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Abstract:
Thispedagogicalreviewis written asapersonalretrospectivewhichseeksto placethecelebratedFermi,Pasta,andUlamparadoxinto historical

perspective.After statingthe Fermi—Pasta—Ulamresults,we treat thequestionsit raises asa pedagogical“skeleton” upon which to drape(and
motivate) theevolving story of nonlineardynamics/chaos.This review is thus but anotherretellingof that story by one intimately involved in its
unfolding. This is done without apology for two reasons.First, if my colleagueshave taughtme anything, it is that an audienceof expertswill
seldompay greaterattentionthanwhen,with somemodicumof graceand polish,theyaretold thingstheyknowperfectlywell already.Second,if
generationsof studentshavetaughtme anything, it is that few thingsfascinatethem more thana scientific mystery— and theFermi—Pasta—Ulam
paradoxis a cracker-jackmystery.And so readers,especiallygraduatestudentscuriousaboutnonlineardynamics/chaos,are now invited to Sit

back, loosentheir belts (and minds),and preparefor fact that sometimesreadslike fantasy.

* This work wassupportedin part by NationalScienceFoundationGrantPHY-9015496.
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1. Introduction

In the early 1950s MANIAC-I had just beencompletedandsat poisedfor an attack on significant
problems. On oneof his severalvisits to the Los Alamos Scientific Laboratoryduring this period,
Enrico Fermi joined mathematicianStanUlam andcomputerscientistJohnPastain a questfor suitable
problems. They each recognizedthat MANIAC-I could answer questionsholding greatinterest for
mathematicsandphysics,but whichone deservedimmediateattention?After reflecting on the matter,
Fermi suggestedthat it would be highly instructiveto integratethe equationsof motion numericallyfor
a judiciously chosen,one-dimensional,harmonicchain of masspoints weaklyperturbedby nonlinear
forces. Specifically,he pointedout that the shapeof such a chaincould not be predictedaccuratelyby
anyoneafter the elapseof a few hundredor so harmonicperiods. Eventually, Fermi—Pasta—Ulam
(FPU) intendedto usethis model to answervarious sophisticatedquestionsrelated to irreversible
statisticalmechanics,but the initial studieswere intendedmerelyto test the simplestandmostwidely
believedassertionsof equilibrium statisticalmechanicssuch as equipartitionof energy,ergodicity, and
the like.

After muchbackand forth, FPU decidedto numericallyintegratethe weaklynonlinear,fixed-end,
one-dimensionalchainof (N — 1) moving masspointshaving the Hamiltonian

H= ~ ~ + ~ ~(Qk+l - Qk)
2+ ~ ~(Qk÷I - (1)

whereQ
0 QN = 0 andQk and~k arethe coordinateandmomentumfor the kth particle,wherea is a

small nonlinearcoupling parameter,and wherethe particle massM andharmonicspring constantK
havebeeneliminatedby a standardcanonicaltransformationanda changeof timescale.Concurrently,
FPU alsoconsideredchainsof particleswhoseHamiltonianshadquarticor broken linear couplingsas
well as the cubicnonlinearityexplicitly written above.But first, like all good seniorscientistssportinga
brand new idea, FPU beganlooking for someoneto do the actual work. Here they were extremely
fortunateto find Mary Tsingou,who programmedthe dynamics,ensuredits accuracy,and provided
graphsof the results.Numericalintegrationwas carriedout in termsof the particlecoordinateswhich
appearin eq. (1). But becausethe weaknonlineartermsin the FPU oscillatorsystemsprimarily serve
only to causeenergysharingbetweenthe unperturbedharmonicnormalmodes,it becomesnatural to
presentthe final resultsin termsof normal mode coordinatesA1 specifiedby

A1 ~(2/N) Qk sin(kIITIN).

In termsof thesecoordinates,Hamiltonian (1) breaksinto a sumof independentharmonicoscillators
weakly coupled by terms cubic in the normal modeposition variablesas revealedby the following
Hamiltonian:

H ~ ~(Ak + t5)kAkH a ~ CklmAkAlAm~ (2)

where
t0k = 2 sin(kir/2N) is the frequencyof the kth normal mode, whereexplicit expressionsfor the
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constantsCklm are not neededhere, where the dot over Ak denotestime derivative, and where
Ek[= ~(A~ + w~A~)]is defined to be the energyin the kth normal mode. Finally, becausethe FPU
nonlinearterms are almost always small relative to the harmonicterms, we note thatH E Ek to a
good approximation.

And now at last the stage is set. As FPU await the initial resultsfrom Mary Tsingou, they do so
without the slightesta priori hint they have tacitly met a significant criterion enunciatedsome years
later by the notedSovietmathematicianDima Arnol’d: “The only computerexperimentsworth doing
arethosethat yield a surprise!”Mary Tsingounowenters(stageleft) bearingthe surprise (seefig. 1).
At time t = 0 in fig. 1, anN= 32, fixed-endchaingovernedby Hamiltonian(1) with a = 1/4 was started
at restin the shapeof a half sine wave given by Qk = sin(kir/32) andthenreleased;in otherwords,
only the fundamentalharmonic mode was initially excited and given amplitudeA1 = 4 and energy
E1 = 0.077.... During the time interval 0 s t s 16 in fig. 1, where t is measuredin periodsof the
fundamentalmode,modes2, 3, 4, etc.,sequentiallybeginto absorbenergyfrom the initially dominant
first mode as one would expect from an infinitesimal analysisdue to Rayleigh. Following this, the
patternof energysharingundergoesa dramaticchange.Energyis now exchangedprimarilyonly among
modes 1 through 6 with all higher modeswrithing about in the noisegaspingfor energy. Incredibly
enough,the energysharingpatternrevealedin fig. 1 for this few-body anharmonicsystemis remarkably
similar to that observedin the laboratoryfor few-body harmonicsystems.Indeed,the motion of this
nonlinear systemappearsto be not only almost-periodicbut perhapseven quasi-periodic.The first
majornear-period(FPUrecurrence)of the motion occursat aboutt 157fundamentalperiods.Here,
the energyin the fundamentalmode returns to within 3% of its value at t = 0! FPU immediately
recognized that theseresults were simply astounding.First, they appearto violate the canons of
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Fig. 1. A plotof thenormalmodeenergiesE5 = ~(A~+ 8~A~)for N 32 anda = 1/4 in Hamiltonian(2). Theenergyin thecubicnonlinearterms
of Hamiltonian (2) neverexceededabout10% of thetotal energy.Mode 1 was initially given all theenergywith the expectationthat in time all
modeswould sharetheenergyequallyamongthemselves.But in fact, modes6 through32 wereforeverleft lying in the“noise”gaspingfor energy.
Equally surprisingis theshort-termrecurrenceindicating that themotion is almost-periodic,perhapsevenquasi-periodic.
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statisticalmechanics,which assertthat this nonlinearsystemshouldexhibit anapproachto equilibrium
with energybeing sharedequallyamongall degreesof freedom.But evenmoreastonishing,theyseem
to invalidateFermi’s theoremregardingergodicity in nonlinearsystems.Indeed,Fermi is saidto have
remarkedthat theseresultsmight be one of the most significant discoveriesof his career.

A preprint[1] describingtheseresultswascompletedin May of 1955 andgiven limited distributionin
Novemberof that year. Thencatastrophestruck; Fermi diedof cancer!Temporarily,the questionof
what to do about the preprintfadedinto thebackgroundandremainedtherefor sometime. When the
matter was eventually takenup, Pastaand Ulam found themselvestrapped: they clearly could not
publish without Fermi’s nameon the paper,but equally theycould not publish with Fermi’s nameon
the paper, since he had neither readnor approvedit. This dilemma was never resolved,and, as a
consequence,the FPU results were neverpublished.However, the manuscriptdid finally reachthe
openliteratureas part of Fermi’scollectedworks [2], which appearedsometen yearsafter distribution
of the original FPU preprint.

One can only speculateabout the impact immediatepublication of this work might have had.
Although the FPU preprint receivedfairly wide circulation in the statisticalmechanicscommunity,it
was after all only a preprint.Perhapsbecauseit did not bearthesealof reviewers’andeditors’ approval
nor carry the authorityof a living Fermi, manyreadersof the preprintfelt freer thanusual to accept
their own handwavingconjecturesas properexplanationof the FPU paradox.Some thoughtthatFPU
had merely failed to integrateHamiltonian (1) long enough. They suggestedthat the thermalization
processsimply tooklonger thananticipated.Here, it was thoughtthat the 3% lack of closureupon first
returnseenin fig. 1 might widen to 6% or greateron thesecondreturn,andgrow to 9% or greateron
the third, etc. Othersbelievedthat the weak,broken linear or polynomial nonlinearforcesused by
FPU were much too simple to accuratelydescribephysical reality. Still others remarkedthat, since
one-dimensionalsystemswere commonly assumedto be incapableof exhibiting a normal thermal
conductivity, such systemswere especiallyunlikely candidatesfor exhibiting a proper approachto
equilibrium. Some few evensuggestedthat the FPU recurrencewas merelya Poincarérecurrence.All
theseargumentshave two thingsin common.They resolvethe FPU paradoxby trivializing it, andthey
offer resolutionsunsupportedby the slightestshredof hardevidence.Of course,the vastmajority of
readerswere simply puzzledby the FPU manuscriptand had no explanationto offer. Regardless,
everyonefound the preprint to be quite startling and equally fascinating;however, almost no one
recognizedit as a harbingerof a new era in physics. But, in fact, the FPU calculationsexposeda
genuineparadoxwhoseunfolding resolutionhas unleashedwinds of changedestinedto blow far, far
into the 21st century.In this personalretrospective,we shall gaugethesewinds and seekto placethe
work of Fermi, Pasta,and Ulam in properhistoricalperspective.

Specifically, section2 presentsthe backgroundmaterialneededto recognizethat the FPUresultsdo
representa genuineparadox. Section 3 then discussesthe early attemptsto resolvethe paradoxvia
integrableapproximations.Section4 at last revealsthe chaoticbehaviorlurking justbeneaththe FPU
calculationsby linking FPU to the classicHénon—Heilessystem.Section5 thenachievesFPU’s original
aim of demonstratingthe appearanceof a normal thermalconductivity andan approachto equilibrium
in a simplemechanicalmodel. Concludingremarksare presentedin the final section6. Finally, let us
emphasizehereat the outsetthat, while this article seeksnot only to resolvethe FPU paradoxbut to
use it as a pedagogicaldevice for surveying, at the graduatestudent level, much of nonlinear
dynamics/chaos,our review is not intendedto be encyclopedic.The choiceof topics as well as the
emphasisassignedto them is basedsolely on the personaltasteof the presentauthor.
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2. Background

FPU expectedthe motion of their coupled oscillator systemsto be stochastic*)whereas their
computercalculationsrevealedthe motion to be highly ordered,perhapsanalytically solvable. But
should we not be startledthat researchersas sophisticatedas FPU could makesuch a misjudgment
somethreehundredyearsafter Newton?For, given the FPU Hamiltonian,doesnot dynamicsprovide
an easily applied test predicting the characterof the motion which ensues?In FPU’s defense,let us
quickly admit that thereis no such test, only folklore supportedby prejudice.Classicalmechanicians
frequently claim that the few-body problem is analytically solvable, hencenonstochastic,but they
noticeablyomit defining how manyis “few”. Taking the oppositetack, statisticalmechaniciansassert
that the many-bodyproblemis stochastic,but they noticeablyomit giving a proof. Moreover, this
folklore runs afoul of well-establishedfact. Poincaré[3] recognizeddecadesagothat the gravitational
three-bodyproblemis stochastic;equally, classicalperturbation[4] theory hasno difficulty exhibiting
many-bodysystemswhich can easilybe solved analytically. But let usnow addadditional spiceto this
narrativeby remarking that in his youth Fermi publisheda theorem [5] (a synopsisof the theorem
appearsin ref. [6, p. 358])which provesthat the FPU systemis stochastic!In order to proceedfurther,
we must now developthe backgroundwhich will permit us to unravelthis tangleof confusions.

To begin, recall that any Hamiltoniansystemwith N degreesof freedomalwayshas2N constantsof
the motion but only (2N — 1) of them can be time independent[6]. Let us verify thesefacts. The
solution to Hamilton’s equationsreadsQk = Qk(Q,o, P10, t), ~k = ~k(Qlo, P10, t), where the Q’s are
positionvariablesandthe P’s aremomentumvariablesandwherek and I run from 1 to N. Now solve
anyoneof these2N equationsfor the time t andsubstitutethe resultingexpressionfor t in eachof the
remaining (2N — 1) equations.These (2N — 1) time-independentequationsrelating initial to final

(Qk’ Pk) define the time-independentconstantsof the motion. The remainingequationwhich was
solved for the time can be brought to the form F(QkO, ~ko, Qk~~k’ t) = 0. F is thus seento be a
constantof the motion despiteits explicit dependenceon time. Geometrically,the commonintersection
of the (2N — 1) time-independentconstantof the motion surfacesin phasespacedefinesa systemorbit.
The time-dependentconstantF determinesthe startingpoint on the orbit.

Such a plethoraof constantsof the motion for Hamiltoniansystemswould, at first blush, seemto
imply that all Hamiltonian motion is highly ordered,nonstochastic,and perhapseven analytically
integrable.Indeed,well into this centurymany investigatorsheld the belief that Newtoniansystems
shouldbeviewednot as nonintegrablebut ratherasnot yet integrated.Alas, we now know that suchis
not the case,for in generalmostof the (2N — 1) constantsare multivalued,pathologicalmonstrosities
which permit orbits to wanderas freely over the energysurfaceH = E as if they did not exist.

