
PHYS235 PROJECT, ALEXEY KNYAZEV 1

Accelerator modes in Stochastic Electron Heating
Alexey R. Knyazev

University of California, San Diego, CA 92093, USA
aknyazev@ucsd.edu

Abstract—Report discusses the role of accelerator modes in
super diffusive transport on an example of Stochastic Electron
acceleration. Physical model of electron acceleration by laser
field in a longitudinal electrostatic trap is presented with the
corresponding discrete map S. The GALI method of chaos
detection is discussed and applied to reveal the structure of the
S phase space. Momentum distribution of S is described with
Levy stable distributions.
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I. INTRODUCTION:

UNDERSTANDING the super diffusion regime properties
associated with accelerator modes can help increase the

efficiency of stochastic electron heating. This project paper
employs both classical and recent (see references) tools to
better understand the role played by accelerator modes. Brief
insight into the physical picture of a system exhibitng stochas-
tic regimes is presented. The background on accelerator modes
is provided and backed up with the simulation results.

II. PHYSICAL MODEL

This section discusses a simple setup for stochastic electron
heating. It begins with discussing the interaction of electron
with a plane electromagnetic wave. In section II-A, the interac-
tion of electron with a plane wave envelope is considered, dis-
cussing the importance of dephasing rate δ (introduced below)
for electron acceleration efficiency. Is is also shown that such
setup does not allow electron to retain any of the laser pulse
energy after the interaction. To overcome the restriction of
the Lawson-Woodward theorem, the longitudinal electrostatic

field along the laser wave propagation is added and discussed
in section II-B. The discrete mapping approximating such
system’s dynamics is introduced.

A. Electron and plane wave envelope

This section discusses the interaction of a single electron
with a plane wave and introduces notation for future reference.
Consider the coordinate system where the electron is initially
immobile and the wave vector k ‖ ex. The EM wave structure
can be described by a vector potential A as follows:

B = ∇× A

E = ∇φ− 1

c

∂A
∂t

A =
amc2

|e|
ey

a = a0F (ξ) sin(ξ)

Where ξ 
 2π(x− ct)/λ and a0 
 |e|E0/mcω.
According to the choice of A above, electric field of the

wave has non-zero component along y-axis only, magnetic
field of the wave has non-zero component along z-axis only.
The particle dynamics is then described by:
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Second Newton’s law above can be rewritten as
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Which reveals the integral of motion

d
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( py
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= 0

Which for initially immobile electron gives
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py = amc

Another integral of motion is

d

dt

(
γ − px

mc

)
= 0

Which for initially immobile electron gives

γ = 1− px
mc

From these two integrals of motion, the expression for
longitudinal momentum is
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2
Expressions for px and py illustrate that the electron does

not retain its energy after the electric pulse, (when F (ξ)→ 0
as ξ →∞). This is in agreement with the Lawson-Woodward
theorem.

Acceleration of the particle is sensitive to initial condition,
which can be seen from the derived integrals of motion

py − amc = 0

γ − px/mc =
√

1 + p20/m
2c2 − p0/mc = I

px
mc

=
a2 + 1− I2

2I
So for the non-relativistic electron I ≈ 1, for relativistic

with initial longitudinal momentum p0:

I =
√

1 + p20/m
2c2 − p0/mc ≈

mc

2p0
<< 1

and for p0 < 0:

I =
√

1 + p20/m
2c2 − p0/mc ≈

2|p0|
mc

>> 1

Hence, pre-acceleration can greatly increase the interaction
efficiency. The physical reason for it is the decrease in the
dephasing rate between the electron and the wave,

B. Longitudinal electrostatic trap
One of the ways to retain energy from the laser-electron

interaction is to trap the electron with an electrostatic field.
Consider the laser pulse propagating through a longitudinal
electrostatic potential well described by power law U(z) =
ku|z|p. The dynamics of electron in this system can be
described by a Hamiltonian (see ref.[2]).

