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A model for plasma transport near marginal stability is presented. The model is based on subcri-
tical resistive pressure-gradient-driven turbulence. Three-dimensional nonlinear calculations based
on this model show effective transport for subcritical mean profiles. This model exhibits some of
the characteristic properties of self-organized criticality. Perturbative transport techniques are
used to elucidate the transport properties. Propagation of positive and negative pulses is studied.
The observed results suggest a possible explanation of the apparent nonlocal effects ob-
served with perturbative experiments in tokamaks. ©1996 American Institute of Physics.
@S1070-664X~96!03108-4#

I. INTRODUCTION

Many systems in nature are self-similar over extended
ranges of spatial and temporal scales. In those systems, scale
spectra may be described by power laws, and time spectra
resemble the 1/f -like distributions. Bak, Tang, and
Wiesenfeld1 suggested that there may be an intimate connec-
tion between the scale invariance in space and time, as is the
case at critical transitions. Because there is no externally
controlled critical parameter in natural systems, they call this
basic property self-organized criticality~SOC!. A running
sand pile has been used as a simple dynamic system that
exhibits these general properties.2–4 Many models of natural
phenomena like earthquakes,5 forest fires,6 and coevolution
of biological species7 satisfy the basic hypothesis of SOC.

Here, we are interested in the particular case of the trans-
port processes in magnetically confined plasmas. These pro-
cesses seem to have some of the characteristic properties of
SOC systems. For instance:

~1! Since the proposal of the profile consistency principle,8

the resilience of plasma profiles has been adopted in
many transport models in a variety of formulations. This
concept suggests that the existence of a critical gradient,
or a gradient scale length, plays an important role in
confinement.

~2! In the low-confinement~L-mode! regime, the energy-
confinement time scales with the minor radius of the
device. That is, transport scaling is Bohm-like.9 How-
ever, the core fluctuation correlation length is of the or-
der of a few ion Larmor radii.10 These experimental re-
sults suggest the importance of interaction of disparate
length scales in L-mode transport.

~3! The broad-band fluctuation spectrum in Ohmic and
L-mode discharges has a frequency dependence that is
not very sensitive to changes in global parameters. The
spectral decay is often close to 1/f .11

~4! A common result of stability analysis is that experimen-
tally measured plasma profiles are found to be close to
marginal ballooning stability.12 This finding led to

L-mode transport models based on marginal stability to
ideal ballooning modes.13

Because of these properties, SOC has been proposed as a
paradigm for understanding plasma profile dynamics.14,15Up
to now, the paradigm used for the tokamak transport appli-
cation of the SOC concept has been based on the sand pile
analog. For numerical calculations,15 a cellular automaton
has been used, and for the analytical studies, a nonlinear
Burgers equation14 has been examined. It should also be
noted that the situation studied here is closer to a hydrody-
namic SOC with overlapping avalanches than to a SOC with
vanishing weak drive. Near the threshold of avalanche over-
lap, the SOC dynamics closely resemble those of a percola-
tion cluster slightly above criticality. Hence, hydrodynamic
models, which are motivated by analogy to fully developed
turbulence, are not applicable to the near threshold of ava-
lanche overlap.

Here, we develop a model that contains some of the
basic properties of plasma turbulence without bringing in all
the complex details of the toroidal confinement device. This
approach will allow us to explore the interplay of fluctua-
tions and transport in a simple model realization of a plasma
near marginal stability. This model is found to have some of
the characteristic properties of a SOC system. In the numeri-
cal calculation presented, we have reduced the separation of
time scales characteristic of a physical experiment that
makes numerical calculations involving both fluctuations and
transport time scales prohibitive.