This thensuggeststhat by restrictingour attention to Hamiltonian systemshaving well-behaved
constantsof the motion,we might obtaina classof systemswhich is nonstochasticandsolvable.Indeed,
integrablesystems[7] arepreciselyof this desiredtype. An integrableHamiltoniansystemis definedas
one havingas many single-valued,analytic(in the senseof complexvariable theory) constantsof the
motion Pk asdegreesof freedomsuchthat all pairwisePoissonbrackets~ ~] = 0. However,the true
meaningof integrability is exposedin the following definition [8]. A HamiltonianH(q~,Pk) is saidto
be integrableif thereexists a single-valued,analytic, canonicaltransformationbringing H( q~,Pk) to

*) Stochasticis atermfrequently,but not exclusively,usedin theSoviet literatureto meandeterministicmotion which, without any externally
imposedrandomness,hassomeof thepropertiesof astochasticprocess.In thecontemporaryliterature,“stochastic”hasbeenreplacedby “chaos”,
which is discussedat length in appendixA.
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the form ~
4~k)’ i.e., afunction of the new momenta~ alone.Eachnew momentum~k is clearly a

constantof the motion; moreover,the Poissonbrackets[~, PPj 0 for all ~ pairs, in agreement
with our earlierdefinition. But nowcomesthe momentof truth. In the new coordinates,Hamiltonian’s
equationsare seento be integrablepreciselybecausetheyhavebeenbroughtto a form which is trivial
to integrate. Specifically, ~ = 0 and ~k = Qk(PP

1) have the obvious solutions ~

1~k= ~kO and ~~2k=

Wkt + Qko~whereWk _ a~k.

For integrableHamiltonian systemswhose motion is spatially bounded— the only type we shall
considerin this paper— the -~kareanglesandthe t0k arethereforeangularfrequencies.In transformed
coordinates,the motion for an integrable systemis easily visualized [9] since it is topologically
equivalentto motion on a torus— see fig. 2. Here for the caseof two degreesof freedom, the
momentumvariables~1k andthe positionvariables~k maybe regardedas labels for the actual“radii”
andangularpositionson the two-dimensionaltoroidal surface.At fixed energyX = E, the momenta~
and ~2 are not independent,leadingto the toroidal nesting[10]shownin fig. 2. When the systemhas
N � 3 degreesof freedom,systemmotion occurson surfacesof N-tori, difficult to visualizeor draw,but
still conceptuallysimple.Theonly unusualfeatureis that for N = 2, each2D toroidalsurfacedividesthe
3D energysurface into an inside and an outside;however, for N � 3, the toroidal surfaces of N
dimensionscan no longer divide energysurfaceshaving(2N — 1) dimensions.Only abit of thought is

Fig. 2. Topologicallyspeaking,theorbits of integrablesystemsmay be regardedas lying on thesurfacesof tori, where themomentaand angle
coordinatesmay be viewed as labelsfor radii andangleson thetoroidalsurfaces.Specifically,atypicaltorus for atwo degreesof freedomsystemis
shownat theupperleft, wheremomentaandangleshavebeenwritten in, butonemustbearin mindthat, on this topologicaldrawing, the ~ and.9~
areonly labels.In the lower figure, we observethat,since thetwo momentaarenot independentdueto conservationof energy,theenergysurface
is striatedby nestedtori asshown.
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neededto verify this seeminglytrivial fact, which gainsin significancewhenonenotesthat it leadsto
Arnol’d diffusion [11,12] a topic to which we shall return later.

In transformedcoordinates(ak’ ~k), integrablesystemmotion is quasi-periodicwith as manybasic
frequenciesWk as degreesof freedom. Becausethe inversecanonicaltransformationcarryingus from
new coordinates(ak’ ~k) back to original coordinates(q,~,Pk) is in generalnonlinear,not only the
basicfrequenciesWk but all sumanddifferencefrequencies(mwk ±nw1) may also appearin themotion.
To the nakedeye, integrablemotion involving sucha multitudeof frequenciescan for a time look like
random noise, but then near-periodicitiesand the structure of its frequency spectrum reveal its
underlyingsimplicity. With thesepointsin mind, it is temptingto suggestthat the FPUmotion revealed
in fig. 1 is integrable.Thereareseveralreasonswhy this conclusionwould be premature,andwenow
proceedto discussone of them.

Let us now consider the class of analytic Hamiltonians having an equilibrium point (FPU, for
example),that is, HamiltoniansH( Qk~Pk) which can be expandedin convergentpowerseriesabout
their equilibrium points. We may then require that the leading quadratic terms have the form
~ E (P~+ w~Q~),againlike FPU. It then follows that eachsuch Hamiltonianis one to one with its
unique set { Ck} of power series expansioncoefficients, where the subscriptsymbol k denotesa
2N-dimensionalvector subscripthaving integer componentsand whereN is the numberof system
degreesof freedom.We are now at liberty to regard eachHamiltonian H( Qk~Pk) as a point in an
infinite dimensional,Euclideanspacein which the kth mutually perpendicularaxis bearsthe coordinate
Ck. This prologue then permits us to statethe following deeptheoremdue to Siegel [11].

Theorem.In every neighborhoodof such an analytic Hamiltonian, whetherintegrableor not, there
existsa nonintegrableHamiltonian.

This theoremprovidesour first glimpseof the fact that nonintegrablesystemsare “thick as fleas” in
Ck-spacewhile integrableonesare,relatively speaking,“scarceas hen’steeth”. Specifically, it tells us
that, if we slightly changethe expansioncoefficientsof an integrableHamiltonian,we in generalobtain
a nonintegrableone whereasslight changesin a nonintegrablesystemsimply shift it into another
nonintegrablesystem.

An intuitive understandingof this theoremmaybe gainedfrom an examinationof the phaseplane
(p, 4) portrait for an integrablependulumas shownin fig. 3. Here the closedovals representsimple
oscillations; the top and bottom curvesin the figure representmotion in which the pendulumgoes

p

~
Fig. 3. The familiar phasespaceplot for a planependulum.
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througha neverendingsuccessionof 2i~rotations.But let usfocuson the curvewhich lies atthe border
betweenthesetwo types of motion. Here the pendulum departs its uppermostpoint of unstable
equilibrium only to asymptoticallyreturn to thatself-sameposition. Intuition immediatelytells us that
the smoothjoining of the departingsegmentto the arriving segmentis wildly improbable,for the final
asymptoticreturn is equivalentto balancinga pencil on its point.

Integrablesystemsarerarefirst becausetheir potentialsmustbesuch as to causethesmoothjoining
of departingandarrivingcurvesfor everyunstableequilibrium pointandsecondbecausesuchjoining is
an extremelydifficult feat in anoisyworld. The net effect of eventheslightestperturbationis to cause
the departingcurveto intersectthe arriving curveat nonzeroangle,which, as Poincarérecognized,is a
signatureof nonintegrability.Moreover,eventhe slightestperturbationcan increasethe zerointersec-
tion angleof an integrablesystem;however,a finite perturbationis requiredto bring afinite angleto
zero. Consequently,non-integrablesystemsaredensein Ck-space,equally, eachnonintegrablesystem
is surroundedby at leasta smallneighborhoodin Ck-spacedevoidof integrablesystems.Thereforeone
cannot, in general,approximatearbitrarily well the behaviorof a nonintegrablesystemvia judicious
choice of an integrablesystem.On the other hand, in that rare circumstancewhen a nonintegrable
systemdoes lie nearan integrableone, the behaviorof the two will appearidenticaluntil computer
accuracyexposesthe difference.

With theseresultsin hand,we can now appreciatewhy widespreadintegrability among the FPU
systemswould representa coincidenceso fortuitousas to borderon the miraculous.Granted,anyone
FPU system,such as that in fig. 1, might be integrable,but FPU investigatedmany systemshaving
distinct quadratic,cubic,or brokenlinear force laws,alwaysobtainingresultssimilar to thoseshownin
fig. 1. Thus,althoughthe FPU systemsmaybecloseto beingintegrable,in somesense,they aremost
certainly not all preciselyintegrable.But if they are not integrable,into what categorydo they fall?
Becauseof a theoremhehad provensomedecadesearlier,Fermi believedthat FPU systemsfell in the
ergodiccategory.Recall that we areherediscussingconservativesystemswhoseorbits all lie on energy
surfaces.A systemis saidto be topologically ergodic*) on an energysurfaceprovidedprovided almost
all systemorbits areeverywheredenseon that energysurface.Thenotion of metric ergodicity*) (on an
energysurface)is morestringentandrequiresthat all measurablesets,invariant underthe dynamical
flow, havemeasurezeroor one. Metric ergodicity implies the physicaldefinition* *) of ergodicity,which
maybe written

iimf’JdTG[qk(r),pk(r)]=JdqkdpkG(qk,pk). (3)

Readingfrom left to right, eq. (3) assertsthat time averageof a function G[ q~(t),Pk(t)] equalsits
phase space averagetaken over an energysurface. To summarize,Fermi believed that the time
evolutionof FPU systemsshouldbe suchasto renderstatesof equalenergyequallylikely. But in view
of the FPU computer results, what deceivedFermi into thinking that weakly nonlinearoscillator

*) A dynamicalsystemis saidto be topologicailyergodicif all itsorbits aredenseon theenergysurface,exceptingperhapsanorbitalsethaving

measurezero. A dynamicalsystemis saidto be metricallyergodicprovidedtheonly measurableinvariantsetson the energysurfacehavemeasure
zeroor one. Lesstechnically, metric ergodicitymeansthat theenergysurfacecannotbe divided into two nonzeroregionssuchthat orbits always
remainin their respectiv~regions.

**) Consultany good statisticalmechanicstext, e.g., ref. [61.
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systemscouldbe ergodic?In order to illuminate this point, we must first discussPoincaré’scelebrated
theoremon constantsof the motion.

Poincarésought to discoverwhy, for an isolatedsystem with N degreesof freedom,the energy
occupiessucha privilegedpositionamongthe (2N — 1) availableconstantsof the motion.He electedto
considerthe quite generalset of analyticHamiltoniansgiven by H = Ho(Pk) + j~H1 ( Qk’ ~k)’ whereH0
is integrable,j.~is small, and wherethe unperturbed(p~= 0) frequenciesof the H0-motion, given by
(elk = ~Pk~ are functionally independent.Under these conditions, Poincaré proves [14] using
argumentswe shall sketch in just a moment,that thereexistsno constantof the motion ~P(Qk’ ~k’ i~)
analyticin Qk’ ~k’ and j.~otherthan the energyH itself. Alternatively stated,the perturbation~H~in
general “destroys” and doesnot continuethe N analyticconstantsof the motion which exist for the
integrableH0. Using preciselythe sameassumptionsas Poincaré,Fermi laterpresenteda proofthatthe
abovesetof Hamiltonianswould in generalbe ergodic.But arethe FPU Hamiltonians,in fact, of the
Poincafetype?

Now it is certainly true that the FPU Hamiltonianshavethe Poincaréform H = H0 + ~ H1, but the
frequenciestuk of the integrableharmonicoscillatorHamiltonian H0 are constantsand thereforenot
functionally independent.Nonetheless,theredoesexist a canonicaltransformation,whoseexactform
neednot concernushere,for which the transformedFPU Hamiltoniansmaybeshownto satisfyall the
Poincaréconditions.Thus,the contradictionis real. Theorystatesthat the FPU systemsshouldunder
no circumstanceexhibit the behaviorrevealedby the computer.To resolvethis conflict, let usexamine
the theoremsof Poincaréand Fermi in a bit more detail.

Poincaréstartswith Hamiltoniansof the typeH = H0 + ~H1. He then seeksconstantsof the motion
of the form

~(q, ~‘ ~ = ~ ~)

where q and p denoteall position and momentumvariablesand where all
4k( q, p) are analytic

functionsof q andp. Specifically, since D is aconstantof the motion,he insertsthe aboveexpressions
for H and 1 into the Poissonbracketequation[H, cP] = 0 andtheninsiststhatthecoefficient of eachp~’
equalzero.This procedureyields [H

0,4z~]= 0 at zerothorderand[H0, 4’k} = —[H1, 4k-1l for all k>0,
a setof equationswhich can be solvedsequentiallyfor all

1k once4’~is specified,wherecl’
0 of courseis

anyarbitraryconstantof the motionfor H0. The Poincaréprocedurethusseeksto analyticallycontinue

4~to nonzerovaluesof p~.The proofthat this continuationis impossiblein generalis straightforward
but quite lengthy. Here, we confineourselvesto illustrating the crucial elementin the proof. If, for
example,we seekto continuethe constantof the motion 4~= p~,we typically encountertermswhich
havefrequencydenominatorsof the type illustratedby

2
2 q1p22w1(pk)—w2(pk)+..., (4)

wherew1( Pk) = c3H0(Pk)IaPl. The denominatorin eq. (4) is zero along somehypersurfacein phase
space. Moreover, in generala countableinfinity of frequencydenominatorsE mk~

0k will appearin
higher orderwhich arezero alonga densesetof hypersurfacesin phasespace.But an analyticfunction
cannotbe infinite at a denseset of hypersurfaces;in consequence,no analyticconstantof the motion
exists,in general,otherthanthe obvious:anyfunction of H itself. The aboveis but oneexampleof the
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ubiquitoussmall denominatorswhich, as Poincaréhasshown, make the divergenceof astronomical
perturbationseriesthe generalcase.Although numerouspapershaveappearedover the pastninety
yearsclaiming to circumventor eliminatethe small-denominatorproblem,small denominatorsrepre-
sentphysical, nonlinear resonancesbetweendegreesof freedom. They are innate and cannot be
eliminatedor circumvented;indeed,they areintimatelyconnectedwith chaos*) as we showlater.

Fermi’s proof [5, 6] that Hamiltonian systemsare, in general, ergodic is basedon Poincaré’s
nonexistencetheorem. Specifically, Fermi begins by assumingthat the Poincaré systemsare not
ergodic. In consequence,at leasttwo distinct, nonzeroregionsinvariant underthe Hamiltonianflow in
phasespacemust exist. Fermi now assertsthat this fact implies the existenceof an analytic, orbit
bearingsurfacewhich separatesthe invariant regions. In turn, the existenceof this surfaceimplies the
presenceof an analyticconstantof the motion for the HamiltonianH, contraryto Poincaré’stheorem.
Fermi thereforeconcludesthat the Poincarésystemsare, in fact, ergodic.

Poincaré’stheoremhaswithstoodthe scrutinyof ninedecades;it is Fermi’s theoremwhich contains
the flaw. Nonetheless,Fermi’s error reflects thinking typical of all physicists prior to 1950. Fermi
thereforequiteforgivably assumedthat thedividing surfacebetweeninvariant setswas analyticbecause
the behaviorof all the well-knownphysical systemsexhibitedpreciselythis behavior.In fact, it was not
until the announcementby Kolmogorov in 1954 of what is now called the KAM theorem[15] that
physicistswere forced to abandontheir notions of smoothanalyticity. Expressly,KAM prove that the
invariantregionsfor mostPoincarésystemsaredisjoint setswhich fill mostof the allowedphasespace,
not surprisingly therefore, the surfacesseparatingtheseinvariant regions obviously are intricately
complicated,nonanalyticentities. Furtherdetails regardingthe KAM theoremwill appearlater. But
recognitionof Fermi’s error doesnot provide resolutionof the basicissue.For, if ergodicityas well as
higher formsof chaosdoesnot reside in nonlinearoscillatorsystems,thenwheredoesit “hangout”?
We begin our slow walk toward the answer to this questionwith a discussionof various attemptsto
explain FPU via integrableapproximation.

