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A model realization of self-organized criticality for plasma confinement

B. A. Carreras, D. Newman, and V. E. Lynch
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8070

P. H. Diamond
University of California, San Diego, La Jolla, California 92093-0319

(Received 6 February 1996; accepted 14 May 1996

A model for plasma transport near marginal stability is presented. The model is based on subcri-
tical resistive pressure-gradient-driven turbulence. Three-dimensional nonlinear calculations based
on this model show effective transport for subcritical mean profiles. This model exhibits some of
the characteristic properties of self-organized criticality. Perturbative transport techniques are
used to elucidate the transport properties. Propagation of positive and negative pulses is studied.
The observed results suggest a possible explanation of the apparent nonlocal effects ob-
served with perturbative experiments in tokamaks. 1€96 American Institute of Physics.
[S1070-664X96)03108-4

I. INTRODUCTION L-mode transport models based on marginal stability to
ideal ballooning mode¥’
Many systems in nature are self-similar over extended

ranges of spatial and temporal scales. In those systems, chgcause of these properties, SOC has been proposed as a

spectra may be described by power laws, and time Spect'%aradigm for undgrstanding plasma profile dynamfcS Up )
resemble the fhike distributions. Bak, Tang, and to now, the paradigm used for the tokamak transport appli-

Wiesenfeld suggested that there may be an intimate connec(-:"’ltion of the SOC concept has been based on the sand pile

. . . . . . . i i llular maton
tion between the scale invariance in space and time, as is tﬁagalog For numerical calculatloi’%,g cellu a' auto ato.
3gas been used, and for the analytical studies, a nonlinear

case at critical transitions. Because there is no externall K has b ined. It should also b
controlled critical parameter in natural systems, they call thi Urgers equatl as been examined. 1 should aiso be

basic property self-organized criticali§800. A running noted that the situation studied here is closer to a hydrody-

sand pile has been used as a simple dynamic system thag e _SOC with oyerlappmg avalanches than to a SOC with
o o vanishing weak drive. Near the threshold of avalanche over-
exhibits these general propertfe$.Many models of natural .
. . . lap, the SOC dynamics closely resemble those of a percola-
phenomena like earthquakesorest fires and coevolution . D )
. . e . . tion cluster slightly above criticality. Hence, hydrodynamic
of biological speciessatisfy the basic hypothesis of SOC. : .
: . . models, which are motivated by analogy to fully developed
Here, we are interested in the particular case of the trans- :
. . ) turbulence, are not applicable to the near threshold of ava-
port processes in magnetically confined plasmas. These pro;

- . che overlap.
cesses seem to have some of the characteristic properties 0 .
: . Here, we develop a model that contains some of the
SOC systems. For instance:

basic properties of plasma turbulence without bringing in all
(1) Since the proposal of the profile consistency principle, the complex details of the toroidal confinement device. This
the resilience of plasma profiles has been adopted impproach will allow us to explore the interplay of fluctua-
many transport models in a variety of formulations. Thistions and transport in a simple model realization of a plasma
concept suggests that the existence of a critical gradienhear marginal stability. This model is found to have some of
or a gradient scale length, plays an important role inthe characteristic properties of a SOC system. In the numeri-
confinement. cal calculation presented, we have reduced the separation of
(2) In the low-confinemeni{L-mode regime, the energy- time scales characteristic of a physical experiment that
confinement time scales with the minor radius of themakes numerical calculations involving both fluctuations and
device. That is, transport scaling is Bohm-likédow- transport time scales prohibitive.
ever, the core fluctuation correlation length is of the or-  The basic turbulence model is introduced in Sec. Il, with
der of a few ion Larmor radit’ These experimental re- the relaxation to a submarginal steady state discussed in Sec.
sults suggest the importance of interaction of disparatéll. The dynamical evolution of the model leading to subcriti-
length scales in L-mode transport. cal transport is discussed in Sec. IV. The transport properties
(3) The broad-band fluctuation spectrum in Ohmic andof the model are further explored by perturbative transport
L-mode discharges has a frequency dependence that sudies in Sec. V. These studies suggest a possible scenario to
not very sensitive to changes in global parameters. Thexplain some of the anomalous observations when cold pulse
spectral decay is often close tof I} perturbations are triggered at the tokamak edge. In Sec. VI,
(4) A common result of stability analysis is that experimen-general ideas to experimentally test models based on the
tally measured plasma profiles are found to be close t&OC concept are put forward, and finally, in Sec. VII, the
marginal ballooning stability? This finding led to conclusions of the paper are presented.
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Il. TURBULENCE MODEL than fluctuation time scales, hence its poloidal isotropy. The
surface averaged quantities are not static, but vary on time