The basic turbulence model is introduced in Sec. II, with
the relaxation to a submarginal steady state discussed in Sec.
III. The dynamical evolution of the model leading to subcriti-
cal transport is discussed in Sec. IV. The transport properties
of the model are further explored by perturbative transport
studies in Sec. V. These studies suggest a possible scenario to
explain some of the anomalous observations when cold pulse
perturbations are triggered at the tokamak edge. In Sec. VI,
general ideas to experimentally test models based on the
SOC concept are put forward, and finally, in Sec. VII, the
conclusions of the paper are presented.
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II. TURBULENCE MODEL

We start with a cylindrical plasma confined by a mag-
netic field with average bad curvature. This plasma can be
unstable to resistive interchange modes. The dissipative
terms control the instability threshold. A typical example of
this type of plasma is the outer region of sheared stellarator
devices. In the past, the resistive pressure-gradient-driven
turbulence has been used to describe these plasmas in a su-
percritical state.16 Now we use the same basic model to study
a subcritical state. In this model, the fluctuation equations are
the same as those discussed in Ref. 16,

]¹'
2 F̃

]t
1^Vu&

1

r

]¹'
2 F̃

]u
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Here,p andF are the pressure and electrostatic potential, the
tildes indicate fluctuating quantities~in time and space!, and
the angular brackets,^ &, indicate flux surface averaging, that
is the poloidal and toroidal angular average. The toroidal
magnetic field isB0, the ion mass ismi the averaged radius
of curvature of the magnetic field lines isr c , and the resis-
tivity is h. The total flow velocity is expressed in terms of an
averaged poloidal velocity plus a fluctuating component
given in terms of a streamfunctionF̃/B0 ,

V5^Vu&û1~“F̃3ẑ!/B0 , ~3!

where^Vu& is the poloidal flow velocity, which is a function
only of t and r , andû and ẑ are unit vectors in the poloidal
and toroidal directions, respectively. The velocity stream
functionF̃/B0 is trivially related to the electrostatic potential
2F̃. In both Eqs.~1! and~2!, there is a dissipative term with
the characteristic coefficientsm ~the collisional viscosity!
andx' ~the collisional cross-field transport!, respectively. A
parallel dissipation term is also included in the pressure
equation. This term can be interpreted as the parallel thermal
diffusivity.

The instability drive is the flux surface averaged pressure
gradient,]^p&/]r , which is a function ofr and t. A main
difference between the model in Ref. 16 and the one consid-
ered here is in the evolution of the flux surface averaged
quantities. The evolution equation of the flux surface aver-
aged pressure is
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It contains a time independent source term,S0, which is only
a function ofr . This source of particles and heat is due, for
instance, to neutral beam heating and fueling. In this case,S0
is essentially determined by the beam deposition profile.
Even the best beams have time and radial variations in the
amount of heat deposited, this is represented by an added
noise term,S1, which we choose to be random in radius and
time. Implicitly, S1 reflects variations on time scales slower

than fluctuation time scales, hence its poloidal isotropy. The
surface averaged quantities are not static, but vary on time
scales long compared to the fluctuations. We will discuss
below the sources of noise in this system and their meanings.
The collisional diffusion coefficient,D, is taken to be differ-
ent from the one in the fluctuation equation, Eq.~2!.

We assume that away from marginal stability there is a
steady state solution,peq(r ), for which the source term is
identically cancelled by the radial diffusion. The evolution
equation of the averaged pressure is

]~^p&2peq!

]t
1
1

r

]

]r
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The main transport mechanism that we study is the tur-
bulent transport through the second term in the left-hand side
of Eq. ~5!. However, the collisional diffusion term on the
right-hand side is not is negligibly small for the calculations
presented in this paper.

The coupling of the fluctuations to the averaged radial
electric field is taken into account only through the poloidal
velocity contribution. The time evolution of the latter is
given by
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5^Ṽr¹'
2 F̃&2m̂^Vu&. ~6!

Here,m̂ is the flow damping caused by the magnetic pump-
ing. The nonlinear convection terms in the poloidal momen-
tum balance generate the nondiagonalru terms of the Rey-
nolds stress tensor, which can be interpreted as a turbulent
vorticity flux.

