume that for large l the ratio i.e. the skewness
of the distribution of probabilities for the difference 5v|(£) remains constant.

(In the context of the paper ‘large’ means at inertial range scales.) In other words, 
Kolmogorov postulates a particular form of scale-invariance. Also, notice that he 
assumes that the skewness is ‘ constant ’ (independent of scale) rather than ‘ universal ’ 
(independent of the flow). From this assumption and (4) he then recovers the § law 
for S 2(l) (his relation 9) and observes that ‘in Kolmogorov (1941a) the relation (9) 
was deduced from somewhat different considerations’. This is why I believe that

From global to local scaling in fully developed turbulence
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Kolmogorov was aware of the existence of an alternative formulation to his early 
1941 theory, not requiring universality assumptions. It is therefore legitimate to 
refer to the scale-invariant theory as ‘K41’. Nevertheless, after Landau’s remark, 
Kolmogorov did not try to salvage his 1941 theory and actually seems to have used 
the remark to develop (together with Obukhov) a new theory which takes into 
account intermittency effects.

In 1961, at the Colloque International de Mecanique de la Turbulence in Marseilles 
Kolmogorov (1962) presented the so-called log-normal theory of intermittency, 
an outgrowth of previous work by Obukhov (1962). Landau is given considerable 
credit:

But quite soon after they (the K41 hypotheses) originated, Landau noticed that 
they did not take into account a circumstance which arises directly from the 
assumption of essentially accidental and random character of the mechanism of 
transfer of energy from the coarser vortices to the finer: with increase of the 
ratio l0/l, the variation of the dissipation of energy

should increase without limit.
Curiously, in Landau’s remark (as quoted in the previous section), I find no 

reference to ‘fine ’ scales. Still, it has become a tradition to accept Kolmogorov’s view 
crediting Landau (see for example the discussion in §25.1 of Monin & Yaglom (1975)). 
As I have shown, Landau’s remark in no way implies that the K41 theory (in its 
scale-invariant version) is inconsistent. It may be that Landau communicated to 
Kolmogorov more than he put in the above quoted footnote. (I would be grateful to 
obtain any information on this matter.) My impression is rather that Landau’s 
original remark triggered some independent thinking of Kolmogorov. Actually, 
Kolmogorov had been interested in the log-normal law already in 1941 when he 
proposed an interpretation for the approximate lognormality of the distribution of 
sizes in the process of pulverisation of mineral ore (Kolmogorov 1941 d). He described 
this process as a cascade, the similarity of which to the Richardson cascade must 
have been obvious to him or become so at some point. (No reference to Richardson 
is made in the 1941 turbulence papers, but in the 1962 paper Kolmogorov writes that 
the K41 hypotheses ‘were based physically on Richardson’s idea of the existence in 
the turbulent flow of vortices of all possible scales... ’.)

The Obukhov-Kolmogorov 1962 theory leads to serious difficulties some of which 
have not previously been reported. A central role is played by the spatial average of 
the energy dissipation over a ball of radius l centred at the point r :

Kolmogorov’s key hypotheses, in slightly reformulated form, are as follows. 
K62a. The logarithm of et has a gaussian (normal) distribution with variance

6. Kolmogorov and intermittency

(24)

(25)

a \= A + fi  In (26)
Proc. R. Soc. Loud. A (1991)



where pis a positive adjustable parameter.

K626. The scaling properties of the fluctuating velocity increment over a distance l 
are related to the scaling properties of the fluctuating dissipation by

(8*>H (r,l))z/l = s et(r)(27)
where the symbol = s is used to denote that the left- and the right-hand sides have 
the same scaling properties, i.e. that moments of the same order have the same 
scaling exponents.

As is well-known, it follows from K62a and K626 that the scaling exponents for 
the structure function of order p  are given by

= h>-TsVP(P-3)- (28)
Novikov (1971) observed that for fixed r, the quantity lzefr) is a non-decreasing 

function of l and deduced from this that for large p, the correction to the K41 value 
of cannot grow faster than linear, thereby contradicting the parabolic behaviour 
predicted by the log-normal model. Actually, I have shown in §4 without recourse to 
either K62u nor K626 that a function £ 2pwhich decreases with , as is the case at 
large ps in the log-normal model, violates the basic physics of incompressible flow.