We start with a cylindrical plasma confined by a Mag <cales long compared to the fluctuations. We will discuss

netic field with average bad curvature. This plasma can b% C . .
I ... pelow the sources of noise in this system and their meanings.
unstable to resistive interchange modes. The dissipativ

: . , The collisional diffusion coefficienD, is taken to be differ-
terms control the instability threshold. A typical example of . ) .
. . . ent from the one in the fluctuation equation, E2).

this type of plasma is the outer region of sheared stellarator We assume that away from marginal stability there is a
devices. In the past, the resistive pressure-gradient—drivent : . .
turbulence has been used to describe these plasmas in a S gady state solutiome(r), for which the source term is

o 6 € P |éjentically cancelled by the radial diffusion. The evolution
percritical staté® Now we use the same basic model to study

a subcritical state. In this model, the fluctuation equations argquatlon of the averaged pressure is

the same as those discussed in Ref. 16, I(P)—Pe) 10 -

~ ~ — Ty D
PAE) 1oVid . . at rar Vi)

P o T 20 +V-VVid
10 0"(<p>_peq)
S EY R °
gmngRy ! mngrer 96 F it
- The main transport mechanism that we study is the tur-

ap 1op ~ . dp)lod 2~ 2 bulent transport through the second term in the left-hand side
EHV” T TV V=7 T g T ViptxVip. of Eq. (5). However, the collisional diffusion term on the

(2)  right-hand side is not is negligibly small for the calculations

Here,p and® are the pressure and electrostatic potential, th@"€Sented in this paper. _ _
tildes indicate fluctuating quantitig® time and spade and The coupling of the fluctuations to the averaged radial
the angular brackets,), indicate flux surface averaging, that €'€ctric field is taken into account only through the poloidal
is the poloidal and toroidal angular average. The toroidal’€!0City contribution. The time evolution of the latter is
magnetic field i, the ion mass isn; the averaged radius 91Ven by

of curvature of the magnetic field lines tig, and the resis- PRy,

L . Vo) 19 - .

tivity is #. The total flow velocity is expressed in terms of an =— = — (r3AV,Vy)— (V)

averaged poloidal velocity plus_a fluctuating component at reor

given in terms of a streamfunctich/B, =<f/er<i)>—[L(Vﬁ>. (6)
V=(V,) 0+ (Vdx2)/B,, 3)