To reach to a self-organized state~when such a state
exists!, it is very important for noise to exist in the system. In
some simple dynamical models, like the sand pile, the noise
is external noise and the SOC state is reached by taking the
limit of small noise. Therefore, it is difficult to prove the
existence of such SOC states in problems that are solved
numerically. It is even more difficult in a complex problem
like the one presented here. In the model presented here,
there are three types of noise:

~1! To start the three-dimensional nonlinear calculations,
a low level of background fluctuations are initialized. These
are the seeds for the instabilities to grow. We chose a random
distribution of amplitudes and phases with an averaged fluc-
tuation level below 1025. In our experience, for fluctuation
levels this low, the results in the nonlinear regime are not
sensitive to these initial conditions, although this is very dif-
ficult to prove without a study of many realizations. System-
atic studies of the initial conditions for these equations have
only been done for two-dimensional turbulence.17

~2! There is the noise associated with the fluctuations as
the resistive interchange at different radial positions become
unstable. The fluctuations evolution is given by Eqs.~1! and
~2!, and they induce transport of the averaged pressure and
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flow through the nonlinear fluxes in Eqs.~5! and ~6! and
generate flow through the Reynolds stress term in Eq.~6!.

~3! The third source of noise is the external pressure
source in Eq.~5!. Since this model has intrinsic noise be-
cause of the fluctuations, the external noise is not necessarily
needed to reach an SOC state. A continuum source could
lead to essentially the same results. There are several reasons
to introduce a noise source. First, it is useful in comparing
with the sand pile analog of the transport. A second reason is
that the noise source allows one to separate the transport
events and visualize the different scale length of these
events. As the noise becomes more continuous, the transport
events overlap and it is difficult to characterize them. In
practice, all thermal and particle sources are noisy, therefore,
such source terms are not unrealistic.
Numerical calculations show that the time averaged steady-
state profile is essentially the same with or without the ex-
ternal noise source. Therefore, for the dynamical model in-
cluding fluctuations to be close to an SOC state, such a
source is not required. Tests of the results for different types
of sources have been done. The tests are limited to a few
cases due to the expense of these calculations. The results are
not sensitive, as is shown below.

III. EQUILIBRIUM SOLUTION NEAR MARGINAL
STABILITY

To investigate the transport dynamics close to marginal
stability, the model must have a critical pressure gradient
below which resistive interchange modes are stable. This is
achieved by having finite values of the dissipative terms in
the fluctuation equations. Here, we takem50.2 a2/tR and
x'50.05a2tR , wheretR[a2 m0/h is the resistive time and
a is the minor radius. The parallel thermal diffusivity is
xi5105 R2/tR . The resistivity is such that the Lundquist
number is S5105 for all these calculations and
b0/2e250.018.

First, we consider the evolution of the system without
average poloidal velocity. This constitutes the simplest form
of the model. We start with a pressure profile well above the
critical profile. To avoid problems with the boundaries, only
modes with resonant surfaces in the range 0.2.r /a.0.8
have been included in the calculation. We include 220 Fou-
rier components for the calculations without flow and 440 for
those with flow. The radial grid resolution isDr57.531024

a. The number of modes included in these calculations is low
compared with the number we have included in studies of
developed supercritical turbulence. However, in this model,
transport is dominated by the profile relaxation processes.
Therefore, we do not expect that a broad spectrum of modes
is needed on each flux surface. The nonlinear evolution has
been carried out with theKITE18 code.

The system has been allowed to evolve to a stable state.
The source term has been set to zero in the pressure equation
to allow the relaxation to a stable state. To reach a SOC state,
a very low value of the average pressure diffusivity is re-
quired. Otherwise, a slow diffusion of the averaged pressure
smoothes the nonlinear modification of the average profile
and sustains the instability. This effect is illustrated in Fig. 1,
where the time evolution of the electrostatic potential fluc-

tuation is plotted versus the time for different values ofD0.
For D050, the fluctuations decay with a decay rate compa-
rable to the instability growth rate. To have a proper repre-
sentation of this time scale, we needD0,0.001a2/tR . In
practice, for a full three-dimensional nonlinear calculation, it
is not possible to haveD050, for numerical reasons. There-
fore, we have usedD050.0001a2/tR in all the calculations
presented here.

