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1 Introduction

In our lecture, we mentioned that the Lévy alpha-stable distribution and its “fat-tail effect" that

illustrates rare events beyond the garden-variety normal distribution. To see the motivation,

recall the Lévy alpha-stable distribution Lα(a, x):

P(x0,t0;xn,tN ) = Pa,α(x) = Lα(a, x) =
1

2π

∞∫
−∞

eikxP̂a,α(k)dk

=
1

|x|1+α
[
cα(1 + sgn(x)β)sin(

πα

2
)
Γ(α+ 1)

π

]
,

(1)

where α is the stability parameter that characterizes the distribution. This is a generalized

equation of Central Limit Theory (CLT). We knew from class that when α = 2, the Lévy stable

distribution will reduce back to the Gaussian Distribution. Clearly, we can related diffusivity D

to a such that: 
a = Dt

Lα=2(a, x) ∝ e−x2/a, Gaussian distribution (α = 2).

(2)

The parameter a carries a physical meaning of the local transport diffusivityD that corresponds to

the Gaussian-Markov process. In this line of thought, it’s natural for one to think of the properties

and physical meanings of a when α 6= 2, for all cases in Lévy stable distributions.

It’s difficult, however, to analyze the general form of a given that not all the Fourier component

P̂a,α(k) = e−a|k|
α
of Lévy stable distributions are trivially transformable. But we can still consider

one of a paradigmatic example of Lévy stable distribution, the Cauchy (Lorenzian) Distribution,

where α = 1. For the Cauchy distribution, the transport is non-local, associating with anomalous

diffusivities. The flux of Possible tools to deal with this are Continuous Time Random Walk

(CTRW) and Fractional Kinetics (FK). Our goal here is to find out the physical meaning of a

in the Cauchy distribution, which relates to avalanches in high Knudsen number system. We’ll

begin with Dif-Pradalier et al. (2010a) research and find the physical meaning of a generalized

diffusivity by dimensional analyses. A research done by Luciani et al. (1983) also presented

experiments of the non-local heat transport.
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2 Cauchy Distributions

Dif-Pradalier et al. (2010a) use theGYSELA and XGC1 codes, where heat fluxes are self-consistent,

to run the simulations and analyze the physical scale of the a in Cauchy distribution.

Mathematically, they generalized the turbulent heatQ from local formalismQ(r) = −n(r)χ(r)∇T (r)

to the generalized heat transfer integral. Here, n(r) is the density, χ is the turbulent diffusivity,

and T is the temperature. The generalized heat transfer equation is

Q(r) = −
∫
Kr(r, r′)∇T (r′)dr′, (3)

where the kernel Kr is the generalized diffusivity. The equation (3) is able to describe the non-

local transport – the heat flux at a position r depends on the whole temperature profile in the

region around r. They found that the kernel (generalized diffusivity) to be of Lévy type appeared

self-consistency. For the Cauchy type kernel is

Kr(r, r′) =
Λ

π

a/2

(a/2)2 + |r − r′|2
, (4)

where Λ is the strength parameter which is dimensionless, and a is the stability parameter. In

this Cauchy distribution case, one can effortless find out the dimension of a is a length. Thus, a

can be further interpreted as a radial influence length– a transport event at location r can drive

a flux up to a distance a from the position r (see figure 1). As a result, the larger a, the stronger

Figure 1: Non-local transport.

the non-locality. The values of a are mesoscale scale– the scale is bellow the system size (S) but

larger than the turbulent autocorrelation length (lc): lc � a� S.

Since the anomalous transport can be easily affected by the turbulence intensity, one could

imagine the Λ is depend on the turbulent intensity Iturb = Iturb[
L2

T 2 ] ∝ δv2. The velocity can be

written as

v = v̄ + δv,

where v̄ is the mean velocity, and δv is denoted as the fluctuation of velocity.