Here, i is the flow damping caused by the magnetic pump-
where(V ) is the poloidal flow velocity, which is a function ing. The nonlinear convection terms in the poloidal momen-
only of t andr, and ¢ andz are unit vectors in the poloidal tum balance generate the nondiagon@ltterms of the Rey-
and toroidal directions, respectively. The velocity streamnolds stress tensor, which can be interpreted as a turbulent
function®/B,, is trivially related to the electrostatic potential vorticity flux.
—®. In both Egs(1) and(2), there is a dissipative term with To reach to a self-organized staf@hen such a state
the characteristic coefficienta (the collisional viscosity  exists, it is very important for noise to exist in the system. In
andy, (the collisional cross-field transparrespectively. A some simple dynamical models, like the sand pile, the noise
parallel dissipation term is also included in the pressurgs external noise and the SOC state is reached by taking the
equation. This term can be interpreted as the parallel thermd@init of small noise. Therefore, it is difficult to prove the
diffusivity. existence of such SOC states in problems that are solved
The instability drive is the flux surface averaged pressurgumerically. It is even more difficult in a complex problem
gradient,d(p)/Jr, which is a function ofr andt. A main  |ike the one presented here. In the model presented here,
difference between the model in Ref. 16 and the one considhere are three types of noise:
ered here is in the evolution of the flux surface averaged (1) To start the three-dimensional nonlinear calculations,
quantities. The evolution equation of the flux surface avera low level of background fluctuations are initialized. These
aged pressure is are the seeds for the instabilities to grow. We chose a random
apy 149 o~ 19 a(p) distribution of amplitudses and phaseg with an averageq fluc-
T-ﬁ- Tar r{V,p)=S,+S,+D T (r 7) (4)  tuation Ie_vel below 10°. In our experience, for f_Iuctuann
levels this low, the results in the nonlinear regime are not
It contains a time independent source te8g, which is only  sensitive to these initial conditions, although this is very dif-
a function ofr. This source of particles and heat is due, forficult to prove without a study of many realizations. System-
instance, to neutral beam heating and fueling. In this cggse, atic studies of the initial conditions for these equations have
is essentially determined by the beam deposition profileonly been done for two-dimensional turbuleriée.
Even the best beams have time and radial variations in the (2) There is the noise associated with the fluctuations as
amount of heat deposited, this is represented by an addetbe resistive interchange at different radial positions become
noise termS;, which we choose to be random in radius andunstable. The fluctuations evolution is given by Eds.and
time. Implicitly, S; reflects variations on time scales slower (2), and they induce transport of the averaged pressure and
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flow through the nonlinear fluxes in Egé) and (6) and
generate flow through the Reynolds stress term in(gg.

(3) The third source of noise is the external pressure
source in Eq.5). Since this model has intrinsic noise be-
cause of the fluctuations, the external noise is not necessarily
needed to reach an SOC state. A continuum source could
lead to essentially the same results. There are several reasons
to introduce a noise source. First, it is useful in comparing
with the sand pile analog of the transport. A second reason is
that the noise source allows one to separate the transport
events and visualize the different scale length of these
events. As the noise becomes more continuous, the transport 107 L+t 00 0 0010
events overlap and it is difficult to characterize them. In 0 001 002 003
practice, all thermal and particle sources are noisy, therefore, TIME
such source terms are not unrealistic. FIG. 1. Time evolution of the electrostatic potential fluctuation for different
Numerical calculations show that the time averaged steadyralues of the collisional diffusivity of the averaged pressig,
state profile is essentially the same with or without the ex-
ternal noise source. Therefore, for the dynamical model in- = ) .
cluding fluctuations to be close to an SOC state, such fuation is plotted versus the time for different value<Dgy.

source is not required. Tests of the results for different type&©" Do=0. the fluctuations decay with a decay rate compa-

of sources have been done. The tests are limited to a fefP!€ 0 the instability growth rate. To have a proper repre-

cases due to the expense of these calculations. The results g@ta@hon of this time scgle, we nead)<9.001a I7g. I.n ,
not sensitive. as is shown below practice, for a full three-dimensional nonlinear calculation, it

is not possible to havB®,=0, for numerical reasons. There-

— 2 ;
IIl. EQUILIBRIUM SOLUTION NEAR MARGINAL fore, we have use®,=0.0001a“/ g in all the calculations