When all perturbations have decayed and the pressure
profile has relaxed~Fig. 2!, the system is in a steady state.
We will see that this state has the typical properties of the
SOC state. First, note that this system isnot marginally
stable; it is more stable than marginal. This fact is clear from
the nonlinear evolution of a single helicity. In Fig. 1, we have
plotted the time evolution of the rms potential fluctuation
level for different values ofD0. The linear growth rate is
unaffected byD0; hence, allm’s grow at the same rate. At
about t50.008tR , the evolution enters the nonlinear phase
and the instability saturates. At the same time, the nonlinear
modification of the pressure profile reduces the instability
drive. ForD050, the fluctuation level decays very fast after
reaching the nonlinear state. In this case, the pressure gradi-
ent in the nonlinear state is well below the critical gradient,
and the mode is stabilized. Therefore, the nonlinear evolution

FIG. 1. Time evolution of the electrostatic potential fluctuation for different
values of the collisional diffusivity of the averaged pressure,D0.

FIG. 2. ForD050.0001a2/tR in Fig. 1, when all perturbations have de-
cayed, the pressure profile relaxes to a SOC steady state.
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has led the profile not to the marginal stable point, but rather
well below. Indeed, the local gradient dynamics exhibit a sort
of inertia which results in evolving past marginality to sta-
bility. As we increaseD0, the increased collisional diffusion
smoothes the pressure profile, and the change in the gradient
can lead to sustainment of the instability. These effects can
be further studied by evaluating the linear stability of the
final profile after nonlinear evolution. In the case ofD050,
the stability calculation gives significantly negative growth
rates. The fact that the resulting profile is more stable than
marginal is a characteristic property of the SOC state,15 al-
though we cannot prove by just this observation alone that
this state is a SOC state.

If we allow the poloidal velocity to evolve and the flow
damping rate is low enough, there is a modification of the
velocity profile induced by the Reynolds stress term. We can
now repeat the relaxation process just described. In this case,
the pressure profile after relaxation is different from the case
without flow. The reason is the stabilizing effect of the po-
loidal velocity shear that changes the linear stability thresh-
old and, as a consequence, changes the critical gradient.
Therefore, the final pressure profile will depend on the aver-
aged level of the poloidal velocity. Since this level is a func-
tion of the turbulence and closely related to it, the calculation
including poloidal flow can not be broken into two steps. A
full nonlinear calculation with sources is required each time.

IV. TRANSPORT PHENOMENA IN STEADY STATE

The next step in the development of the transport model
is to consider the time evolution of the steady state with a
noise source added. Here, the assumption is that, in a time-
averaged sense, the equilibrium pressure source maintains
the averaged gradient. However, this source is, in general,
noisy. This noise is responsible for the dynamics in steady
state. The noise is taken into account in the calculation as
follows. At a fixed number of time steps~typically between
100 and 400!, a small averaged pressure perturbation is
added with a 50% probability. This perturbation is radially
localized. It has a Gaussian form with a width ofW50.01a;
the amplitude is 0.05 times the local value of the normalized
~to its r50 value! equilibrium pressure. The radial location
of the averaged pressure perturbation is randomly chosen in
the range 0.2.r /a.0.5. The initial state is the stable relaxed
pressure profile in Fig. 2. A very low random level of non-
axisymmetric perturbations is also initialized~about 0.001%
fluctuations! as a seed for the instabilities. We consider first
the case without averaged poloidal velocity.

As the average pressure perturbations are added, they
trigger local instabilities in the plasma at the corresponding
resonance surface. The instability locally flattens the pressure
profile and causes a change of gradient in the nearby sur-
faces, which may become unstable and so continuing the
process. Eventually, the excess pressure deposited at the core
is transported to the edge of the plasma. This process has the
characteristic properties of an avalanche.1 It is a true ava-
lanche in the sense that there is propagation both up and
down the gradient. The downward propagation is dominant.