3. Integrableapproximations

In the late 50s, the presentauthorsoughtto explain [16] the lack of equipartitionrevealedby the
FPU systems.I arguedthat theFPU degreesof freedomcould exhibitwidespreadenergysharingonly if
all were resonantlycoupled. But in order for the weakresonantcouplingsin the Hamiltonian to be
effective,the harmonicfrequenciesgiven by ok = 2(KIM)~”2sin(klT/2N) would haveto obeyresonant
conditionsof the form ~ mkwk~ns0.But for the FPU w~-set,preciseresonantconditions~ m,,w~= 0 are
satisfiedif andonly if all the mk= 0. Strictly speaking,this is true providedN is primeor a powerof 2,
the only valuesusedby FPU. For other valuesof N, althougha few resonantfrequencyconditionsare
satisfied,the FPU couplingsfail to excite eventhese.Indeed,the only influential resonancesarethe
approximateoneswhich occuralongthe small-argument,“straight-line” portion of sin(kir/2N) where
(01 (02/2 (03/3 wk/k ~, with the approximationbecoming pooreras one readsto the
right. Moreover, it is preciselythesedecreasinglyeffective resonanceswhich are responsiblefor the
energysharingthat occursin decreasingamountsas modenumberin fig. 1 increases.Thus far, my

~>At this point, the readeris free to regardchaos as meaninglittle more thanerratic, disordered,seeminglyunpredictable.However, we

perhapsshouldnote that a systemwhoseorbits arechaoticover its entire energysurfaceis both ergodicand mixing, where a systemis saidto be
mixing if every small cell in phasespaceevolvesinto an increasingly thin filament which spreadsuniformly over the entire energysurface.
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argumentshave involved only the physical notion of resonancewithout any hint of integrable
approximation;they would thereforebe expectedto contain a substantialamountof truth. But then
seeking analytic support, I resortedto integrableapproximation in the form of a very primitive,
divergentperturbationtechniquewhich, at least to a mother’s eye, gives semi-qualitativeagreement
with the FPU calculations— comparemy fig. 4 with FPU’s fig. 1.

Theseresults,first publishedin 1961, cameas somethingof a surpriseto various of my colleagues
who, unbeknownstto me, werediligently polishingtheir own explanationsof FPU. Consequently,they
werenot shy in exposingtheglaring defectsin my explanation.They weremost troubledby my useof
the unperturbedharmonicFPU frequencieswhen, in their view, the FPU perturbationswereso large
that only the perturbedfrequenciescould be relevant. As response,in 1963 I publishedapaper [17]
which transformedcertainof the FPU Hamiltoniansto normalmodecoordinatesandthentreatedthe
unperturbedfrequenciesWk as free parameters.Figures 5a,b comparethe standardFPU systemfor
N= 5 with the “same” systemwhoseunperturbedfrequencieshavebeenslightly shifted. Bringing the
unperturbedFPU frequencies“on resonance”providesa dramaticincreasein energysharing.So much
for the insignificanceof unperturbedfrequencies.Regardless,it was FreemanDysonwho providedthe
mostpenetratingcomment,“Ford’s explanationcannotbe regardedas the completeanswer”.Indeed,
Dyson’s commentapplies equally well to all efforts at integrable approximation,as will become
apparentin the sequel.

Also in 1963,E. Atlee Jackson[18]useda classicalperturbationapproachon the FPUsystemswhich
was similar to quantalWigner—Brillouin perturbationtheory. Specifically, the denominatorsin Jack-
son’s calculationsinvolve theperturbedfrequenciesratherthantheunperturbedfrequenciesusedin my
computations. This modification yields significantly improved agreementwith the FPU computer
results— compareJackson’stheoreticalpredictionsof fig. 6 with theFPUnumericalresultsof fig. 1. Not
only areJackson’snormalmodecurvesapproachingthe correctshape,but the recurrencetime is also
beingapproached.Jackson’sresultsthusmakeit extremelyclearthat theFPU systemsare, in fact, near
an integrablesystem,but his seriesarenonethelessjust asdivergentasmine. Moreover,contacthasnot
yetbeenmadewith Siegel’stheoremor Poincaré’stheorem.On thatnote,weturnto thelast andby far
the mostrenownedof the integrableapproximations.

Ek - 2

3

Fig. 4. The time evolution of thefirst threemodal energiesfor theN = 32 FPUsystemof fig. 1 but here computedusing a rathercrudeclassical
perturbationtheory.The agreementis at bestqualitative.
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Fig. 5. Thesefigures presenta compansonof energysharingas it occursin two, closelyrelatedfive-particlesystems.(a) The modal energycurves
for anN = 5 FPUsystem.Hereonenotesthetypicaldecreaseof modal energysharingasmodenumberincreases.(b) Modal energysharingof the
“same”systemas thatin (a) exceptthat for it theN = 5 FPUmodal frequencieshavebeenshiftedslightly to bringthemonto preciseresonance.The
increasein energysharingis quite dramatic,emphasizingthat the lack of wholesaleenergysharingin theFPUsystemsis heavily influencedby the
absenceof internal resonancesamongthe unperturbedFPU harmonicmodal frequencies.
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Fig. 6. An improvedperturbativecalculationfor thetime evolution of themodal energiesfor theN = 32 FPUsystemof fig. 1 obtainedby Jackson
[181.Comparingthis graphwith that of fig. 1, oneperceivestheexistenceof at leastsemi-quantitativeagreementbetweennumericaland analytical
results. Indeed,one now anticipatesthat asufficiently sharpenedperturbationtheorycouldprovidea quite accuratesolutionto theFPUproblem.
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Forseveralyears,Martin KruskalandNormanJ. Zabuskyhadsoughta continuumapproximationto
FPU [19]. Theybeganby notingthat the normalizedequationsof motion for the FPUsystemof eq. (1)
maybe written

Qk = (Q,~+i— 2Qk + Qk_l) + a[(Qk+l — Qk)
2 — (Qk — Qk—l)2] (5)

= (Qk+l — 2Q~+ Qk_l)[1 + a(Qk+l — Qk_l)]. (6)

In the lowest-ordercontinuumlimit, eq. (6) takesthe form

Q
0 = Q5~+ eQ~Q5~= (1 + eQ5)Q11, (7)

wheresubscriptsdenotethe usualpartial derivativenotation.But noweq. (7) maybe viewedasjustan
ordinarywaveequationwhose wave speedc dependson its spatial derivativeQ~,i.e., c

2 = (1 + sQ
5).

Typicalbehaviorgeneratedby eq. (7) for positives is seenin fig. 7, wherean initial asymmetricpulse
propagatesto the right until its leadingedgedevelopsa verticalshockfront, at whichpoint eq. (7) loses
validity. Nonetheless,prior to formationof the shock,eq. (7) providesa quite reasonabledescriptionof
the FPU modalbehavior. Kruskal—Zabusky(K—Z) thussoughtwaysto avoid the shockformation. In
many physical systems,shocksare preventedby introducingdissipation;indeed, its inclusion leadsto
the so-calledBurgersequation.Since FPU is conservative,K—Z electedto eliminateshockformation
by introducingdispersioninto the eq. (7) approximationto FPU. Specifically, they wrote

Q~= + + f~Qjr~ . (8)

For both convenienceand simplicity, K—Z now insist on periodic boundaryconditions, restrict their
attentionto wavestraveling in one direction only, andelectto sit in a framemoving with normalized
speedc = 1. After replacingx by o = x — t, t by r = et,Q~by U = ~ = ~Q0, in eq. (8), andneglecting
termsproportionalto r

2, they obtainedthe celebratedKorteweg—deVries(KdV) equation

UT+UUff+82U~=0, (9)

which is nowknownto be acompletelyintegrablepartial differentialequation,meaningthateq. (9) can
be derivedfrom a Hamiltonianthat is a function of its momentaalone.

K—Z then numerically integratedeq. (9) using periodic boundaryconditionsand one cycle of a
cosineas initial condition. Much to their surprise,the initial cosineshapeevolvedinto a finite number
of relatively sharppulses— see fig. 8 — that moved at distinct speedsabout their periodic path like

Q

_~~p-x

Fig. 7. This roughsketchshowsan initial, asymmetricpulsetime evolving to the right until its leadingedgedevelopsa verticalslope.
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Fig. 8. The numerically integratedsolutionof theKdV equationfor aninitial condition takenas oneperiodof acosine,whichhereappearsasthe
dottedcurve.Theshapeof thetime-evolvedcurveat alatertime is shownasthedashedcurve. Finally,thesolid curverevealsthatthe initial cosine
excitationhas broken up into eight solitonswhich movewith speedsproportional to their heights.The variousFPUrecurrencesnow find their
explanationin termsof the recurrenceswhich occur as theseeight solitons movewith incommensuratespeedsarounda circle.

runnerson a track.Upon “collision”, the pulseswouldexhibit a nonlinearsuperpositionduring overlap
and then all would emergeunchangedin shapeor speed.The almost-periodicbehaviorof the FPU
systemscould now be understoodat an especiallyclear, intuitive level. The first full recurrenceof the
FPU motion occurswhenall the pulsesapproximatelyoverlap,generatinga near-returnto the initial
cosineshape.At half-recurrence,thepulsesoverlapin two distinct groupsforming the secondharmonic
shape,at one-third recurrence, three distinct groups of pulses overlap, etc. For long-wavelength
excitationswhere the continuum approximation might be expected to provide reasonableresults,
approximatingFPU by KdV providesqualitativeto quantitativeagreement,dependingon the quantity
beingconsidered.However,if onewishesto approximatethemodal curvesof fig. 1, the Jacksonseries
yield results comparableto and perhapsbetter than those of K—Z. For short-wavelengthinitial
conditions,the K—Z approachis, of course,simply not applicable.Therefore,in regard to the FPU
problem, KdV is highly ingeniousand delightfully intuitive, but in the end it is nothing morethan
anotherintegrableapproximation.

Howeverin the processof developingtheir explanationof FPU, Kruskal and Zabuskywere led to
provideinsight into a much largerclassof problems.Indeed,theywerethe first who turned the FPU
paradoxinto discovery,for the pulsesmentionedjust aboveare, in fact, the celebratedK—Z solitons,
now found to be ubiquitous in nature, while the KdV equation hasbecomethe paradigmfor an
expandingclassof completelyintegrablenonlinearpartial differential equations.Over the years,the
terms inverse scattering,Lax pairs, breathers,kinks, soliton—antisoliton pairs, and the like have
becomehouseholdwords in mathematicalphysics,reflecting but a part of the “industry” foundedby
KruskalandZabusky.All thesemattershavebeencoveredin suchdetail at countlessconferencesand
in review articles beyond number that almost nothing remainsunconsidered.However, there are
perhapsa coupleof significantyet frequentlyoverlookedpointsworthy of mention.Specifically,why is
the solitonso ubiquitousandwhy doesit occur at all?

The following discussionis intendedto provide anintuitive understandingof only the K—Z soliton,
why it occursandwhy it is observedin so manyphysicalsystems;readersdesiringto know moreabout
the zoology of contemporarysolitons are referredto the vast literaturewhich exists on this topic.
Considernow the innocentlooking one-dimensionalarray of equi-spaced,equi-masspoints sitting at
rest in fig. 9a, wherethe leftmost mass,labeled1, has justbeengiven a velocity V to the right. Upon
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Fig. 9. (a) An arrayofequalmasscoinssitting atrestuntil the leftmostcoin is givena velocity ~ to theright. (b) Thesituationafterparticleonehas
collided with two, two with three, and threeis headedtoward four. (c) The sequentialdisplacementof particlesone stepto theright may be
representedby theright movingsquarewaveof displacementshownhere. (d) Finally, by takingthederivativeof thesquarewaveshownin (c) as is
customaryin soliton theory,themost primitive of all solitons is revealed; thesoliton is hereseen to result from nothingmore thana hard-core
interaction.

colliding with mass2, mass1 comesto restatthe original positionof 2, while 2 movesoff with velocity
Vto the right; 2 then comesto restat the positionof 3 as 3 headswith velocity Vtoward4. Figure9b
shows this latter situation for comparisonwith that of fig. 9a. One may describethis motion as
essentiallythat of a squarewave moving to the right. Actually, the leading edgeof the wave is not
verticalbut sloped;however,this discrepancydisappearsat largeV and/orsmall interparticlespacing.
In the notation of eq. (8), the squarewaveQ(x) appropriateto fig. 9b appearsin fig. 9c. Finally, by
taking the derivative U = Q5 invokedby the K—Z theory,we easily obtainthe ö-function of fig. 9d,
which exposesthe primitive, archetypicalessenceof the soliton. Indeed,the soliton is hereclearly
revealedto be a hard-core,billiard ball, knock-onrowdy. Without thehard-coreinteraction,or atleast
an asymmetryin the pair potential, the K—Z solitoncannotexist. The billiard ball analogymakesit
clearthat this solitonis a localizedexcitationonly in onedimension,althoughtherecan be planewave
solitonsin two andthreedimensions.

Finally, we at last have no trouble recognizingthat the soliton is as ubiquitous as hard-core
interactions. But now the inverse questionarises: if they are so common, why were not solitons
discoveredcenturiesago?The answeris, in fact, quite astonishing,but depthpsychologylies beyond
the scope of this article. Instead, let us move toward the land where solitons decay, integrable
approximationsfalter, andthe laws of chancereign supreme.