STABILITY presented here.
When all perturbations have decayed and the pressure

To investigate the transport dynamics close to marginaprofile has relaxedFig. 2), the system is in a steady state.
stability, the model must have a critical pressure gradienfye will see that this state has the typical properties of the
below which resistive interchange modes are stable. This iSOC state. First, note that this systemnist marginally
achieved by having finite values of the dissipative terms instaple; it is more stable than marginal. This fact is clear from
the fluctuation equations. Here, we take=0.2 a* 7z and  the nonlinear evolution of a single helicity. In Fig. 1, we have
x1=0.05a°7, wherers=a* ug/7 is the resistive time and plotted the time evolution of the rms potential fluctuation
a is the minor radius. The parallel thermal diffusivity is |evel for different values oD,. The linear growth rate is
x=10° R?/ 7. The resistivity is such that the Lundquist ynaffected byD,: hence, allm's grow at the same rate. At
number is S=10° for all these calculations and ahoutt=0.008, the evolution enters the nonlinear phase
Bo/2€=0.018. and the instability saturates. At the same time, the nonlinear

First, we consider the evolution of the system withoutmodification of the pressure profile reduces the instability
average poloidal velocity. This constitutes the simplest formyrive. ForD,=0, the fluctuation level decays very fast after
of the model. We start with a pressure profile well above thgeaching the nonlinear state. In this case, the pressure gradi-
critical profile. To avoid problems with the boundaries, only ent in the nonlinear state is well below the critical gradient,

modes with resonant surfaces in the range>0/2>0.8  and the mode is stabilized. Therefore, the nonlinear evolution
have been included in the calculation. We include 220 Fou-

rier components for the calculations without flow and 440 for

FLUCTUATION LEVEL

those with flow. The radial grid resolution r=7.5x10"* 2.0 f~=——r—v—v—"—"—1—v———————
a. The number of modes included in these calculations is low [ DY ——SOC PROFILE
compared with the number we have included in studies of i o~ —— - INITIAL PROFILE

developed supercritical turbulence. However, in this model,

transport is dominated by the profile relaxation processes.
Therefore, we do not expect that a broad spectrum of modes
is needed on each flux surface. The nonlinear evolution has
been carried out with theiTE!® code.

The system has been allowed to evolve to a stable state.
The source term has been set to zero in the pressure equation
to allow the relaxation to a stable state. To reach a SOC state,
a very low value of the average pressure diffusivity is re- oL o \ \ L
quired. Otherwise, a slow diffusion of the averaged pressure 0 02 04 0.6 0.8 10
smoothes the nonlinear modification of the average profile "a
and sustains the instability. This effect is illustrated in Fig. 1,rig. 2. ForD,=0.0001a2 7 in Fig. 1, when all perturbations have de-
where the time evolution of the electrostatic potential fluc-cayed, the pressure profile relaxes to a SOC steady state.

15

NORMALIZED DENSITY
5
T
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has led the profile not to the marginal stable point, but rather 0.4 . . . . .
well below. Indeed, the local gradient dynamics exhibit a sort
of inertia which results in evolving past marginality to sta-
bility. As we increaseD, the increased collisional diffusion
smoothes the pressure profile, and the change in the gradient
can lead to sustainment of the instability. These effects can
be further studied by evaluating the linear stability of the
final profile after nonlinear evolution. In the case@§=0,

the stability calculation gives significantly negative growth
rates. The fact that the resulting profile is more stable than
marginal is a characteristic property of the SOC stat;
though we cannot prove by just this observation alone that 0 L

( : . . . . . 1. 1.1
this state is a SOC state. oo o8 o T?JE o ’

If we allow the poloidal velocity to evolve and the flow FIG. 3. Time evolution of the total pressure and the pressure in the core. The
damping rate is low enough, there is a modification of thesystem reaches a steady state wheg, stays constant in time.
velocity profile induced by the Reynolds stress term. We can
now repeat the relaxation process just described. In this case,
the pressure profile after relaxation is different from the case 0.5
without flow. The reason is the stabilizing effect of the po- ~ Ncore™ fo rdr({p)—(p)sd
loidal velocity shear that changes the linear stability thresh-
old and, as a consequence, changes the critical gradier&hd
Therefore, the final pressure profile will depend on the aver- a
aged level of the poloidal velocity. Since this level is a func- NTota|=f n dr({p)—{(p)ss- (7)
tion of the turbulence and closely related to it, the calculation 0
including poloidal flow can not be broken into two steps. AHere, (p) is the pressure profile obtained in the previous
full nonlinear calculation with sources is required each time section by relaxing the initial pressure profile to steady state.
In Fig. 3, we plottedN e, Nyota, @aNd AN= Nyga—Neore-
IV. TRANSPORT PHENOMENA IN STEADY STATE We can see that after a transition time, the system reaches a