To quantify the global transport process, we evaluate the
time evolution of the following quantities:

Ncore5E
0

0.5a

r dr ~^p&2^p&ss!

and

NTotal5E
0

a

n dr~^p&2^p&ss!. ~7!

Here, ^p&ss is the pressure profile obtained in the previous
section by relaxing the initial pressure profile to steady state.
In Fig. 3, we plottedNcore, NTotal, andDN5NTotal2Ncore.
We can see that after a transition time, the system reaches a
steady state in whichNcore stays constant in time. That is,
there is no accumulation of pressure at the core, and all
added pressure is transported out. There is some accumula-
tion in the outer region,r /a.0.5, because of the boundary
conditions. That is the reason to look at ther /a50.5 surface.
The effective flux through ther /a50.5 surface is equal to
the rate of change ofDN. Therefore, an incremental effective
diffusivity can be defined by

Deff[
]DN

]t Yr
]^p&
]r U

r50.5a

. ~8!

Using the same data as in Fig. 3, we have plotted the effec-
tive diffusivity as a function of time in Fig. 4. This incre-
mental effective diffusivity makes sense only as a time-
averaged quantity. Note that the theoretical calculations
produce a result only in the Markovian limit. Over the time
range considered, its averaged value isDeff50.076a2/tR .
This value is more than 2 orders of magnitude aboveD0.
Therefore, as is typical in SOC systems, there is effective
transport in subcritical conditions. Note that this diffusion is
only the incremental diffusion associated with the noise
source. It is not the total diffusion needed in maintaining the
equilibrium. This transport coefficient is a function of the
‘‘noise level.’’ That is, transport regulates itself to remove the
needed amount of pressure. To find the scaling with noise
level is difficult because it takes a long time to perform these
nonlinear calculations over the time scales required. We in-
vestigate the scaling by the use of pressure pulses.

The transport process has length scales that range from
the individual single-mode width,Wk , to the full plasma
minor radius. This can be seen in Fig. 5~a!, where we have

FIG. 3. Time evolution of the total pressure and the pressure in the core. The
system reaches a steady state whenNcore stays constant in time.
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plotted incremental averaged pressure,^p&2^p&ss, contours
as a function of the radial position and time~r – t plane!. It is
easy to identify individual transport events~avalanches! trig-
gered by the pressure drops. These avalanches involve the
destabilization of several instabilities at different resonant
surfaces. Each avalanche can be characterized by a length
@see green contours in Fig. 5~a!#. The trajectories of the
transport events in ther – t plane clearly show that the propa-
gation is not ballistic; it has an essentially diffusive character.
In Fig. 5~b!, we have plotted the rms level of fluctuation in
the samer – t plane. It is clear from this plot that the domi-
nant scale length of the fluctuations is of the order of the
mode widthWk . This is another property of this type of
model: The radial correlation length of the flux is much
longer than the fluctuation radial scale. Similarly, in the sand
pile model, the fluctuation scale is identified with the basic
cell size while the avalanches can reach the whole system
size.15

Let us find the impact of these mixed scale lengths on
the diffusion coefficient. We can calculate the time averaged
flux and the averaged pressure profile in the steady state
phase of the calculation~Fig. 6!. It is interesting to notice
that the averaged flux increases approximately linearly with
radius, as in the case of the running sand pile.15 The pressure
profile shows all the structures of the order of a mode width.
To calculate a diffusion coefficient, we fit both by a linear
function of r and that gives usDeff'0.33 (r2r 0). In spite of
the apparent diffusive character of the single transport event,
the averaged diffusion coefficient has a radial scale depen-
dence which is consistent with Bohm-type scaling. This re-
sult is in good agreement with the numerical sand pile
results15 and with the analytical calculations.14

There is also a broad range of time scales involved in the
transport process. The best way to find the relevant time
scales is to Fourier-analyze the local fluctuations. We analyze
the time trace of the electrostatic potential fluctuations at a
fixed spatial location. Because the diamagnetic rotation
terms have not been included in this calculation, the fast
oscillatory time scale is not present. Therefore, this time
trace is equivalent to the envelope of the fluctuations trace.
The analysis of these data leads to the results plotted in Fig.