4. The transitionto chaos*)

When the FPU calculationsfailed to exhibit the expectedchaos,therewas no scarcity of people
offering ready explanations.Of these,the argumentthat the FPU force laws were too simple lost

~ We now enlargethemeaningof chaos to include the notion of exponentiallysensitive dependenceof final stateupon initial state,which
implies that two initially closephasespacestatesseparateexponentiallywith time. It also impliesthat theslightestimprecisionin thepresentstate
fogs a system’smemoryof its distantpastandvision of its distantfuture.
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credibility when Northcoteand Potts [20] found statisticalbehavior in a one-dimensionalarray of
harmonically coupledhard rods. The notion that the FPU recurrencemight simply be a Poincaré
recurrencewas demolishedby the estimatesof Hemmeret al. [21] who establishedthat the relevant
Poincarétimesincreaseexponentiallywith particlenumberN while theFPUrecurrencetimesgrow like
a powerof N. The suggestionthat one-dimensionalsystemsarepoorcandidatesfor chaosrunsafoul of
the positive resultsobtainedby Casati et al. [22] who demonstratedthat 1-D systemscan, in fact,
exhibit a normalFourier thermalconductivity. Oneof the morepersistentbeliefsheldthat the thermal
relaxationtimes for the FPU systemswere too long to be observedduring the short integrationruns
madeby FPU; big Jim Tuck andMary Menzel (néeTsingou) [23]buried this conjectureundermany
hoursof numericalcomputation— a sampleis shownin fig. 10. Finally, manyresearchershadbegunto
suspectthat the impressivesuccessof integrableapproximationsmeantFPUwould eventuallybeshown
to be integrable.Let us now dispel this last illusion by exposingan FPU transitionto chaos.

Considera three-particleFPUsystemhavingperiodicboundaryconditionswhichis governedby the
Hamiltonian

H= ~ P~+ ~ (Qk+l — Qk)
2~ ~ ~ (Qk+l — Q,)3, (10)

whereall sumsrun from k = 1 to 3 and where Q
4 Q1. After introductionof a canonicalchangeof

variablesto harmonicnormalmodecoordinates(~,~k)’ Hamiltonian (10) takesthe form

~(~P~+ + ~P~)+ ~ (3~2~+ 3~)+ (3a/V~)(~22.9~— ~ (11)

F~PU
-~ RECURRENCE

N~

FPU FPU
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C

~
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Fig. 10. In theupperpart of this figure is seenthe standardenergysharingbetweennormalmodesfor anFPUsystem(hereN = 16) integrated
throughonerecurrence.By greatlyextendingthe integrationinterval asshownin the lowerfigure, TuckandMenzel[23)exposeda superperiodof
recurrence.Their calculationleaveslittle doubt regardingalmost-periodicityin theFPUmotion.
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Note that the coordinate~1l~locatingthe centerof massis absentfrom ~, implying that the centerof
massmoveswith constantmomentum~. Thus, transformingto the centerof massframe andsetting
t r/’~/~,Q2 =~(\/~/a)q2,and ~ = (V~/~)q1,we obtain

H ~ ~ (12)

But Hamiltonian(12), which is canonicallyequivalentto the FPU systemof eq. (10), is thecelebrated
Hénon—HeilesHamiltonian [24],whosechaoticpropertieshavebeenexhaustivelyinvestigated.There-
fore, as we now review the chaotic behavior exhibited by the Hénon—Heilessystem, we are
simultaneouslyexposingthe chaoshiddenfrom view in the original FPU results.

HénonandHeiles studiedthe global behaviorof orbits for theboundedmotion of Hamiltonian(12)
via a Poincarésurfaceof sectionconstructedas follows. Clearly, an orbit for Hamiltonian(12) mustbe
viewed as lying in a four-dimensional(q1, q2, p1, p2) space. Yet becausethe energyH = E is a
constantof the motion,orbits can in fact be drawnin a three-dimensional(q1, q2, p2) space,for, once

q1, q2, p2 aregiven, thenp1 �0 (or p1 <0) is uniquelydeterminedbyE= E(q1, q2, p1, p2). But now
note that the (q2, p2) plane providesa crosssection— a planePoincarésurfaceof section— of this

(q1, q2, p2) space. Hence,we may obtain a global picture of orbital behaviorat eachenergyby
determiningeachorbit’s intersectionpointswith the (q2, p2) plane,i.e., (q2,p2) pointson an orbit at
which q1 = 0 and (to removeambiguity) p1 >0. Now, were the Hénon—Heilessystemchaoticwith no
constantsof the motion otherthanthetotal energy,thenthe(q2, p2) planeintersectionpointsfor each
orbit would beexpectedto form an erratic splatterwith no apparentpattern.On the otherhand,if the
Hénon—Heilessystemwere integrablehavingan analyticconstantof the motion P = rk( q1, q2, p1, p2)
in addition to the energy,thenby solving the energyE forp1 >0 andthenceplacingthisp1 into ~, one
finds 1 = cP(E, q1, q2, p2), an equationfor a two-dimensionalsurfaceembeddedin a three-dimension-
al (q1, q2, p2) space. But now by setting q1 = 0 in 1, we may determine the analytic curves

= ~(E, q2, p2) in the (q2, p2) planeupon which the orbital intersectionpoints must lie. Thus, no
matter whether integrableor chaotic,Hénon—Heileshad only to numericallyintegratethe orbits of
Hamiltonian (12), determining(q2, p2) intersectionpoints, in order to establishthe characterof the
systemmotionat eachdesiredenergyvalue. As the energygrowsthe cubicnonlineartermsin eq. (12)
increasinglyperturbthe harmonicquadraticterms. Thus,Hénon—Heilesuseenergyas their perturba-
tion parameter.

Figure 11 showsthe (q2, p2) Poincarésurfaceof sectionat energyE = 1 /12 for the Hénon—Heiles
Hamiltonian (12). Here, curvesseemto exist everywhere,indicating the possibility of an additional
constantof themotion andthe integrabilityof Hamiltonian(12). Notethat eachcurvein fig. 11 is made
up of intersectionpoints generatedby a single orbit. But now what happensif the energyis increased,
permitting the nonlinearterms in eq. (12) to grow in size relative to the linear ones?Figure 12 at
E = 1/8 providesthe answer.Curvespersistin the neighborhoodof the stablefixed pointsalongthe q2
andp2 axes(correspondingto periodicorbits),but a region of erraticdotsappearsbetweenthesestable
areas.In fact, all the orbits in thisregion generatea diffuse sprayof points.Moreover,throughoutthis
region two closeinitial conditionsyield orbits whoseseparationdistancegrowsexponentiallywith time
whereasseparationdistancefor integrablesystemsexhibitspowerlaw growth. Turning now to fig. 13,
we seethat the smallapparentlyrandomarrayof orbital intersectionpointsin fig. 12 hasgrownto fill
almostall the availableareaat energyE= 1/6.The complete“order” of fig. 11 hasnowturnedinto the
complete “chaos” of fig. 13. With thesethree simple figures, Hénon—Heilesbanishedforever the
clockwork universepopularizedcenturiesearlier by Laplace. Indeed,the elegantsimplicity and the
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Fig. 11. The first of threefigures which originally appearedin the Fig. 12. The genuinesurpriseprovidedby theHénon—Heilescalcula-
celebratedpaperby HénonandHeiles [24].Herewe seeaplot of the tions first appearedin this figure for F = 1/8. All this “random
Poincarésurfaceof sectionfor theHénon—Heilesconservativesystem splatter” of dots was generatedby a single orbit. All hope of
at systemenergyE= 1 /12. Curvesappearto exist everywherein the integrability now disappears.Indeed,sinceHénonandHeilesdemon-
permittedarea, indicating possibleintegrability. stratedthe sensitive dependenceof orbits lying in this “splatter”

region, this figure providesan early illustration of the transition to
chaos in a Hamiltoniansystemwith only two degreesof freedom.

convincing clarity of the evidencefor a transition to chaosin their two-body systemhasmade the
Hénon—Heilespaperthe most frequentlyquotedwork in all nonlineardynamics/chaos.But let usnot
forget that the chaosof Hamiltonian (12) is also the chaosof theFPU Hamiltonian (10), andthat the
transition to chaosseenin figs. 11—13 is also the transition to chaosveiled by the FPU calculations.

Confronted with the chaos occurring at the higher energiesfor Hamiltonian (12), a number of
investigatorsturnedto integrableapproximationsin the hopethat their failure might becomeobviousat
or nearthe transitionto chaos,but of course,suchmethodscannotdescribechaositself. In this regard,
it is, in retrospect,perhapsa tribute to Laplace that thosewho invoked integrableapproximationsto
describeFPU were content to look no further. But regarding Hénon—Heiles,perhapsthe most
illuminating study basedon an integrableapproximationwas that conductedby Gustavson[25], who
usedthe elegantperturbationtheoryof Birkhoff [4] to computea powerseriesin q~andPk (calculated
to eighthorder) for an additional constantof the motion. In the Gustavson—Birkhoffprocedure,the
perturbationparameteris neitherPoincaré’sp. nor Hénon—Heiles’E; it is ratherthe orderof the terms
in the power seriesexpansion,which are assumedto decreasein size as the order increases.The
additionalconstantof the motion Gustavsonobtainedpermittedhim to obtainanalytic(q2, p2) surface
of section plots. His entire approachwas, of course,feasible only becauselarge computerscould
perform the lengthy symbol manipulationsin a reasonabletime interval. Gustavson’scomparisonof
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Fig. 13. This Poincarésurfaceof sectionatsystemenergyE= 1/6providesicing on thecakeshowingthatthesystembecomesalmosttotally chaotic
slightly before theenergyfor unboundedmotion is reached.

perturbationtheory with numerical integration appearsin fig. 14. The comparisonis for energies
E= 1 / 12, 1/8, and 1/6 as onewould expect.Note that perturbationtheoryprovidessmoothcurvesat
all threeenergies;disappointinglyit thusgives not the slightesthint of its ownfailure, not evenatthe
higher energies.In fact, thoughnot apparentin fig. 14, perturbationtheory cannotbetruly accurateat
any energy,for the Birkhoff powerseriesconstructedby Gustavson,despitethe fact that it givesfair
agreementat E = 1 / 12, has been shown to be not only divergent but apparently an asymptotic
representationof anonexistentconstantof the motion! In order to removea bit of the mysteryfrom
theseremarks,let us presenta brief outline of what is happeningin both Hénon—HeilesandFPU.
Details as well as rigor will be suppliedlater.

The Hénon—Heilespaperpresenteda graphshowingthe fractionalamountof areain eachsurfaceof
sectioncontainingsmoothcurvesas afunction of energy.To theaccuracyof their calculations,aplot of
this fraction initially movedalonga horizontalline at the valueone,but ataboutE = 1/10 the fraction
beganan abrupt fall toward zero along a rapidly descendingstraight line. The discontinuity near
E= 1 / 10 lent supportto the notion that chaosfirst appearsat the discontinuitypoint. However,more
accuratesurfacesof sectionwould haverevealeda slow, smoothdecreasein the curve bearingarea
from unity at E=0 to almostzero at E = 1/6. Nonetheless,this smoothcurve would be almost flat
belowE 1/10 andwould displaya rapidfalloff to zeroas E-+ 1/6. In short,both Hénon—Heilesand
FPU appearintegrableaslong as chaoslies belowthe level of computeraccuracy,but increasingenergy
(nonlinearity) finally broadensthe chaos regions until they can be seenby even a low-precision
computer.

Thus it was not integratingover too short a time interval which hid the chaosinnateto the FPU
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Fig. 14. After automatingthe requiredsymbolmanipulationon a computer, Gustavson[25]determineda powerseriesexpansionfor a formal
constantof the motion for the Hénon—Heilessystemvalid through eighth order. With this constantof the motion, Gustavsonthen computed
analytic surface of sectionplots for comparisonwith the numericalintegrationsof Hénon—Heiles.The resultsare shownhere.The agreement
betweenGustavsonand Hénon—Heilesis quite satisfactoryin all thoseregionswhere Hénon—Heilesfind curves, elsewherethe analysisof
Gustavsonfails without warning.

systemsbut the lack of computeraccuracyand/or the lack of sufficiently strongnonlinearity.But an
inquisitive readerwill surely wonder why the integrable approximationswork so well at low to
moderateenergiesand/or why the nonlinearityin the FPU Hamiltonian (10) [or the Hénon—Heiles
Hamiltonian (12), for that matter] must become so large before its chaos becomesvisible to a
single-precisioncomputer?When, as here, the Hamiltonians under considerationare of the form
H = H0 + p. H1, the uninitiated would most certainly expect the perturbed motion of H to closely
resemblethatof the unperturbedH0 whenp.H1 is relatively small. However, this expectationbecomes
less and less reasonableas p.H1 grows into the moderaterange. Yet the FPU and Hénon—Heiles
Hamiltoniansstill appearintegrablefor energiesgreaterthanour wildestexpectations.Why? It can be
immediatelystatedthat the perturbedmotion is not evenclose to that of the unperturbedharmonic
oscillatorH0 of eqs. (11), (12). The surfaceof section for an independentoscillatorE= ~(p

2 + w2q2)
would consistof circlesaboutthe origin. Thereis not a hint of suchbehaviorin fig. 11 norin fig. 15 at
extremelylow energy. We thus need a nonlinearHamiltonian close to the two we consider.The
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Fig. 15. In boththeFPUandtheHénon—Heilessystems,thetransitionto chaosdoesnotoccuruntil theenergyincreasesratherfar awayfrom zero.
Theremustbe somenearbyintegrablesystemcausingthis behavior,but it is mostcertainlynot thatof independentharmonicoscillatorsfromwhich
both FPU and Hénon—Heilesstart at E= 0, asis shownby this very low energysurfaceof section for the Hénon—Heilessystem.Indeed,the
oscillatorsshown in this figure aresharingenergy.

nonlinearKdV equationis one respectablecandidate.Another is the Hamiltonianwhich resultsafter
changingthe very last sign in eq. (12); this renderseq. (12) both integrableandseparable.Finally,
perhapsthe mostattractivecandidateof all is the three-particle,“exponential”TodaHamiltonian [26]

~ (13)

wherethe index k runsfrom 1 to 3 andwhereperiodic boundaryconditionsimply that Q4 Q1. There
is alegitimatesensein which the N-particleTodasystemmaybe regardedas a discreteversionof the
KdV equation.Equation(13) is both integrableandexhibitsK—Z solitons.Finally, if oneeliminatesthe
translationmodein eq. (13) and thenexpandsthe resultingtwo degreesof freedomHamiltonian in a
powerseriesretainingtermsonly throughthird order,the FPU/Hénon—HeilesHamiltonianof eq. (12)
is obtained.If oneeliminatesthe translationdegreeof freedomfrom eq. (13) but doesnot expandin a
series, the resulting two degreesof freedom system yields surfaceof sectionplots which are only
distortedversionsof fig. 11. We cannotrule out the existenceof a nonlinearintegrablesystemcloserto
FPU/ Hénon—Heilesthanthe Toda system,but it is perhapsclose enoughfor our purposes.