The next step in the development of the transport modeft€ady state in whiciNe, stays constant in time. That is,
is to consider the time evolution of the steady state with 41€ré is no accumulation of pressure at the core, and all
noise source added. Here, the assumption is that, in a tim@&dded pressure is transported out. There is some accumula-
averaged sense, the equilibrium pressure source maintaiff@" N the outer regionf/a>0.5, because of the boundary
the averaged gradient. However, this source is, in generagonditions. Thatis the reason to look at i@ =0.5 surface.
noisy. This noise is responsible for the dynamics in stead)The effective flux through the/a=0.5 surface is equal to
state. The noise is taken into account in the calculation a&'€ rateé of change afN. Therefore, an incremental effective
follows. At a fixed number of time stepgypically between  diffusivity can be defined by
100 and 400 a small averaged pressure perturbation is JAN (p)
added with a 50% probability. This perturbation is radially DeﬁET / ar
localized. It has a Gaussian form with a widthwf= 0.01a;
the amplitude is 0.05 times the local value of the normalizedJsing the same data as in Fig. 3, we have plotted the effec-
(to its r=0 valu@ equilibrium pressure. The radial location tive diffusivity as a function of time in Fig. 4. This incre-
of the averaged pressure perturbation is randomly chosen imental effective diffusivity makes sense only as a time-
the range 0.2r/a>0.5. The initial state is the stable relaxed averaged quantity. Note that the theoretical calculations
pressure profile in Fig. 2. A very low random level of non- produce a result only in the Markovian limit. Over the time
axisymmetric perturbations is also initializéabout 0.001% range considered, its averaged valueDigs=0.076%/ 7.
fluctuations as a seed for the instabilities. We consider firstThis value is more than 2 orders of magnitude abbye
the case without averaged poloidal velocity. Therefore, as is typical in SOC systems, there is effective
As the average pressure perturbations are added, thdésansport in subcritical conditions. Note that this diffusion is
trigger local instabilities in the plasma at the correspondingnly the incremental diffusion associated with the noise
resonance surface. The instability locally flattens the pressurgource. It is not the total diffusion needed in maintaining the
profile and causes a change of gradient in the nearby suequilibrium. This transport coefficient is a function of the
faces, which may become unstable and so continuing th&noise level.” That is, transport regulates itself to remove the
process. Eventually, the excess pressure deposited at the coreeded amount of pressure. To find the scaling with noise
is transported to the edge of the plasma. This process has thevel is difficult because it takes a long time to perform these
characteristic properties of an avalanéhié.is a true ava- nonlinear calculations over the time scales required. We in-
lanche in the sense that there is propagation both up angestigate the scaling by the use of pressure pulses.
down the gradient. The downward propagation is dominant.  The transport process has length scales that range from
To quantify the global transport process, we evaluate théhe individual single-mode widthW,, to the full plasma
time evolution of the following quantities: minor radius. This can be seen in Figap where we have

| g H() = (Mgoe)dr
o o
N (]

o
-
T

®

r=0.5a
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FIG. 4. For the case of Fig. 3, an effective diffusivity is defined from the
flux through ther/a=0.5 surface, which is equal to the rate of change of
AN.

plotted incremental averaged pressym®),—{p)s, cONtours
as a function of the radial position and tirtre-t plane. It is
easy to identify individual transport ever(evalanchestrig-
gered by the pressure drops. These avalanches involve the 0
destabilization of several instabilities at different resonant
surfaces. Each avalanche can be characterized by a length