7. The fluctuation spectrum has three characteristic regions.
In the very low frequency region, the spectrum is flat. For
frequencies in the range 531024tHp

21,f,1022tHp
21 , the de-

pendence of the spectrum onf is close to 1/f . At higher
frequencies, the spectrum falls off asf24. These three spec-
tral regions have been identified in the sand pile model4 and
they are characteristic of many SOC systems.

To test the resilience of these results to the form of the
external noise, we have repeated the calculation with the
same form of the noise source but decreased the size of the

FIG. 4. For the case of Fig. 3, an effective diffusivity is defined from the
flux through ther /a50.5 surface, which is equal to the rate of change of
DN.

FIG. 5. The vertical axis is time and the horizontal axis is radial position. In
this plane, we plot~a! averaged pressure contours and~b! rms potential
fluctuation contours.

2907Phys. Plasmas, Vol. 3, No. 8, August 1996 Carreras et al.
 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  132.239.66.164 On: Thu, 09 Jun

2016 21:51:36



pressure perturbations by a factor of 4 and increased their
frequency by the same factor. In this way, the time integrated
pressure source is the same. The result for the diffusivity
does not change. The transport events have stronger overlap
due to the increased frequency, but the average transport
properties do not change.

The addition of poloidal flow makes this calculation con-
siderably more complex as there is interplay between the
shear flow and turbulence.19 The shear flow is amplified by
turbulence, and at the same time the shear flow regulates the
turbulence level and the transport scales. This interplay is
very important in the case of the pulse propagation discussed
in the next section. Here, we want to emphasize a double role
played by the shear flow. First, it changes the critical gradi-
ent, as has been discussed in the previous section. The sec-
ond effect is the decorrelation of the turbulence and of the
transport events. This second effect was studied in the sand
pile model and with the Burgers equation, with the result of
the modification of the basic scaling of the effective diffusiv-
ity. Because of the number of nonlinear calculations required
to test this scaling, this study is beyond the scope of the
present work.

V. PULSE PROPAGATION STUDIES

Using the model developed in the previous sections, we
have studied the propagation of pressure pulses in the
plasma. Two types of pulses have been considered: positive
pressure perturbations at the plasma center and negative
pressure perturbations at the plasma edge.

Let us first consider a positive pressure pulse produced
at the center of the plasma. An averaged pressure perturba-
tion is produced atr 050.2a. We use a Gaussian form with a
width of 0.02a. For different values of the amplitude of the
pulse, we follow its time evolution. In Fig. 8, we have plot-
ted the contours of the averaged pressure perturbation in the
t–r plane, as was done in Fig. 5~a!. The pulse propagation is
very similar to the one for a single transport event plotted in
Fig. 5. The time evolution of the averaged pressure pulse is
shown in Fig. 9. The change of the waveforms with time is
quite different from the results of simple diffusion, although
the determination of the time scales will indicate diffusive
propagation. To interpret in a quantitative way the evolution
of the pulse, we use the same method that the experimental-
ists use for heat pulse propagation.20 By evaluating the time
delay,Dt, for the peak of the pulse to reach a given radial
position r , we can plotDt vs ~r2r 0!

2. From this plot~Fig.
10!, we see that the propagation is consistent with diffusive
propagation, and we can derive an effective diffusivity. The

FIG. 6. Time-averaged flux and pressure gradient during the steady state
phase for the calculation in Fig. 3.

FIG. 7. The electrostatic potential fluctuation spectrum atr /a50.35,
u5p/4, and z50. This spectrum has the three characteristic regions ob-
served in the sand pile model.

FIG. 8. Propagation of a positive pulse fromr 0/a50.2. In thet–r plane, we
have plotted averaged pressure contours.