To broaden the physical meaning of the influence length a from α = 2 to α 6= 2, one can start

a dimension analysis from the strength parameter Λ. It can be predicted as:

Λ ∝ IβτγLδ, (5)
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where τ is the timescale, L is the length scale. As the strength parameter K is the generalized

diffusivity, we have

Λ · L = L2D

Λ = LD,

which lead us to Λ = Λ[L
3

T ]. We have the following by the dimension analysis:
−2β + γ = −1,

2β + δ = 3.

(6)

We choose β = γ = 1 and δ = 1 under the assumption that the heat transport is linearly

proportional to the turbulence intensity (β = 1). Thus we have

Λ ∝ IτL. (7)

The coefficient of Λ can be determine by the dimensionless turbulent fluctuation

(
R

LT
− R

LT,c
)p,

where p is the critical exponent with value ∼ 0.5, the LT,c is the critical temperature gradient

length, and R is the chosen scale of region. The R
LT,c

is the critical gradient. The concept of this

is originated in the mixing length formalism from Spiegel (1963).

They indicate the flux as:

Q ∝ (
dT

dz
− dT̄

dz
) ∝ (

1

L
− 1

Lcrit
).

These fluctuations follow from the intrinsically global character of the simulation as well as the

existence of avalanche-like large-scale (LT ) events. More detail discussion can be found in the re-

search of Dif-Pradalier et al. (2009). The candidates of the length are: mean free path (MFP, λ0),

influence length (a), autocorrelation length (lac), gyroradius (ρi), temperature gradient length

(LT ), and the avalanche size (Lavl). On the other hand, candidates of the timescale are: autocor-

relation time (τac), avalanche time (τavl), electron mean collision time (τe,coll), and the hydro-

dynamic timescale (τhyd). An analogy of the non-local transport is the avalanche– the spreading

behavior of the temperature profile in the space in magnetic fusion energy (MFE) confinement

is like a avalanching of a sand pile. The sand pile will redistribute its shape by avalanching trig-

gered by the gradient of gravitational potential ∇φg (see figure 3) that will determine a scale

Lcrit. And Lcrit can be related to the temperature difference 1
Tcrit
∇Tcrit in MFE confinement.

The wind blows through the surface of the sand pile will trigger the avalanche, and resembles

the sheared electric fields which triggers the avalanche in the MFE confinement. Based on these

analogies, the heat/particle flux has its counterpart– a sand/grain flux. This indicates that the

avalanches of a sand pile can be equivalent to the heat/particle flux transport in MFE confine-

ment. Consequently, back to the dimension analysis, the turbulent autocorrelation length (lac)
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Figure 2: The avalanche of a sand pile.

resembles the cell size of a sand pile (Lcell), for the analogy between the local turbulence mech-

anism in MFE confinement and the topping rules of a sand pile. The mesoscale influence length

(a) resembles the avalanche size Lavl such that Lcell � Lavl � S.

Figure 3: The avalanche size Lavl and the influence size a (here denoted as ∆) (Dif-Pradalier et al., 2010a).

Dif-Pradalier et al. (2010b) did simulations with GYSELA and XGC1 and showed that the

avalanche size Lavl is comparable the influence length a (see figure 2). They have a mesoscale

a that is larger than the ion Larmor gyroradius (ρi) and the auto-correlation length (lac), but

smaller than the temperature gradient (LT ) and the system size:

ρi < lac � a ∼ Lavl � LT < S.
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Let’s have a deeper discussion about the strength parameter Λ(∝ IτL) based on this order of

sclaes. The turbulence intensity I = I[L
2

T 2 ] which indicates that the stronger turbulent the system

is, the larger heat flux transport will the system have. Second, in terms of the candidates of the

length scale, we have:  L ∝ ρδi · l
γ
ac · aβ · LσT

1 = δ + γ + β + σ

One of a possible length scale is that L = 4
√
ρi · lac · a · LT . Finally, we discuss the possible

candidate for the timescale. By observing all possible timescale, one can find out a possible

candidate τ = τavl. This indicates that the larger the avalanching time, the bigger the MFP will

be. This leads to a larger influence length a and hence enhance the heat flux transport.