[see green contours in Fig.e&B]. The trajectories of the
transport events in the-t plane clearly show that the propa- 0.1
gation is not ballistic; it has an essentially diffusive character.
In Fig. 5b), we have plotted the rms level of fluctuation in
the same —t plane. It is clear from this plot that the domi-

nant scale length of the fluctuations is of the order of the = 0.2
mode widthW,. This is another property of this type of ¥
model: The radial correlation length of the flux is much W
longer than the fluctuation radial scale. Similarly, in the sand E 0.3

pile model, the fluctuation scale is identified with the basic
cell size while the avalanches can reach the whole system
sizel®
Let us find the impact of these mixed scale lengths on 04
the diffusion coefficient. We can calculate the time averaged
flux and the averaged pressure profile in the steady state
phase of the calculatiofFig. 6). It is interesting to notice
that the averaged flux increases approximately linearly with 05
radius, as in the case of the running sand pilehe pressure
profile shows all the structures of the order of a mode width. 0.2 0.3 0.4 0.5
To calculate a diffusion coefficient, we fit both by a linear r/a
function ofr and that gives uB 4~0.33 (r —r). In spite of  FIG. 5. The vertical axis is time and the horizontal axis is radial position. In
the apparent diffusive character of the single transport eventis plane, we plota averaged pressure contours afii rms potential
the averaged diffusion coefficient has a radial scale deperiuctuation contours.
dence which is consistent with Bohm-type scaling. This re-
sult is in good agreement with the numerical sand pile
result® and with the analytical calculatiori8. 7. The fluctuation spectrum has three characteristic regions.
There is also a broad range of time scales involved in thén the very low frequency region, the spectrum is flat. For
transport process. The best way to find the relevant timérequencies in the range><10‘4r,]é<f<10‘27-,]§, the de-
scales is to Fourier-analyze the local fluctuations. We analyzpendence of the spectrum dnis close to 1f. At higher
the time trace of the electrostatic potential fluctuations at drequencies, the spectrum falls off &s* These three spec-
fixed spatial location. Because the diamagnetic rotatioriral regions have been identified in the sand pile nibdetl
terms have not been included in this calculation, the fasthey are characteristic of many SOC systems.
oscillatory time scale is not present. Therefore, this time  To test the resilience of these results to the form of the
trace is equivalent to the envelope of the fluctuations traceexternal noise, we have repeated the calculation with the
The analysis of these data leads to the results plotted in Figame form of the noise source but decreased the size of the
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FIG. 6. Time-averaged flux and pressure gradient during the steady state ) .
phase for the calculation in Fig. 3. FIG. 8. Propagation of a positive pulse fragia=0.2. In thet—r plane, we

have plotted averaged pressure contours.

_ _ V. PULSE PROPAGATION STUDIES
pressure perturbations by a factor of 4 and increased their

frequency by the same factor. In this way, the time integrated ~ USing the model developed in the previous sections, we
pressure source is the same. The result for the diffusivi@ve Studied the propagation of pressure pulses in the
does not change. The transport events have stronger overlSma. Two types of pulses have been considered: positive

due to the increased frequency, but the average transpd?f€ssure perturbations at the plasma center and negative
properties do not change. pressure perturbations at the plasma edge.