Until nowwe haveexposedonly piecesof the FPUpuzzle.Many questionshavebeenansweredbut
manyyet remain.In a sense,apatternhasformedbut asatisfyingpicturehasnot emerged.Thus, let us
nowcompletethe puzzleby addingonefinal unifying piece.Specifically, let usnowfocusour attention
on a theoremannouncedwithout proof by A.N. Kolmogorov at the 1954 Conferenceof Mathemati-
ciansin Amsterdam,which, thoughno onenoticedat the time, could haveexplainedthe lack of chaos
observedby FPU a priori. But Kolmogorov’s theorem (seeappendixD of ref. [27]), like the FPU
preprint, attractedlittle notice in a busy world. Indeed, realization of the full significance of this
theorem was further impededby the extremely lengthy and highly technical independentproofs
publishedby Arnol’d [28]in 1963andby Moser[29]in 1962sometenyearsafterKolmogorov’soriginal
announcement.Moreover, many of that handful of physicistswho took the time to cut through the
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hedgerowsof unfamiliar technicaljargon concludedthey were learning more about the convergence
problemsof celestial mechanicsthan they wanted to know. However,much, much more than the
problem of small denominatorsin celestial mechanicswas involved in what we now call the KAM
theorem.Let us digressbriefly to discussthis issue.

By the endof the last century,if not before,it was clear to any scientistwho botheredto examine
the matter that there were two quite contradictoryviews regardingthe characterof the motion for
HamiltoniansH = H0 + p.H1. Oneview assumedthat theperturbationp.H1 servesonly to add a “few
harmonics”and slightly shift the frequenciesof the H0 motion, therebyjustifying the useof standard
perturbationtheory.The otheracceptedthe notionsof statisticalmechanicswhich assertthat eventhe
weakestp.H1 is sufficient to convertthe integrablemotion of H0 to an ergodicmotion in whichstatesof
equalenergyare equally likely. Givensuchdisparateviews, it is amazingthat no debateragedduring
the earlydecadesof this century.In retrospect,it seemsthat this was a classiccaseof peoplein glass
housesfearing to throw theoretical stones, becauseeach side had only nonrigorous,a posteriori
justification for their positions. Indeed,before KAM therewas no rigorousanswerto the question,
“Under what circumstancesdoes the motion of H = H0 + p.H1 closely resemblethe motion of H0?”
Moreover, the evidenceaccumulatedover manydecadesprior to KAM, of which FPU is but a small
part, seemedso contradictorythat resolution was not seenevenon a distant horizon. Nonetheless,
work on the FPU part of the overallpuzzleled Kruskal andZabuskyto discoverthe soliton andthence
to found a whole new areaof mathematicalresearch.Moreover, the title of the presentpaperwould
havebeenevenmoreappropriatehadFPU servedas motivationfor the KAM theorem;unfortunately,
the actual timing of eventsprovesotherwise.But evenso,while FPU did not directly influenceKAM,
they did much to preparethe fertile soil in which the KAM theoremand nonlineardynamics/chaos
eventuallygrew.

Given the aboveremarksas prologue,let us now statethe KAM

Theorem.Givenan analyticHamiltonianH = H0 + p.1-I1 satisfyingthe usualPoincaréassumptions,(i)
H0 is integrable, (ii) p. is sufficiently small, and (iii) det~a

2HO/aPkaP
1I = detlawk/aP/l#0 (where

= aH0/0Pt), thenthereexistsa nowheredense*)setof H0 tori which areonly slightly distortedby
the small p.H1 perturbation.Moreover,the measure**) of this nowheredensesetof “preserved”tori is
nearlythatof the allowedphasespace.The complementaryset of “destroyed”H0 tori is densebut has
small measure.

With this theorem,KAM abandonedall hope of showing that every H0 torus will, under the
influenceof p.H1, simply distort into a perturbedtorus of the full Hamiltonian,for theyknewfull well
that the densesetof H0 tori havingall rationalfrequenciesWk yield thesums~ m~~k thatappearas the
zeroto smalldenominators— seeeq. (4) — which causethe divergenceof almostall perturbationseries
in classicaldynamics.

‘~The closurecI(A) ofasetA is definedto betheunion of thesetAwith all its limit points.A subsetA of a setSis called densein Sif andonly

if cl(A) = S. The subsetA is said to be nowheredensein S if thecomplementof cl(A) is densethere.To illustrate, let us deleteall therationals
(h/k) from theunit interval plusa small interval (2�/k’)abouteach;thefinite length of thedeletedintervalsis proportionalto e-41. This setof
deletedintervalsis dense;its complementis nowheredenseyet includesalmostall the length of the unit interval.

** I For continuouspoint sets, measuresimplymeanslength, area, volume, or the like. For discontinuousor disjoint pointsets, we may cover
suchsetswith a collectionoflengths,areas,volumes,or the like. We may thendeterminethe length, area,volume, etc.,of thelimiting collectionof
elementswhichjust coverthegivenset,and we thencall this themeasureof theset.Asillustration,we notethat therationals (h/k) in theabove
footnotecan be coveredby intervals (2�/k’)whose total length can be madeassmall as we please.We thus assertthat this setof rationalshas
measurezero.
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Thus, in order to salvageas much as possiblefrom this crushof denselypackedtori causingsmall
denominators,KAM electto perturbonly thoseH0 tori whose frequencysumssatisfy I ~ mk Wk I � K/
(E ImkI)~,where v >2 and K are positive real numbersindependentof the integersm,, and the
frequencies

t0k~This restriction deletes from phasespacenot only those H
0 tori having rational

frequenciesbut a smallneighborhoodsurroundingeach “rational” torus as well. Nonetheless,a quite
large majority of the H0 tori remain,for, eventhoughall tori in a 2e(~Imkl) neighborhoodof each
rationaltorus having E m,, Wk I aredeleted,theseneighborhoodsdecreaseas ~ I mkI increasesin sucha
way that thedeleted“volume” of phasespaceis proportionalto s. The parameters canbe chosenas
small as convergencerequiresand the perturbationcoefficient p. permits.

But the elimination of all tori causingtoo small denominatorsis only the first step in achieving
convergenceof the KAM perturbationseries;specifically, the numeratorsin their seriesmustdecrease
more rapidly than do the higher-orderdenominators.KAM ensuresuchconvergenceby choosingan
iterative-typeprocedure(Newton’s method)which provides a strong quadraticconvergenceof the
numeratorsto zero.

Ordinarily, the error of perturbationschemesdecreaseslike p., p.
2, p.3, p.”, etc., as the number of

terms increases.On the other hand, the error in quadratically convergentschemesdecreaseslike
p., p.2, p.~,p.8, etc., as the number of iterations increases.For example, the recursion formula
A~~

1= [(A~ + 2)/2A~]for computing\/~providesiteratesin which theerrorin A~~1is proportionalto
the squareof the error in A~.To illustrate, if we set A0 = 1.4 then we find A1 = 1.414, A2 =

1.41421356,etc. Here,A1 returnsfour accuratedigits for two while A2 returnseightaccuratedigits for
four. In short, the iteratesA~deviatefrom \/~by an error which decreaseslike p.

2 . This exampleis
typical of the quadraticconvergencewhich enablesthe KAM proofs.

But small denominatorsand quadraticconvergenceaside, what insights does the KAM theorem
provide into the characterof the motion for the Hamiltonian systemsH = H

0 + p.H1? First, KAM at
last reveal the conditions under which such systemsmay be called nearly integrable (Moser’s
terminology). But theydo soat the cost of introducinga pathologyin phasespacewhich is truly mind
boggling,as weshall shortly illustrate.it is preciselythispathology of intermingleddenseandnondense
setswhich makeit obviouswhy Poincarécould, in general,find no constantsof the motion otherthan
the totalenergyandwhy classicalperturbationseriesmustdiverge.But if now, with KAM, we focuson
the nondensesetof only slightly distortedtori in essencecarryingthe measureof the space,we perceive
that convergentperturbationtheoriescan be devisedwhich are valid for most, thoughnot all, initial
conditions.Indeed,it is preciselysomesubsetof preservedKAM tori that all thestandardperturbation
theoriesare approximatinguntil increasingnonlinearityforcesthem into absurdity.

However,perhapsthe deepestinsightsinto the structureof phasespace(energysurface)for KAM
nearly integrablesystemsare providedby fig. 16b, due to Arnol’d, showing a Poincarésectionfor a
generic, two degreesof freedomHamiltoniansystem.For reference,fig. 16ashowsasetof preserved
nestedtori aswell asthesurfaceof sectionusedin fig. 16b. In fig. 16b itself, the origin at thecenterof
the circles is most convenientlyviewed as the isolated intersectionof a stableperiodic orbit with the
surfaceof sectionshownin fig. 16a, althoughit is possibleto view it as a point of stableequilibrium.

Nearthe origin the perturbationis presumedweak. Here, the preservedKAM tori aretoo closely
spacedto seethe interveningstructure.However,as oureye movesout from the origin, we observe,as
Poincaréand Birkhoff [30] predicted,the alternatingelliptic and hyperbolic points generatedby the
only periodic orbits to survive the destructionof an integrabletorusbearingonly periodic orbits. One
periodic orbit is stable, being surroundedby elliptic invariant curves, each generatedby a single
trajectory.The otherperiodicorbit is unstable,beingsurroundedlocally by hyperbolicinvariantcurves.



J. Ford, The Fermi—Pasta—Ulamproblem:paradoxturns discovery 295

Fig. 16. On theleft is seenasetof nestedtori with acutawayshowinga Poincarésurfaceof section.An explodedview of this surfaceof sectionis
shownon the right. The circles representpreservedtori. The first signs of instability are representedby thealternatingelliptic—hyperbolicpairs
surroundingthe origin. Moving out from the origin, one seesintersectinginvariant curvesin whose neighborhoodlie trajectorieswhich are
realizationsof randomprocesses.But thetruecomplexity implied by this picture is that it is replicatedabouteachelliptic fixed point in thefigure
andin eachreplication ad infinitum.

The additional elliptic—hyperbolicpairswhich appearfurtherout from the origin aregeneratedby the
samemechanism;the numberof stable—unstablepairs is dictatedby the w21w1 ratio of periodicorbits
on the original integrabletorus. Just as was the casewhen the pendulumof fig. 3 was perturbed,the
invariant curves departing and approachingthe unstable hyperbolic points intersectand form an
unbelievablyintricate “lattice”. This meshof intersectingcurvesis generatednearall the hyperbolic
pointsbut is picturedin fig. 16b only nearits boundary.Pointsgeneratedby orbits passingthroughthe
neighborhoodcontainingthis mesharewildly erratic andinitially closeorbits separateat anexponential
rate. Moreover,as the size of the perturbationincreases,theseflailing invariantcurvesfan out andstir
an increasingamountof phasespaceinto an uncontrolledfrenzy. Indeed,it is this behaviorwhich is
responsiblefor the erraticsplatterseenin the Hénon—Heilessystem.But we areonly warming to the
task of describingthe complexity implied by fig. 16b, most of which cannotbe drawn in this figure.

Specifically, the annularregionsbearingalternatingelliptic—hyperbolic pairs are densethroughout
the figure [31]; moreover,the lattices formed by intersectinginvariant curvesoccur, but of varying
widths, in everyneighborhoodof the centralinvariant point [31].Interior to eachlatticeregion thereis
(at least) a countableinfinity of orbits which cannotbe distinguishedfrom a realizationof a random
process.Moreover,the structureof fig. 16b is replicatedaroundthe centerof everyelliptic region in the
figure. “The dog hasfleas,who themselveshavefleas, who in turn also havefleas. .

But in fig. 16b, the everywheredenseregionsof erratic behavioraredisjoint,being separatedby the
preservedKAM tori. However,whenthe systemdegreesof freedomare threeor greater,the tori no
longer divide the energysurfaceand orbits in the chaotic regionscan spreadover the entire energy
surfaceundergoinga motion calledArnol’d diffusion [11]. This diffusion is exponentiallyslow but it
might nonethelessbe of importancein physicalsituationssuch as occur in colliding beamaccelerators
whereparticle bunchescan collide an astronomicalnumberof times during oneexperiment[12]. But
perhapsmore important,this almostuniversalArnol’d diffusion representsthat seedwhichgrows into
full blown chaoswhen the nonlinearity dominates.
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Finally, lookingagainat fig. 16b, the complexity implied thereis so greatthat Poincarédid not even
attemptto drawit; specifically, hewrote, “One is struckby thecomplexityof this figure that I am not
evenattemptingto draw. Nothingcan give usabetterideaof thecomplexityof the three-bodyproblem
and of all problemsof dynamicswherethereis no holomorphicintegralandBohlin’s seriesdiverge.”

It is preciselythe dynamicalpathology revealedby fig. 16b which was missedby all the integrable
approximationsto the Fermi—Pasta—Ulamproblem.But in a deepersense,fig. 16b in fact revealsthe
richnessof dynamics,not its pathology. A growing nonlinearity removesthe shacklesimposedby
analyticconstantsof the motion,permitting asystemto exploreits energysurfaceunfetteredand free.
The resulting erratic motion may be undisciplined but it is never dull. Currently, there has even
appeareda first bud of realizationthat this motion mayhavepracticalapplications[32].

Let us nowreturnto FPU. Boris Chirikov [33—35]wasthe first to recognizethat the input dataused
by FPU placed their systemssquarely in KAM’s region of stability. Specifically, the FPU systems
exhibitedpreciselythe behaviorto be expectedof KAM nearly integrablesystems.Chirikov then went
further andpresentedtheoreticalevidencesupportingthe notion that, hadFPU increasedthe strength
of their nonlinearperturbations,theywould haveobservedthe onsetof chaos.In retrospect,onenotes
that the Hénon—Heilessurfacesof sectionvalidate Chirikov’s predictions.Finally, Boris established
that the resonanceoverlapcriterion he appliedto the FPU systemsalsoappliesto a muchbroaderclass
of nonlinearsystems.If Kruskal and Zabuskywere the first to turn the FPU paradoxinto discovery,
then Chirikov was assuredlythe second,for he revealedthat the KAM theoremis very nearlyoptimal.
Indeed, it was violation of eitherconditions(ii) or (iii) of the KAM theoremthat provided the first
predictablerouteto chaos.The routesto chaosdiscoveredlaterby Ruelle—Takens,May—Feigenbaum,
and Pomeau—Mannevillehavebeenexhaustivelydiscussedelsewhere[36]; thus, we hereprovide an
elementarydescriptionof the routepioneeredby Chirikov in his pursuitof an explanationfor FPU.We
do so in the full knowledgethat Chirikov’s criterionis far from perfect;nonetheless,it remainsthemost
widely usedandprovidesthe bestorderof magnitudeestimatefor the onsetof chaosnowavailable.We
shall give an analytic expressionfor the Chirikov resonanceoverlap criterion after the following
discussion.