FIG. 9. Averaged pressure pulse at different times for the case shown in Fig.
7.
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calculated effective diffusivity is a function of the size of the
pulse. Using different size pulses, we conclude that the de-
pendence of the effective diffusivity with the amplitude of
the pulse,P, is Deff}P

0.45. This result is consistent with the
analytical determination of the diffusivity based on the non-
linear Burgers equation.14 However, this result also cautions
us about identifying a process with diffusion on the basis of
the analysis of Fig. 10.

If a negative pressure pulse is generated at the plasma
edge, the propagation dynamics are quite different from the
internal positive pulse. A typical example of negative pulse
propagation is shown as at–r plot in Fig. 11. The perturba-
tion is produced atr 050.6a with a width of 0.02a. We can
see that the leading edge of the pulse does not curve as it
moves inward, as would be expected if diffusion were the
dominant process. The leading edge of the pulse moves in-
ward at constant velocity~Fig. 12!. The propagation is fast,
Vpulse58.34a/tR . The propagation of the negative pulse has
some of the characteristic properties of a propagating front21

for fast transitions. One of them is the large leading-edge
velocity. In the cases considered here, the propagation veloc-
ity is approximately given byVpulse'gW, whereg is the
supercritical instability growth rate due to the increase of the
local gradient by the pulse andW a characteristic scale
length of the instability. Without coupling to the averaged

flow shear, the averaged negative pressure pulse propagates
all the way through the plasma core.

When the self-consistent flow is coupled to the pulse
evolution equation, shear flow is amplified. The level of
shear flow depends on the turbulence level generated by the
pulse and on the seed flow level. Because the latter is arbi-
trarily set, no definitive conclusion can be derived from this
model. However, when the seed flow profile is above a
threshold value, the generated shear flow can control the
scale length in the problem. That is, the pulse does not pen-
etrate all the way to the center of the plasma~Fig. 13!. In
Fig. 13, we plot the propagation of a negative pulse with
parameters identical to those for the case of Fig. 11, but with
averaged flow evolution and the noise source turned on. The
propagation of the negative pressure pulse stops at
r /a[0.37. At this point a transport barrier is formed, and
confinement improves withinr /a<0.37. There is clear evi-
dence of this effect because we have the noise source turned
on and we can see pressure accumulation within this region
~Fig. 14!. This result is consistent with the transport bifurca-
tion results from the analytical predictions14 for SOC scaling
with sheared flows.

The dependence of the resulting shear flow on the seed
flow is one of the limitations of this model. The sheared
electric field is the real parameter to include in this model to
control the scale length of the propagation. This should in-
corporate the contribution of the gradient of the ion pressure.
In this case, because we work with a finite pressure gradient,
there is no ambiguous dependence on the seed for the electric
field shear.

VI. EXPERIMENTAL TEST OF THE SOC MODELS

There are some general ideas in the SOC model for con-
finement that go beyond the limitations of the present model
and could be experimentally tested. One of them is the con-
cept of transport event, or avalanche-like transport. The
transport events are not continuous but intermittent. This fact
by itself is not a clear test of the model because the fluxes
induced by supercritical turbulence also have intermittent
character.22 What is particular to SOC models is the differ-
ence between the characteristic scale lengths of the fluctua-
tions and transport events. The high frequency range of the

FIG. 10. Time delay for the maximum of the pulse to reach the positionr .
Two cases with different amplitude of the initial pulse are plotted.

FIG. 11. Propagation of a negative pulse fromr 0/a50.6. In thet–r plane,
we have plotted averaged pressure contours.

FIG. 12. Time of arrival of the leading edge of the negative pulse at a
position r . The pulse moves inwards at approximately constant velocity.
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fluctuation spectrum decorrelates over the scale length of a
mode width. However, the transport scale and the low modu-
lation frequency of the fluctuation maintain a correlation
over several mode widths. Furthermore, because transport
events are avalanches, the coherence of the cross-correlation
of the low frequency modulation at two radial positions
peaks at a time delay corresponding to the propagation dis-
tance of the avalanche,Dt[(r2r 0)

2/Deff . This effect is
shown in Fig. 15 for the calculation corresponding to Fig. 5.
This long-range correlation with propagation of the very low
frequencies offers a significant experimental test of the SOC
transport mechanism. When an avalanche starts, there is a
double propagation effect that can be interpreted as a bump
moving down and a hole moving up the profile. The cross-
correlation function has two maxima, one at positiveDt and
another at negativeDt ~Fig. 16!.