The addition of poloidal flow makes this calculation con- L€t us first consider a positive pressure pulse produced
siderably more complex as there is interplay between thé&t th_e center of the plasma. An averaged pressure pgrturba-
shear flow and turbulendd.The shear flow is amplified by ton is produced at,=0.2a. We use a Gaussian form with a
turbulence, and at the same time the shear flow regulates tyédth of 0.02a. For different values of the amplitude of the
turbulence level and the transport scales. This interplay i®U/Se, we follow its time evolution. In Fig. 8, we have plot-
very important in the case of the pulse propagation discusse§d the contours of the averaged pressure perturbation in the
in the next section. Here, we want to emphasize a double rofe~" Plane, as was done in Fig(&. The pulse propagation is
played by the shear flow. First, it changes the critical gradiVery Similar to the one for a single transport event plotted in
ent, as has been discussed in the previous section. The sédg- 5. The time evolution of the averaged pressure pulse is
ond effect is the decorrelation of the turbulence and of theshown in Fig. 9. The change of the waveforms with time is
transport events. This second effect was studied in the sarfifité different from the results of simple diffusion, although
pile model and with the Burgers equation, with the result ofthe determination of the time scales will indicate diffusive
the modification of the basic scaling of the effective diffusiv- Propagation. To interpret in a quantitative way the evolution
ity. Because of the number of nonlinear calculations require@f the pulse, we use the same method that the experimental-

to test this scaling, this study is beyond the scope of théStS use for heat pulse propagatirBy evaluating the time:
present work. delay, At, for the peak of the pulse to reach a given radial

positionr, we can plotAt vs (r —r,). From this plot(Fig.
10), we see that the propagation is consistent with diffusive
propagation, and we can derive an effective diffusivity. The
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FIG. 7. The electrostatic potential fluctuation spectrumr&a=0.35,
0=l4, and {=0. This spectrum has the three characteristic regions ob+IG. 9. Averaged pressure pulse at different times for the case shown in Fig.
served in the sand pile model. 7.
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FIG. 12. Time of arrival of the leading edge of the negative pulse at a

FIG. 10. Time delay for the maximum of the pulse to reach the position . ) ) _
positionr. The pulse moves inwards at approximately constant velocity.

Two cases with different amplitude of the initial pulse are plotted.

) L . ) flow shear, the averaged negative pressure pulse propagates
calculated effective diffusivity is a function of the size of the 5 he way through the plasma core.

pulse. Using different size pulses, we conclude that the de-  \ynen the self-consistent flow is coupled to the pulse
pendence of the effe(():il;/e diffusivity with the amplitude of g\ oytion equation, shear flow is amplified. The level of
the pulse P, is DegcP™ This result is consistent with the - gpear flow depends on the turbulence level generated by the
analytical determination of the diffusivity based on the non-yise and on the seed flow level. Because the latter is arbi-
linear Burgers equatiol. However, this result also cautions yajly set, no definitive conclusion can be derived from this
us about identifying a process with diffusion on the basis of,,qel. However. when the seed flow profile is above a

the analysis of Fig. 10. threshold value, the generated shear flow can control the

If a negative pressure pulse is generated at the plasmggje jength in the problem. That is, the pulse does not pen-
edge, the propagation dynamics are quite different from the.ote all the way to the center of the plasfitag. 13. In

internal posit_ive pulse. A typical _exar_nple of negative puIseFig' 13, we plot the propagation of a negative pulse with
propagation is shown astar plotin Fig. 11. The perturba-  ,5rameters identical to those for the case of Fig. 11, but with
tion is produced ato=0.6a with a width of 0.02. We can  gyeraged flow evolution and the noise source turned on. The

see thaF the leading edge of the pulse_ do.es Qot curve asﬂ?opagation of the negative pressure pulse stops at
moves inward, as would be expected if diffusion were the;3—0 37. At this point a transport barrier is formed, and
dominant process. The leading edge of the pulse moves i nfinement improves within/a<0.37. There is clear evi-
ward at constant velocityFig. 12). The propagation is fast, yance of this effect because we have the noise source turned
Vpuise=8-34a/ 77 The propagation of the negative pulse hasgn ang we can see pressure accumulation within this region
some of the characteristic properties of a propagating Font (Fig. 14). This result is consistent with the transport bifurca-
for fast transitions. One of them is the large leading-edggio, results from the analytical predictidfsor SOC scaling
velocity. In the cases considered here, the propagation veloggii, sheared flows.