The log-normal hypothesis K62u has been frequently questioned (see, for example, 
in addition to Novikov (1971), Mandelbrot (1968, 19746, 1976), Kraichnan (1974)). 
The hypothesis K62 6 relating instantaneous velocity increments and local 
dissipation seems to be more widely accepted. It should not be. Kraichnan (1974) 
observes that the left-hand side of (27) is an inertial range quantity while the right- 
hand side is a mixed dissipation range and inertial range quantity (the largest 
contribution to the rate-of-strain comes from dissipative scales, while the integration 
in (25) is over inertial distances). I now observe that Kolmogorov’s four-fifth law (4) 
implies the truth of the relation obtained by taking the moment of order q = 1, i.e. 
the average of (27). (Subject, of course, to the same rather weak assumptions made 
in deriving (4).) For moments of order q# 1 three causes of suspicion can be raised. 
The first is that l3et, being a space-integral, is an additive quantity (if one­
dimensional rather than three-dimensional space averages are used the additive 
quantity is let); similarly, bvfr,l) is an additive quantity (if A, B and C are three 
consecutive points on a line, the longitudinal velocity difference between points A 
and C is the sum of the difference between A and B and the difference between B and 
C; however, the cube of an additive quantity is not additive. The second cause of 
suspicion is that Svd/', l) fluctuates around a zero mean value; thus negative moments 
of order q  ̂ — 1 are generally infinite; in contrast el is positive and may have 
negative moments if its probability distribution vanishes sufficiently fast near the 
value zero (Bacry et al. 1990). The third cause of suspicion is that (27) correctly 
predicts structure functions of order p > 1 for Burgers model (they are dominated by 
the contributions of shocks) but incorrectly predicts those of order 0 ^  < 1 which
are dominated by the contributions of non-dissipative velocity-ramps (Aurell et al. 
1991).

It is paradoxical that despite all the aforementioned difficulties with Kolmogorov’s 
1962 paper, it nevertheless led to many fruitful further developments. Theoretical 
developments were mostly concerned with intermittent cascade models. Other 
papers in this issue are dealing with this question. I shall here discuss only aspects 
in which I was directly involved. In the late sixties Mandelbrot observed that
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multiplicative cascade models, when continued indefinitely, lead to an energy 
dissipation generally concentrated on a set of non-integer Hausdorff dimension 
(Mandelbrot 1968, 19746). I was fascinated by this idea of ‘fractal’ turbulence and 
later with my colleagues Sulem and Nelkin, we tried to reconcile this viewpoint and 
Kraichan’s observation that in deriving inertial range scaling one should work 
exclusively with inertial range quantities (Frisch et al. 1978). The simple ‘P-model’ 
was thus constructed by a suitable reformulation of the Novikov & Stewart (1964) 
model, stressing its dynamical and fractal aspects. This model became perhaps 
excessively popular. Indeed, the P-model was intended to be a minimally complex 
toy model and not a predictive model.

A few years later, Anselmet et al. (1984) obtained experimental data on high-order 
structure functions of far better quality than previously feasible. Not surprisingly, 
the values of the scaling exponents agreed neither with the P-model nor with the 
log-normal model. Their figure 14 indicates that £ increases with jp over the whole 
accessible range of exponents but has a curvature not compatible with the linear- 
plus-constant behaviour of the P-model. Such a curvature is consistent with a general 
class of multiplicative cascade models which Mandelbrot (19746, 1976) called 
‘ weighted curdling models ’ because they do not have the black and white character 
of the Novikov-Stewart model. But here again, it was desirable to reinterpret the 
models in terms of pure inertial range quantities. This was done by Parisi & Frisch 
(1985) and led to the multifractal model as formulated in §3, in which a central role 
is played by the Legendre transformation. Contrary to the formulation of the P- 
model, the formulation of the multifractal model did not make use of the concept of 
cascade. Of course, a bridge can be established between the multifractal model and 
Mandelbrot’s cascade models. This is best done via a large deviation argument 
discussed, for example, in Oono (1989, Appendix C). (Mandelbrot (1974a) already 
used this argument in a paper in which the equivalent of the Parisi-Frisch function 
D(h) is introduced without being interpreted as a dimension.) In my view, the 
multifractal model is much closer to Kolmogorov’s 1941 ideas because it explicitly 
embodies the idea of scaling (albeit in local form).

Finally, I mention that it was found recently that the multifractal model implies 
in a rather obvious way a prediction for the shape of the energy spectrum in the 
dissipation range (Frisch & Vergassola 1991). Due to the fact that the different 
scaling exponents h have different viscous cutoffs a new form of universality is 
predicted: \ogE{k)/\og R should be a function of universal shape of log Jc/logR.
Because of the divisions by logi?, this is not consistent with Kolmogorov’s first 
hypothesis of similarity. Experimental data analysed by Gagne & Castaing (1991) 
give good support to this ‘multifractal universality’ which also appears in thermal 
convection (Wu et al. 1990).

I am indebted to G. Barenblatt, R. Kraichnan and B. Mandelbrot for useful discussions. The 
support from the EC (SC1-0212-C) and from DRET (90/1444) is acknowledged.
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