We first seekto sketcha pictorially obviousexplanation[37]of how a transitionto chaosoccurswhen
a nonlinearperturbationof H0 becomessufficiently large,i.e., whenKAM’s condition (ii) is violated.
For our H0, we take H0 = J1 + J2 — — 3J1J.,+ J~,a two degreesof freedomsystemwhich is as
convenientas it is arbitrary. Hereeach~k is a momentumconjugateto an anglevariable

0k~Now the
Hamiltonian Ha = H

0 + aJ1J2cos(201— 20,) is integrable,as is the HamiltonianH~= H0 + f3J1J~
2X

cos(20
1— 30,), dueto the presenceof constants‘a = ‘1 + J,and1,~= 3J1 + 2J2, respectively.The virtue

of the integrableHa andH~is that their analytically computablesurfacesof sectioneachexhibit only
one region of alternating elliptic—hyperbolic pairs, as can be seen in figs. 17 and 18. The two
crescent-shaped,so-called2—2 resonantzonein fig. 17 is dueto the perturbationcos(201— 20,), which
stronglydistortsthoseH0 tori havingfrequencyratiosnear2/2. The 2—3 resonantzoneseenin fig. 18 is
a result of the cos(201— 302) perturbation,which strongly distorts H0 tori with frequencyratios near
2/3. Now as the size of theseperturbationsincrease,their respectiveresonantzonesgrow wider and
their centersmoveaway from the origin. This opensthe opportunityfor theseresonantzonesto overlap
before our very eyes.

In particular,from our knowledgeof Ha, H~,‘a~and1~,we can determinethe precise conditions
under which edgesof the independent2—2 and 3—2 resonantzonesfirst occupythe sameposition in
phasespace. Then, we let both the 2—2 and the 2—3 perturbationsact on H0 at the sametime.
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Fig. 17. A Poincarésection for the integrableHamiltonian H = Fig. 18. Poincarésectionfor a distinct integrableHamiltonian H~=

H0 + aJ1J,cos(20~— 207), where hereand in the next two figures H,+ I3.11J~’cos(201— 30,). Hereasingle elliptic—hyperbolicsetgen-
H0 = ‘I + ~ — — f1.!,+ J~.Note that, as opposedto fig. 16, here eratesa single chainof threeislands.
only one setof elliptic—hyperbolicpointsappear,yieldinga so-called
chainof islands.

Specifically, we now regard

Hap = H0 + aJ1J2cos(201—202)+ f3J1J~
2cos(20

1— 302)

as our full Hamiltonian. Mimicking Hénon—Heiles,we set a = 13 = 0.02 and let the strengthof the
perturbationbe determinedsolely by the energy.We now predict the onsetof chaosin the full
Hamiltonian to occuratE 0.2 becausethis is the energyat which thecomputablecrescentregionsin
figs. 17 and 18 first touch. Turning to the computer,in fig. 19a at E = 0.056, we see only the 2—2
resonancebecausethe torus bearingthe 3—2 frequencyratio has not yet appearedin the surfaceof
section.However,in fig. 19b atenergyE = 0.18,we seethat both the2—2 andthe2—3 crescentregions
arepresent.Then in fig. 19c atE = 0.2, we notethe surpriseappearanceof a 5—1 resonancebetween
the 2—2 and 2—3; but in fig. 19d, we observea small emerging region of chaosas predictedby the
integrableapproximations.Although the chaosof fig. 19d is drawnseparately,it actuallysurroundsthe
larger crescentsin fig. 19c. Finally, fig. 19e at energyE = 0.2095 reminds us of the band of chaos
appearingin Hénon—Heiles’ fig. 12. This then briefly illustratesthe first KAM/Chirikov routeto chaos.

Returningbriefly to Chirikov’s resonanceoverlapcriterion, Boris first normalizesa system’srelevant
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Fig. 19. Five surfacesof sectionshowingtheeffect of addingtheperturbationsof both H and H~to H, and thenincreasingthe strengthof these
perturbations.Specifically, we set a= f3 = 0.02 and thenincreasethe energyasa single perturbationparameter.In (a) at E= 0.056, only theH~
islandchaincan be seen.However,in (b), at F = 0.18, both theH andH~islandchainshaveappearedthoughtheyarewell separated.In (c) and
(d),both at energyE= 0.20, wenotethesuddenappearanceof ahigher-orderislandchainanda verysmall erraticregionof chaos.For clarity, (c)
and(d) havebeen drawnseparately;imaginethemsuperposed.Finally at E = 0.2095 in (e),we seeabandof chaosreminiscentof thatseenin the
Hénon—Heilesproblem. The centralpoint of thesefigures is that chaosoccurswhen the integrable island chains (resonances)overlap.

phasespacevolume to unity. He thenestimatesthe volume VR of all resonantzones(asin figs. 17 and
18) as if eachinteraction term in the potential acted alone. He thenassertsthat widespreadchaos
occurswhen VR 1.

Let usnowturn to systemswhich lead to violation of the KAM frequencycondition(iii). In orderto
violate the KAM frequencyconditionin the strongestpossibleway, we elect [38] to consideran H0
havingconstantfrequencies.Here, H = H0 + yH1, where

H0 J1 +2.12+3.13, H1 = [aJ1J~
2cos(20

1— 02)+ 13(J1J2J3)”
2cos(0

1+ 02—03)].

As before, ~k is the momentumcanonicallyconjugateto position variable
0k~ Recalling that t0k=

I3HO/OJk, wenotethat w
1 w2/2= w3/3 independentof the ‘k or

0k• The upshotis that all H
0 tori bear

rational frequenciesin the ratio 1/2/3. Thus, the resonant2—1 perturbationcos(201— 02) and the
resonant1 / 1 / 1 term cos(01+ 02 — 02) overlapthroughoutphasespace.In addition,if we introducethe
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canonicaltransformation~k = $k,
0k = ~Ik + kt, k = 1, 2, 3, thenwe obtain

~= y[a~
1J~

2cos(2ç1i
1— ~I’2)+ 13(1tfr213)h/2 cos(i/11 + ~2 — 1113)]

as the transformedHamiltonian.The form takenby ~‘ nowexposesa remarkablefact, for, if we now

scalethe time accordingto t = yr, we find

~ [a$~~~2 cos(2~~- ~2) + ~ cos(~1+ ~2 - 4~3)1’

from which y has completely disappeared!Thus, despite the fact that y appearsas a parameter
measuringperturbationstrengthin H = H0 + 7H1, in fact it merely scales the time. Whateverthe
characterof the motion for H, whetherintegrableor chaotic,varying y changesonly the rateat which
things happen,not what happens.Moreover,this remainstrue no matterhow small the valueof y >0.
Second,the form of ~r (or ~C)makesit clear that I = + 2$2 + 3~3is a constantof the motion
(obviously, so is I = f~+ 2.12 + 3.13). Invoking techniqueswell knownto studentsof advancedclassical
dynamics[39], this constantcan be used to reducethe numberof degreesof freedomfor this system
from threeto two, therebypermittinguseof two-dimensional,planesurfacesof section.We hereomit
analyticaldetailsand proceedstraightto the numericalresultsshownin fig. 20a,b. Figure 20arevealsa
typical surfaceof sectionfor thecasein which phasespaceexhibitsaregularanda chaoticcomponent;
fig. 20b presentsa typical surfaceof section for which most of phasespaceis coveredwith chaotic
trajectories.Thesetwo figures indicatethe changein surfaceof sectionwhich can occurwhensystem
parametersarevaried; for detailssee ref. [38].

The quiteremarkablefeatureof thesesurfacesof sectionis that they areinvariant underchangesin
the valueof ‘y for anyy >0. Thus,thereis a discontinuouschangefrom the integrablemotion of H0 to
the chaoticmotion of the full H the momenty increasesaway from zero. Although suchbehavioris
common in billiard systems,the results describedhere revealthat it also occurs in systemshaving
smoothpotentials.In fact, this behavioris quite commonin smoothsystems.The only requirementsfor

p3 p3

/~E::~.:~.. ~ ~

~~q3 ~c~: 1q3

Fig. 20. (a) Both orderand chaos in thesurface of section for the Lunsford—Ford [38] Hamiltonian. This surface of section is invariant asthe
nonlinearityparametery tendsto zero.(b) Chaosdominates;this surfaceof section too is invariantasy tendsto zero.Thesefigures showtheeffect
of varying a systemparameter;for details seeref. [38].
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this behaviorin Hamiltoniansystemsexpandableabouta stableequilibrium point or periodic orbit are
that the constantfrequenciesof the quadratictermsexhibit sufficient rational dependencesthat the
cubic couplingscan resonantlycoupleall degreesof freedombeforequarticor higher-ordertermscan
add nonlinearcorrectionsto the constantharmonicfrequencies.

For illustrative purposes,theseconditionswere forced upon the simple, threedegreesof freedom
Hamiltonian systemHap consideredabove; however,in many-bodysystems,their satisfactionis both
frequentandautomatic.Two immediateconsequencesaccrue.First, chaosis now seento be ubiquitous
in the macroscopicworld. But secondandequallyimportant,thissecondKAM/ Chirikov routeto chaos
is also a routeto classicalstatisticalmechanicswhich hasfor decadesheldthe belief that its justification
would eventuallyderive from classicalmechanicsitself. Consider,for example,equilibrium statistical
mechanics,which computesequilibrium quantitiesfrom the partitionfunction Z = J dq dp e~ on the
assumptionthat theweakyH1 which bringsthesystemto equilibriumneednot be addedto the H0 in Z.
KAM / Chirikov now permit an a priori proof of this assumptionto replacethe earlier a posteriori
argumentstouting that “it works”.

In concludingthis section,let us notethat violation of KAM condition(ii) providesarouteto chaos
with a thresholdjust as do severalother pathsto chaos.However, violation of KAM condition (iii)
yields a discontinuousjump to chaos from the unperturbedintegrablesystem. Both routeshave
relevanceto many areasof physics including statisticalphysics.

We now presentan examplefrom nonequilibriumstatisticalmechanicswhich carriesus full circle
backto FPU. Specifically,we substantiatetheir belief thata computercan provide anilluminating first
principlesverification of thermaldiffusion in the dynamicsof a nonlinearHamiltonian system,i.e., a
derivationcontainingno phenomenologicalassumptions.

5. The ding-a-ling model

“It seemsthereis no problem in modernphysicsfor whichthere
are on record as many false starts, and as many theories which
overlook some essentialfeature, as in the problem of the thermal
conductivity of nonconductingcrystals.”

R.E. Peierls[40]

What is the natureof the problemPeierlshighlights?First, recallthatenergy(heat)transportin an
insulatingsolid is governedby the phenomenologicalFourierheatequation[41]J= — KVT,whereJ is
energy(heat) current, V is the gradientoperator, T is temperature,andK is a size independent,
intrinsic systemproperty called the thermalconductivity. This then is the problem.Thereis no first
principles,analytic derivationof this phenomenologicallaw nor, prior to KAM/Chirikov, were there
valid criteria defining a categoryof systemswhosenumericalintegrationmight be expectedto yield a
proper thermalconductivity, not evenwhen attention is restrictedsolely to latticeenergytransport.
Zabuskysuggeststhat this lack was one of the prime forcesdriving FPU to study one-dimensional
nonlinearlattices.At first blush, it might appearthatthe FPU calculationsunveiledyet another“false
start”; however, the FPU preprint described not a failure, but a paradoxdemandingresolution.
Specifically, the FPU results challengedthe theoreticalcommunity to explain why the well-known
theoremsof Poincaré,Fermi, and Siegel did not, in fact, define the propercriteria for observing a
normal thermal conductivity. Although there is still no first principles analytical derivationof the
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Fourierheatlaw, direct numericalintegrationof Newton’sequationshasverified that chaoticdynamical
systemsdo in fact exhibit an energytransport governedby the Fourier heat law. Indeed,the key
ingredientis now known to be chaos[42];however, before presentingthe evidencesupportingthis
conclusion,let us stroll alongpart of the pathwhich led to it. Following FPU,we confineour attention
to one-dimensionalnonlinearsystems.They clearly offer greatereaseof numerical integration, but
moreimportantthey can, folklore to the contrarynotwithstanding,exhibit an energytransportwhich
obeysthe Fourier heatlaw.

For a one-dimensionallatticesystem at equilibrium, the averageenergyflow at anypoint is zero.
Nonetheless,therearefluctuationsin which the net energyflow reversesits direction in a highly erratic
and seeminglyunpredictablefashion. If a temperaturedifference is placedacrossthe endsof such a
latticesystem,energyfluctuationsareexpectedto continuealmostas before,only now the temperature
differenceslightly favors fluctuationsin one direction over the other. Energytransportis thus seento
resemblearandomwalk in which on averagethereis no net movementbut in which root meansquare
deviation can nonethelessgrow. More than a mere analogy is involved here. Indeed, Wang and
Uhlenbeck[43] announcedmanyyearsago that the heat equationis the continuumlimit of a discrete
randomwalk. But if we now wish to establishthat a deterministicNewtoniansystemexhibits energy
transportobeyingthe Fourierheatlaw, we find ourselvesfacingnot merely thatFPU paradoxbut the
muchdeeperparadoxinvolving howa predictable,deterministicsystemcan everexhibit unpredictable,
randombehavior.

Clearly nothing in the traditional backgroundof mostphysicistspreparesthem for suchcontradic-
tions; but worse, even the traditional definition of classical chaos involving sensitivedependence,
Liapunov numbers,and the like, leavesthe scientific audienceequally unprepared.Indeed,one finds
eventhe most recentissuesof journalssuchas PhysicalReviewLetters,PhysicaD, or Nature,littered
with terminologysuch as “seemingly random”, apparentlyunpredictable”,or “deterministic chaos”.