ity is approximately given by, =W, where y is the The dependence of the resulting shear flow on the seed
supercritical instability growth rate due to the increase of the;q\ is one of the limitations of this model. The sheared

local gradient by the pulse and/ a characteristic scale gectric field is the real parameter to include in this model to

length of the instability. Without coupling to the averaged . nirol the scale length of the propagation. This should in-
corporate the contribution of the gradient of the ion pressure.
In this case, because we work with a finite pressure gradient,
there is no ambiguous dependence on the seed for the electric

field shear.
0.002
VI. EXPERIMENTAL TEST OF THE SOC MODELS
&
5 0.004 There are some general ideas in the SOC model for con-
E finement that go beyond the limitations of the present model

and could be experimentally tested. One of them is the con-
cept of transport event, or avalanche-like transport. The
transport events are not continuous but intermittent. This fact
by itself is not a clear test of the model because the fluxes
induced by supercritical turbulence also have intermittent
charactef? What is particular to SOC models is the differ-
FIG. 11. Propagation of a negative pulse frogia=0.6. In thet—r plane, ~ €NCe between the characteristic scale lengths of the fluctua-
we have plotted averaged pressure contours. tions and transport events. The high frequency range of the
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FIG. 15. Cross-correlation of the low frequency modulation at two radial
positions peaks at a time delay corresponding to the propagation distance of
the avalanche.

FIG. 13. Propagation of a negative pulse fropha=0.6. In this case, there
is coupling to a poloidal shear flow. The pulse stops at abtai#=0.37. In
thet—r plane, we have plotted the averaged pressure contours.

shear tends to weaken the dependence on the pulse ampli-

fluctuation spectrum decorrelates over the scale length of gyge. Therefore, it is difficult to define the range of pulse
mode width. However, the transport scale and the low mOdUampIitudes where this dependence can be tééted.
lation frequency of the fluctuation maintain a correlation  The spectral decay index of the fluctuations has a rather
over several mode widths. Furthermore, because transpoihiversal value. This is a third property of these SOC models
events are avalanches, the coherence of the cross-correlatigiyt could be explored experimentally. We do not have sys-
of the low frequency modulation at two radial positions tematic information on the gross features of the fluctuation
peaks at a time delay corresponding to the propagation dispectra in magnetically confined plasmas. A superficial look
tance of the avalanchedt=(r—ro)*/Dgy. This effect is  at published spectra suggests some kind of universal indexes
shown in Fig. 15 for the calculation corresponding to Fig. 5for the broadband spectra. However, a systematic study is
This long-range correlation with propagation of the very low gjied for.
frequencies offers a significant experimental test of the SOC A fourth property that has experimental implications is
transport mechanism. When an avalanche starts, there isyge propagation of negative pressure pulses. In our simple
double propagation effect that can be interpreted as a bumpodel, this is the analog of the cold pulse propagation stud-
moving down and a hole moving up the profile. The crossieq in different machine®2*For several years, these experi-
correlation function has two maxima, one at positMeand  ments have been a serious puzzle. The propagation studies of
another at negativat (Fig. 16). the previous section suggest a possible scenario to explain

A second property is the dependence of the diffusitivitythese experiments. The cold pulses are created at the plasma
on the size of the pulse. This dependence is weak; it is ddge; they propagate inward by triggering a sequence of lo-
fractional power of the amplitude of the pulse. To test thiscy) instabilities. The propagation is fast, and the leading edge
effect, it is necessary to consider that small pulses will b&y the pulse propagates with a constant velocity. With the
below the threshold because of the background transpogiggering of the local instabilities, the sheared electric field,
level. For large pulses, the effect of the radial electric fieIdEr/ , is amplified. WherE/ is large enough, it stops the in-
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FIG. 14. Averaged pressure perturbation profiles for the case described iRIG. 16. Cross-correlation of the low frequency modulation /a=0.35.
Fig. 12, showing the pulse stoppingrda=0.37 and pressure accumulating The cross-correlation has a double peak-att, the time delay correspond-
inside the regiorr/a<0.37. ing to the propagation distance of the avalanche.
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