A second property is the dependence of the diffusitivity
on the size of the pulse. This dependence is weak; it is a
fractional power of the amplitude of the pulse. To test this
effect, it is necessary to consider that small pulses will be
below the threshold because of the background transport
level. For large pulses, the effect of the radial electric field

shear tends to weaken the dependence on the pulse ampli-
tude. Therefore, it is difficult to define the range of pulse
amplitudes where this dependence can be tested.14

The spectral decay index of the fluctuations has a rather
universal value. This is a third property of these SOC models
that could be explored experimentally. We do not have sys-
tematic information on the gross features of the fluctuation
spectra in magnetically confined plasmas. A superficial look
at published spectra suggests some kind of universal indexes
for the broadband spectra. However, a systematic study is
called for.

A fourth property that has experimental implications is
the propagation of negative pressure pulses. In our simple
model, this is the analog of the cold pulse propagation stud-
ied in different machines.23,24For several years, these experi-
ments have been a serious puzzle. The propagation studies of
the previous section suggest a possible scenario to explain
these experiments. The cold pulses are created at the plasma
edge; they propagate inward by triggering a sequence of lo-
cal instabilities. The propagation is fast, and the leading edge
of the pulse propagates with a constant velocity. With the
triggering of the local instabilities, the sheared electric field,
Er8 , is amplified. WhenEr8 is large enough, it stops the in-

FIG. 13. Propagation of a negative pulse fromr 0/a50.6. In this case, there
is coupling to a poloidal shear flow. The pulse stops at aboutr /a50.37. In
the t–r plane, we have plotted the averaged pressure contours.

FIG. 14. Averaged pressure perturbation profiles for the case described in
Fig. 12, showing the pulse stopping atr /a50.37 and pressure accumulating
inside the regionr /a,0.37.

FIG. 15. Cross-correlation of the low frequency modulation at two radial
positions peaks at a time delay corresponding to the propagation distance of
the avalanche.

FIG. 16. Cross-correlation of the low frequency modulation atr /a50.35.
The cross-correlation has a double peak at6Dt, the time delay correspond-
ing to the propagation distance of the avalanche.
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ward propagation of the cold pulse. At the same time, the
Er8 acts as a transport barrier, and the central plasma is better
confined. The improved confinement leads to heating of the
core. The experimental identification of a transport barrier
associated with the propagation of these pulses could be a
good test of this model.

VII. CONCLUSIONS

The model proposed in this paper has many of the char-
acteristics of a SOC model, although it is not possible to
rigorously prove that it is a SOC model. This is, of course,
partially a consequence of the ambiguity which persists in
the definition of SOC. This model is a very simplified form
of turbulence for a magnetic confinement device, but it gives
the main features of what can be expected if confinement is
SOC. The transport properties put forward on the basis of a
simple sand pile model15 are well verified in this model that
includes both fluctuations and transport. This is an indication
that the main properties derived here do not depend on the
particular underlying linear stability mechanism.

The time evolution of positive outward-propagating
pulses can be described by a diffusive process, although the
propagation is not pure diffusion. The effective diffusivity
derived from the numerical calculations scales as a fractional
power ~approximately square root! of the amplitude of the
pulse.

Inward-propagating negative pulses behave in a more
complex way. The leading edge moves ballistically. With the
propagating pulse there isEr8 amplification. The propagation
depth of a cold pulse depends on the level ofEr8 . TheEr8
amplification by the pulse results in the formation of an in-
ternal transport barrier that causes the confinement improve-
ment at the core. The barrier diffusively decays afterwards.

Many of the general features of the SOC model can be
experimentally tested.
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