Fortunately,the needfor such dissemblinghaslong sincepassed.For systemschaotic in the senseof
positiveLiapunovnumberarealsodeterministicallyrandomin the sense[44]of algorithmic complexity
theory— see appendixA for details.At this point let usmerelystatethat the paradoxcan be resolved
merely by noting that nothingin principle preventsa deterministicorbit from being a realizationof a
random process.In any event, if one wishes to exposea classical systemyielding diffusive energy
transportthenoneis forced to regarddeterministicrandomness(chaos)asa necessaryingredient.But is
it also sufficient?

Once Casati and Ford [45] establishedthat the unequal-massToda lattice, unlike its integrable
equal-massbrother,exhibits a transitionto chaoswith increasingenergy,they immediatelyrecognized
that this unequal-masssystemwas a prime candidatefor demonstratingthe validity of the Fourierheat
law via direct numerical integration of its equationsof motion. However, at the time they were
enmeshedin a numerical investigationof energy transportin the 1-D, unequal-masshard-pointgas,
which, as particlenumberincreased,appearedto be alwaysteeteringon the brink of yielding a thermal
conductivity independentof length. In the equal-masshard-pointgas, asin the equal-massTodalattice,
energyis transportedby unattenuatedsolitons.For both, heat current is proportionalto temperature
differenceratherthangradient,andconductivityK is thereforeproportionalto systemlength.With the
introductionof distributedmassimpurities,the solitonsareattenuatedpermittingthehard-pointgasto
becomemixing (but not chaotic) andthe Toda lattice to exhibit a transitionto chaos.This being the
case,why did Casatiet al. not immediately drop the hard-pointgas and turn to the Toda lattice?To
understandthis point, onemust recall that initially closeorbits for mixing systemsare rigorouslyknown
to separateaccording to somepolynomial function of the time t whereasinitially close chaoticorbits
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separateexponentiallywith the time. However,if the polynomial functionof t is of sufficiently higher
order, thenonly extremecare and greatnumericalaccuracycould distinguishmixing from chaos,to
distinguishvery weak lengthdependencefrom no length independencein K.

Despitemany hoursof computertime, reamsof computerpaper,countlessmassdistributions,and
particle numberincreasedto our limit, soliton-like entitiescontinuedto move through our unequal-
mass, hard-point gas systemscarrying energyproportional to temperaturedifference rather than
gradient. Moreover, as we varied the mass distributions and increasedsystemparticle number, the
conductivity would tend toward but never reacha constantvalue. Surveying the characterof our
evidence,we concludedthat mixing, at least in the hard-pointgas, is not rapid enough to yield a
length-independentthermal conductivity. We thus turned to an all-out assaulton the unequal-mass
Toda lattice, but alas,the seeminglyindomitable“solition” againdefeatedour bestefforts. Stacksof
computeroutput for the Todalattice led us to believethat, could wehavegonebeyondour200 particle
limit, a fully diffusive energytransportmight havebeenobtained.Indeedfor somemassdistributions,
our resultswere tantalizinglyclose,but theyneverstabilized.We roundlycursedthe daythe solitonwas
born; we hauntedthe halls of solitonconferencesin hopesof finding its Achillesheel.And then,Glory
Hallelujah, youngBilly Visscherintroducedus (for details,seeref. [41]) to the ding-a-lingmodelshown
in fig. 21.

Figure21 exposesa one-dimensional,equal-masssystemcomposedof free particlesalternatingwith
harmonicallyboundones.Despiteits hybrid character,Visscherhadhighhopesfor thismodel.First, it
was computationallytractable,but evenmore important, the rapid oscillationsof the boundparticles
would leadto effectively randomphasesin sequentialcollisionswith the free particles.If systemmotion
could therebyexhibit enoughrandomness,then diffusive energytransportwould appearlikely. Casati
et al. sawthreeadditionalvirtuesin the model. First, supposeall particlesin fig. 21 areat rest;thenlet
the leftmost free particlebe given a “hammer-blow” creatinga “soliton” moving to the right. After
being struck by this free particle, the first bound particle will move to the right; however, if the
restoringforce on this boundparticle is large enough, it will not swing out far enough to hit the
neighboringfree particle to the right. Thus, the solitondies after just one collision! Nonetheless,and
this is the secondpoint, if the amplitude of the initial soliton-typesoundpulseis sufficiently large,then
it can propagatethroughto the otherendof the systemdespitebeingstronglyattenuateden route.And
third, the final statefor this systemcan be exquisitelysensitiveto a slight changein initial state,not
becauseof isolatedbinary collisions betweenfree andboundparticles,but becausea free particle can
havemultiple collisions with a given boundparticlebeforecolliding with its otherboundneighbor.It is
thesemultiple collisions which yield the chaos,the deterministicrandomness,shownin fig. 22.

Figure22apicturesthe simplestversionof our system,which placesone boundandonefree particle
on a ring (periodic boundaryconditions). For this simplestsystem,we may constructthe surfacesof
sectionshownin figs. 22b,c. OnceparticlenumberN is fixed, thenall otherparametersfor this system
can be “scaled”out saveonewhichwe choseto be o, the angularfrequencyof the boundparticle. We

Fig. 21. This figure revealstheding-a-ling model (due to Bill Visscher)to be aone-dimensionalsystemcomposedof free particlesalternatingwith
harmonicallyboundparticles.The modelis quitenonphysicalyet nonethelessretainsthatessentialfeaturerequiredto exhibit athermalconductivity
independentof length.
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Fig. 22. (al The ~iniplesIding-a-lingmodel havingtwo particles— one Fig. 23. This figure plots thethermalconductivity for the ding-a-ling
bound one free— moving on a ring. (b) A surfaceof section for this model asa function of particlenumber.Herehot andcold reservoirs
ding-a-lingmodel when thespring is sufficientlyweakthat themotion are placedat the left and right endsof thesystem,respectively.The
is close to that of the integrablehard-point gas. (c) For sufficiently conductivity K is computed from J = — KVT and it becomesin-
stiff spring, one obtainsa chaoticsurfaceof section. dependentof length at aboutN = 10.

mayalso view to as specifyingthe stiffnessof theharmonicspring. Whento = 0, thissystembecomesthe
two-particle hard-pointgas, which is integrable.Figure 22b showsthe nearly integrable,weak-spring
surfaceof sectionat to = 0.20. Here, smoothcurvesexist almosteverywhereexceptfor the thin region
of chaos at the extremeleft of the figure, where multiple collisions are occurring. Chaosbecomes
widespreadat ~ = 1.00 (not shown), and in fig. 22c the transition to total chaosat to = 3.00 appears
complete.For systemswith particlenumbergreaterthantwo, we haveverified their transitionto total
chaosvia exponentialorbit separationand Liapunovnumbers.With increasingN, the value of to at
which chaosbecomeswidespreadrapidly decreases.

We nowplacedthe systemshownin fig. 21 betweentwo simulatedheatreservoirsandnumerically
integratedthe equationsof motion using to = 1. Next, we establishedthat the heatcurrentJ andthe
temperaturegradient VT achieved a constantsteady state value. We then computed the thermal
conductivity from the heatequationJ= — KVT, whereVT= dT/dxfor theseone-dimensionalsystems
andwhere particle temperatureT is taken to be twice the particle’s kinetic energy. Finally, we
computedK over a rangeof particlenumberN and verified, as shownin fig. 23, thatK becomessize
independentfor N� 10. Finally, our reservoir value for K was corroboratedvia two independent
calculations:the Green—Kuboformalism and a randomphaseargument— detailsare given elsewhere
[41].

It is now time to discusswhy we namedour systemthe ding-a-lingmodel. Its first meaningderives
from a Bill Visscherphantasy in which each free particle is viewed as a clapper swinging ‘twixt
neighboringoscillatorsand forcing them to ring out like bells. But quite asidefrom lending itself to
suggestiveonomatopoeia,there is a secondreasonfor the name. Webster’sdictionary statesthat
ding-a-ling is most likely a euphemismfor damn fool, and ours is a damnfool model indeed. This
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hybrid, this unphysicalhalf-breedof questionableancestry— half ideal gas, half harmonicoscillator— is
a true ding-a-lingfor certain. Readersarethereforeto be forgiven if their first reactionto the diffusive
energytransportexhibitedby the ding-a-lingmodel is to regard it as a freak occurrencein an absurd
model. But au contraire,quite the oppositeis true.

Had we wished merely to predict a lattice thermal conductivity for some laboratory substance
starting from Newton’s equations,we could havepositioneda three-dimensional,many-bodysystem
having a physically realistic interatomicpotentialbetweensimulatedthermalreservoirsandthenlet a
computerchurn out an answerto be comparedwith experiment.Thereis muchto be learnedfrom such
calculationsas the excellentpaperby McDonaldandTsai reveals[46]. However,the ding-a-lingmodel
servesa quite differentpurpose.It provesthat a dramaticallyshort, one-dimensionallatticesystemcan
exhibit diffusive energytransportprovided it has that oneingredient essentialfor the task. With the
single-mindedintentof exposingthat essentialingredient,the ding-a-lingmodelhasabstractedaway all
the seeminglycrucial attributesof a properphysicalsystemsavethe oneuniqueattributerequiredto
yield a diffusive energytransport.Like the Cheshirecat in Alice in Wonderland, in the ding-a-ling
modeleverythinghasdisappearedexceptthesmile. In this regard,we mustemphasizethat attenuation
of solitons is a problemonly for small systems.For large (laboratory-sized)systems,the transitionof
energytransport as pure sound to heat is concurrentwith the transition from order to chaos.In
summary,deterministicrandomness(chaos)is the sine qua non for a properthermalconductivity.

This section hasemphasizedthe contributionof the ding-a-ling model to the problem of lattice
thermalconductivity becauseit is a direct descendantof the FPU problem. Obviously, many others
havesoughtto exposethe essentialsneededfor diffusive energytransportandthe motivation for the
ding-a-ling model owes muchto the efforts of others.Work on harmonicsystemswith impurities has
beenreviewedby Visscher [47] and by Jackson[48], who also reviews the researchon nonlinear
systems.But especiallyrelevantto the presentdiscussionarethe papersof Mokross and Büttner [49]
and those of Jacksonand Mistriotis, [50], for both thesepapers investigatedenergy transport in
diatomicTodalattices.MokrossandBiittner investigateddiatomicTodalattices for particlenumberup
to N 30 andreportedtheyhadobtainedaproper,size-independentthermalconductivity.Jacksonand
Mistriotis, on the other hand,assertedthat theycould obtain a size-independentconductivity only for
N � 250. The unpublishedresultsof Casatiet al. supportthis Jackson—Mistriotisconclusion.Indeed,
thereis muchoverlapin the conclusionsreachedby Jackson—MistriotisandCasatietat. Detailsmaybe
found in their respectivepapers.

6. Discussion

The FPU paradoxforcesus to face someof our deepestinsecurities.Giventhe Hamiltonianfor a
system,whatis the characterof its motion?Whatrequirementsmustbeimposedon a dynamicalsystem
in order thatan approachto equilibrium be guaranteedandthat this approachproceedat the proper
rate?Canstatisticalmechanics— both equilibrium andnonequilibrium— be derivedfrom the underlying
dynamics?And nowthe questionsbifurcate,evolvinginto questionswhich probe almosteveryareaof
science. Dyson’s quite pertinent comment, “Ford’s explanationcannot be regardedas complete”,
lingers, for it appliesnot just to Ford but to all. Indeed,the “full andfinal” explanationof FPU still
pends.It is thisvery fact which makesthe FPUparadoxsucha delightful pedagogical“skeleton” upon
which to drapethe evolving story of nonlineardynamics/chaos.This reviewis but anotherretellingof
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that story by one intimately involved in its unfolding. It is basedon a lecturefirst preparedfor a Los
Alamosaudiencebut subsequentlypresentedelsewhere.It hasnowreachedthe graduatestudentlevel
as the opening lecture in an advancedgraduatecourse in nonlinear dynamics/chaos.This review
representsits first appearancein print, but it mayappearlateras the openingchapterin agraduatetext.
A good conferencetalk neverdies, it simply metamorphosesover.., andover.., and over again.

The FPUparadoxwas not only instrumentalin the developmentof solitons,heavybreathers,inverse
scattering, completely integrablesystems,and the like but also in the developmentof Chirikov’s
resonanceoverlapcriterion for theonsetof chaos.But in addition,FPU is a closecousin to the surprise
packagescontained in the Hénon—Heilessystem and the Toda lattice, which latter links back to
solitons, breathers,etc. Finally, its resolution led to the understandingthat few-body systemscan
behave just as randomly as do many-body systems; indeed, it is now appreciatedthat statistical
behaviorin many-bodysystemsis not so much a consequenceof the law of large numbersas of the
ubiquity of chaos.The marriageof classicalmechanicsandclassicalstatisticalmechanicsis now only a
matterof time, althoughthe final prenuptialagreementmaynot be signedwithin our lifetime.

Statistical mechanicsfrequently insists on the thermodynamiclimit in which systemvolume and
particlenumbertendto infinity whereasclassicaldynamicsstill hasnot fully mappedout the domainsof
behaviorin finite systems.In an effort to bridge the perceivedgap betweendynamics and statistical
mechanics,a growing numberof investigators[51] havesought, with mixed results,to establishthat
chaosoccurs at vanishingly small nonlinearity as particle numbertends to infinity. These computer
studiesform a valiant first attack on a problem whose subtle intricacies dwarf those of the KAM
theoremby ordersof magnitude.Whatare theseintricacies?We havespaceto list only a few. First, the
thermodynamiclimit is, strictly speaking,only a mathematicalconvenience,not a physical necessity.
Threeindependentgroupshave,for example,established[42,49, 50] that small, evenone-dimensional
systemscan exhibit a normal, Fourier conductivity provided phase spaceis dominatedby chaos.
Similarly, Chirikov’s kicked rotor, thoughsufficiently chaoticat largenonlinearityto exhibit diffusion,
retainssmall islandsof stability no matter how strong the nonlinearity [52]. In other systems,chaos
dominatesno matter how small the nonlinearity*); in yet othersthe amountof chaosat first increases
andthendecreaseswith increasingnonlinearity.* *) Suchvariety makesgeneralitiessuspect.