The relation between the MFP λ0 and the influence length a can be found in a model of

delocalization (Luciani et al., 1983) . Luciani et al. (1983) derived a non-local expression for the

delocalization of the collisional heat flux and made a comparison with the classical flux-limited

transport (FLT). In this paper, they discuss the non-local heat transport in small Knudsen number

(Kn) system where Kn = λ0
LT

< 2 × 10−3. The kernel they use has a different expression but

with the same concept as Dif-Pradalier et al. (2010b):

Kr(r, r′) ∝
1

2a
exp[

x∫
x′

dx′′
n(x′′)

a(x′)n(x′)
], (8)

where a is the influence length. The influence length a can be expressed by mean free path (λ0):

Lavl ∼ a(r) = c(Z + 1)1/2λ0(r), (9)

where c is a constant. The value of c is a constant ranging from 30 to 35. The electron MFP λ0(r)
scattering by electron and ion collisions can be expressed as

λ0(r) =
Te

4πnee4(Z + 1)
, (10)

where Z is the atomic number. Notice that here the temperature Te is associated with the thermal

velocity (vT ) of particles:

Te ∝ mv2T .

If our system has magnetic fields, then the velocity will be the replaced by the rms of the E×B

drift:

Te ∝ mv2rms,E×B. (11)

Luciani et al. (1983) found that the delocalization model delineates the experiments batter, com-

pared with the results of classical linear Spitzer-Härm (SH) descriptions (see figure 4). They also

figured out temperature profiles in Lagrangian coordinate (in figure 5)– one can notice that the

temperature profile of the delocalized model diffuses faster and farther away from the diffusion

center r. This suggests the non-local transport– more particles have longer excursions that behave

like Lévy flights.
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Figure 4: (a) Initial (dotted line) and the final (solid line) temperature profile, and the density profile (dash-dotted

line). (b) Final heat-flux profiles, from the Fokker-Plank simulation (solid line), from SH law (dotted line), and from

the delocalized model (dashed line).

Figure 5: This is a snapshot of emperature profiles after 50 psec after the peak od the laser pulse. The solid lines

are the classical flux-limited transport with different flux-limited parameter f . The dashed line is the result of the

delocalized model which describes better of the final heat-flux profile (Luciani et al., 1983) .

Now we have all the elements to figure out our kernel Cauchy type kernel:

Kr(r, r′) =
Λ

π

a/2

(a/2)2 + |r − r′|2

Λ =

(
R

LT
− R

LT,c

)p= 1
2

I · τ · L
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From all above discussions, we have:

Kr(r, r′) =

(
R

LT
− R

LT,c

)p= 1
2

I · τavl ·
(
ρi · lac · a · LT

) 1
4 1

π

a/2

(a/2)2 + |r − r′|2
,

I = v2rms,E×B,

τavl =
Lavl

vrms,E×B
,

Lavl ∼ a.

(12)

Thus, we’ll have the kernel

Kr(r, r′) =

(
R

LT
− R

LT,c

)p= 1
2

vrms,E×B

(
ρi · lac · LT

) 1
4 1

π

a
9
4 /2

(a/2)2 + |r − r′|2
. (13)

We’ve checked the dimension of K and it matches that of the generalized diffusivity K = K[L
2

T ].

In investigation of equation (2), we designate the fact that the dominated parameter of the

generalized diffusivity K is the influence length a, with an exponent factor 9
4 if |r − r′| is large

enough. And that the larger temperature gradient scale and rms of the E × B drift, the larger

heat transport a system can have. Last but not least, even though r′ is close to the diffusion center

r, we still have non-zero generalized diffusivity, and this is the “Joseph effect" in diffusivity.
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