But whatnowof the subleties?Returnto Siegelstheorem[13]regardinganalyticHamiltonianswhich
can be expandedin a power seriesabout their equilibrium points. Since nonintegrablesystemsare
dense in their {ck}-space, integrable systemscan in general be distinguished from their dense
nonintegrableneighborsonly if all coefficients in their powerseriesare known to infinite precision.
Physicistsdo not often enjoy thisluxury. As a final subtlety,Moser [13]pointsout that, if thedefinition
of neighborhoodin {ck} -spacebe slightly alteredfrom the intuitively obviousdefinition Siegel uses,
then integrablesystemsare also densein { C~} -space!We thus reachthe distressingconclusionthat
distinguishingintegrablefrom nonintegrablesystemsis in generalno easierthandistinguishingrational
from irrational numbers.

Placed in perspective,all theseproblemsreveal finite humanbeingsusing finite tools to reachfor
infinity — the infinitely large, the infinitely small, the infinitely complex.Truly, what fools we mortals
be; we fail to listenevento ourown prophets!Avagadrocountedthe particlesin a box andfound them

*) In addition to theexamplepresentedin ref. [37],the3D hard-pointgasis integrable,but whenthepointsbecomespheres,systemmotion is
chaotic no matterhow small theradiusr >0 of the spheres.

**) Consider the one-dimensionalLennard-Jonesgas. At low energies,its motion is negligibly different from that of coupled harmonic
oscillators.As itsenergyis increased,a transitionto chaoticbehavioroccurs.But at extremelylargeenergy,the amountof chaoticbehaviormust
decreaserapidly as systemmotion tendstowards that of the integrable1D hard-pointgas.
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to be finite. Einsteinpatiently explainedto all that man’s ultimatespeedis finite. Heisenbergpointed
out that man’s ability to measureconjugatevariablesis finite. Gödel establishedthat man’s ability to
providea completemathematicaldescriptionof his universeis finite — seetheappendixbelow.But still
we do not listen. The overwhelming majority of chaos theorists valiantly cling to the notion of
deterministicpredictability and speakof “deterministic chaos”. By this, they meanthat their most
accurateavailableknowledgeof an initial statepermitsthemto “predict” future stateswith exponen-
tially decreasingaccuracy.But algorithmic complexity theory— againconsulttheappendix— establishes
that this is precisely the type of “prediction” one could provide for a randomwalk. And in fact, a
chaoticprocessis random.It is also deterministicin thesensethat thegoverningequationssatisfy the
conditionsof someexistence—uniquenesstheorem.Thus, somefew havebegunto refer to chaosas
“deterministicrandomness”.In thecontext of this paragraph,this termmakesit clearthat we cannot
obtain any moreinformationaboutthe futureof a chaoticstatesequencethanwe put in at theonset,
and the amountwe put in is alwaysfinite. In consequence,anotherfundamentallimitation on manlies
exposed.Chaosis thus openinga newera in science.This entirereview haspointedtowardthis final
conclusion.However,asreadersconsiderwhetherto acceptor rejectourconclusion,they might wish to
contemplatethe following observation:

“I know that mostmen,including thoseat easewith problemsof thegreatestcomplexity,can
seldomaccepteven thesimplestand mostobvioustruth if it be suchas wouldoblige themto
admit thefalsity ofconclusionswhich they reachedperhapswith great difficulty, conclusions
which they havedelightedin explaining to colleagues,which they haveproudly taught to
others, and which theyhavewoven,threadby thread, into thefabric of their lives.”

Leo Tolstoy
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AppendixA. Algorithmic complexity theory

Thelexicographer[531surveyshumanusageandpublishestheconsensus— chaos:a stateof things in
which chanceis supreme.The chaologist[36]surveyshis disciplineandannouncesdefinitionalanarchy,
eventhoughgreaterresolutionmight haverevealedbut onedefinition havinga thousandnames.In the
current literature,one finds “erratic”, “irregular”, “disordered”, “seeminglyunpredictable”,“appar-
ently random”. GreatertechnicalsophisticationinvokespositiveLiapunovnumbers,positivemetric or
topologicalentropy,everywherenegative curvature,or the like. Were the dynamicalsystemsunder
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scrutiny not labeleddeterministic,all the abovedefining termswould naturally fall underthe obvious
rubric, “random”. But this word immediately implies the term “deterministic randomness”,which a
physicist instinctively feels is equivalent to the oxymoron “predictable unpredictability”. But the
existence—uniquenessunderpinningour Laplacian clockwork universenotwithstanding,determinism
and predictability are not synonyms. Indeed, there is life beyond the conventional “deterministic
chaos”;however,we mustdevelopa new definition of randomnessin order to find it. To thatend,we
now presentthe rudimentsof algorithmic complexity theory, also known as algorithmicinformation
theory.

At the foundation of algorithmic complexity theory lies the notion of randomnessin finite and
infinite digit strings. To give meaningto randomness,complexity theory introducesa quantity KN,
called complexity, defined as the bit length of the shortestalgorithm (computerprogram)capableof
computinga given sequenceof N bits.

Oneimmediatelywondersif complexitycan be mademachineindependent.In answer,Kolmogorov
hasproven the existenceof a universal machineU such that K~(x)� K4(x) + C4, whereU denotes
universaland.~‘ denotesarbitrarymachine,wherex denotesthe finite outputbinary string,andwhere
C4 dependson .~‘ but not x.

Next, a readermight inquire if complexityKN can alwaysbe preciselydetermined?To answer,recall
that, if KN is the complexity of a given N-bit sequence,thenno (KN — 1) bit programcancomputethis
sequence.Supposethenwe seekto verify someone’sassertionthat a specifiedsequencehascomplexity
KN by sequentiallyrunning all programshaving (KN — 1) bits. Many of theseprogramswill at best
output somenonsenseresultand halt,but someof them mayrun without halting for atime longerthan
we have to wait. How thencan we be certain that at least one of theselatter programswill not
eventuallyprint out the specifiedsequence,revealingthat its actualcomplexity is (KN — 1) or less?The
answerto this questionlies at the bedrockfoundationsof mathematics,for Turing’s Halting Theorem
[54], the computingman’s versionof Gödel’stheorem,assertsthat the only way to know whetheran
arbitrarycomputerprogramwill accomplishits task and halt is to let it run and see.Determininga
precisevaluefor complexityKN thus lies beyondhumancapability.Nonetheless,KN can anddoesserve
as a usefulmathematicalconstruct,but of greatersignificancefor us, KN can in mostcasesbe estimated
as well as is needed.

To illustrate, let usnowestimatecomplexityfor someinformativeexamples.For simplicity, we shall
assumeall sequencesto be binary; were the original sequencegiven in someotherbase,we couldeasily
convert it to binary via asubroutinewhosefixed bit lengthwill not materiallyaffectKN, providedN is
large relative to the bit lengthof the subroutine.Indeed,the following estimatesbecomeuseful only
whenN is sufficiently large that the boundon KN is dominatedby N.

First, note that all N-bit binary sequencescan be printed by the copy program, “PRINT
[br, b,,. . . ,b~]”, where [b1,b2,.. . , bN] denotesany arbitrary sequence.Then consider long se-
quencesso patternlessthey cannotbe computedby any algorithm appreciablyshorterthan the copy
program.Clearly, an upperboundon the complexityof suchsequencesis given by KN ~ N + C1, where
C1 ‘~ N is a constantwhich accountsfor the bit length of the computeroperatingsystem,internal
functions,and the like; a lower boundon thecomplexity of suchsequencesreadsKN� N — C2, where
C2 ‘~ N sets our cutoff for patternlesssequences.Turning now to the opposite extremeof ordered
sequencessuchas a string of N ones.This sequencecan be computedby a program,“PRINT ONE, N
TIMES”, whosebit length is almost completelyexhaustedby the log2N bits requiredto specify the
integerN. For this highly orderedsequence,an upper boundon complexity may be written KN ~

log2N+ C3.
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Clearly all theseboundsrequirethatN besufficiently largethatN or log2Ndominatetheir associated
C’s. However, “sufficiently large” mustnot be thoughtto imply that our inequalitiesbecomeaccurate
only in the limit as N—~~ this phraseis hereusedsolely to ensurethat KN reflect aproperty of the
sequenceratherthan the computer.To fully appreciatethis point, rewrite the last two inequalitiesas
KN � N[1 — (C2IN)] and KN � log2N[1 + (C3/log2N)]. It is now clear that (C2/N) and (C3/log2N)
representthe fractionalerror madein writing the moreusefulestimatesKN N andKN log2N. How
“sufficiently large” N must be is determinedby the error permitted in the physicalor mathematical
applicationbeing considered.However, it must be emphasizedthat estimatesof complexity become
meaninglesswhen applied to sequencessoshort thatN or log2N is lessthantheir relevantC’s.

Following Kolmogorov, Chaitin, and Solomonov (see ref. [55]), we now assert that an N-bit
sequenceis randomprovidedthat its complexity KN is approximatelyequalto N. Randomsequences
are informationally incompressible,so unpredictablyerratic that they cannotbe computedby any
algorithmwhosebit length is appreciablylessthanthatof the sequence.Moreover, as Martin-Löf has
shown [44], such sequencesare nothing less than realizationsof conventionally defined stochastic
processes.But now to ensurethat the necessaryphrase, “approximately equal to”, can be made
sufficiently precisethat the definitionof algorithmicrandomnessis seento bevalid when thevalueof N
is large,let usintroduceMartin-Löf’s theorem[44]:The fractionalnumberF of N-bit binary sequences
havingcomplexity KN � N[1 — (C/N)] satisfiesF � (1 — 2_C), whereC is a positiveintegerin the range
0< C < N. This theorempermitsus to chooseC such that F is as closeto unity as we please;we can
thenchooseN suchthat KN approachesN as close as weplease.Thus,whenN 2’ C ~‘ 1, we havethat
the overwhelmingmajority of the correspondingN-bit binarysequencesareunequivocallyrandom,i.e.,
KN N. To put meaton the barebonesof thesearguments,considerthe specific casein which C = 5
and N= 100. Then more than96% of the 2100 (~10~°)100-bit sequenceshavecomplexity K100� 95.
Truly, amongN-bit sequencesrandomnessreigns.

But in the remainingsmall setof sequencesfor which KN ~ N, thereis a subsetof informationally
compressiblesequenceshaving KN ~ N. Kolmogorov, Chaitin, and Solomonovcall such sequences
nonrandom.Among these,thereis a subsetwhoseinformationcontentis logarithmicallycompressible,
i.e., KN ~ log2N + C, for all N suchthat log2N~ C; it is preciselythesehighly orderedsequenceswhich
occur most frequently in applications.Note that, becauseof their logarithmic compressibility, these
sequencesare just as unequivocally nonrandomas the KN N sequencesareunequivocallyrandom.
Moreover, since N-bit sequencesdivide into that vast majority which are random and that small
minority whoseinformationcontentis logarithmically compressible,only a small subsetindeedremains
to occupythatnarrowandunimportant(to us) borderwhererandomnessblendsinto nonrandomness.
The meaningof complexity is now well definedfor finite sequences,but how are we to extendthe
definition to infinite sequences?

Kolmogorov originally proposedthat aninfinite sequenceshouldbe consideredrandomif all its finite
subsequencesof lengthN hadcomplexityKN N. Howeverfor increasingN, Martin-Löf demonstrated
that the complexity of finite sequencesoscillated in an irregular way betweenKN — N and KN
N — log2N. The problemis that evenrandomsequencessometimeshavequite extendednonrandom
segments.Various ways havebeensuggestedto circumventthis problem andeachhas its advocates.
Herewe electto follow Alekseevanddefinethe complexityK,. of aninfinite sequencevia the equation
K,. = limN~,.(KN/N). With this definition in hand,weagainfollow Alekseevandcolleaguesand assert
that an infinite sequenceis randomwhenK,. >0 and nonrandomwhen K,. =0. It is thuscommonto
speakof positiveor null complexityas a substitutefor sayingrandomor nonrandom.Thesedefinitions
havethe virtue of eliminating the oscillations in KN andof providing a sharpdivide betweenrandom
andnonrandom.In addition, using thesedefinitions, Martin-Löf hasproven that sequenceshaving
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positivecomplexityarerealizationsof a randomprocesseswhich passall humanly computabletestsfor
randomness;thisproofprovidesthe iron-cladlink betweenconventionaldefinitions andthe algorithmic
definition of randomness.

We can now at last forge the connection[56] betweenthe conventionaldefinitionsof chaosandits
definition as deterministicrandomness.The intuitive definitions “erratic”, “irregular”, “disordered”,
“seemingly unpredictable”,“apparentlyrandom” can be subsumedunderthe slightly more technical
“exponentialsensitivity of final stateuponinitial state’. In mathematicaljargon,exponentialsensitivity
meanspositiveLiapunovnumbers.But now let us inquire why this mostcommonlyaccepteddefinition
[57] focusesits attentionso intently upon exponentialgrowth of initial error in the time evolution of
chaoticdynamicalsystems?Why can it not be satisfiedwith an error which growsaccordingto a power
law havinga largeexponent,or why not the oppositewhereerrorgrowslike anexponentialraisedto an
exponential?

The answeris revealing~Simple exponentialerror growth (in systemswith boundedstatespace,of
course)is precisely the point at which our calculationslose aboutone digit of accuracyper suitably
chosenunit of time. Thus, if we wish to maintain constantcalculationalaccuracyover an extended
interval, we must input aboutasmuchinformationaswe get out of our calculations.This is the point at
which our IBM or CRAY computersbegin, in effect, to executethe copy program discussedearlier;
indeed,they becomeelaborateXeroxmachines.In summary,it is the point at which our deterministic
algorithms are in the processof computingorbits which are both deterministicand algorithmically
random.There is no contradictionhere,since the existenceand uniqueness(determinism)of chaotic
orbits doesnot precludethem from beingrealizationsof somerandomprocess.Consequently,it now
becomesclear that the definition of chaosas exponentialsensitivity or positive Liapunov numbersis
fully equivalentto its definition as deterministicrandomness;which definition one usesis a matter ~f
choice.

The above discussionhas been at the intuitive level; mathematicalrigor hasbeen supplied by
Alekseev,Yakobson,andBrudno (seeref. [58]). In closing, let usobservethat algorithmiccomplexity
is currentlyfinding numerousapplicationsin the physicalsciences[59,60]. Finally, looking backat the
openingsentenceof this appendix,we perceivethat we havecomefull circle, for the scientist is now
learningwhat the man in the streethaslong known.
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