Hz(z, δ, ξ) =
1

2

(
1 + (P̂x +Ax(ξ, z))2

δ
+ δ

)
+ U(z)

dz

dξ
= −∂H

∂δ
dδ

dξ
= −∂H

∂z

Fig. 1. Illustration of the setup described in section II-B. The laser
(filled curve) propagates along the direction of longitudinal electrostatic trap,
interacting with the electron. Confined by the trap (longitudinal potential well
is depicted by black dashed line), electron oscillates and is able to enter the
low dephasing rate regime (highly effective energy exchange) multiple times.
This system can exhibit stochastic heating of the electron.

Note that the dephasing rate (the rate of change of laser
wave phase in electron’s frame of reference) δ = γ − pz/mc
is no longer constant. As was shown in the section II-A,
low dephasing rate increases the efficiency of laser-electron
acceleration. The dynamics of the electron in this system
consists of almost adiabatic regions with periodic ”kicks” in
the low δ zones. (This is reminiscent of a kicked rotator
corresponding to a Standard Map)

This is a 3/2 Hamiltonian which allows to employ the
machinery developed for analysing chaos in a low-dimensional
systems. In order to obtain the Poincare cross-section of the
phase space, it is possible to integrate the dynamics of this
system directly. To recover the cross-sections topology this
way is however complicated. First, it requires exponentially
long simulation times. Second, the integrator needs to respect
the symplectic structure of the Hamiltonian system, and the
only known schemes that respect this property are implicit,
meaning one will be faced with solving stiff systems of non-
linear algebraic equations which can introduce errors from the
solver and imposes strict time resolution restrictions (adaptive
time step methods also don’t solve the resolution problem
since such integrater’s class only guarantees bounded relative
error in energy, witch in practice can reach orders of magnitude
deviations for not conservative Hamiltonian systems). Third,
even within the class of fixed step symplectic integrators the
discretization itself can alter the stochastic properties of the
calculated trajectories. Because of these reasons one wants to
obtain a discrete Poincare cross section map analytically and
study its properties instead of direct integration.

It was shown that such cross section for the dynamics of
laser-electron interaction in a longitudinal electrostatic trap
within the appropriate asymptotics can be approximated by
a discrete map S, similar to a Standard Map:

Πn+1 = Πn +Q sin(ψn)

ψn+1 = ψn + Π
1/2p−1
n+1
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Fig. 2. Example of alternation of stochastic properties due to the integration
scheme. Both integration schemes are symplectic (both are of SPRK class,
code 1 corresponds to trapezoidal method and code 2 is a 4th order variational
integrator), and both use the same nonlinear Broyden solver. Despite that, it
is visible that the trapezoidal integrator does not recover the regular surface,
and that significantly alters the resulting calculated Poincare cross-section.

Fig. 3. Example of the phase space described by a map. Here Q = 1.

III. ANALYSIS

A. Chaos detection

Consider a discrete symplectic map F, describing the evolu-
tion of a conservative dynamical system over discrete times
t = n ∈ N. The phase space vector sequence x and the
corresponding deviation vector sequence are then given by
recursive expressions:

xn+1 = F(xn)

wn+1 =
∂F

∂x
(xn) · wn

Def. For a map F with N dimentions, the General Aligment
Index of Order k (denoted GALIk) is defined as the volume
of the k-parallelogram:

GALIk = || w1

||w1||
∧ w2

||w2||
∧ ... ∧ wk

||wk||
||

Where the order k is in range between 1 and N .
Map S is 2-dimentional, therefor GALI2 is appropriate. In

practise, GALI2 is calculated as follows: First, a random unit
vector is chosen associated with the initial condition x1. This
is the first deviation vector w1. The second deviation vector
w2 is chosen to be orthogonal to w1. According to definition,
the GALI2 index is then simply

GALI2 = det

(
w11 w11

w21 w21

)1/2

The values of the deviation vectors are then updated and
renormalized to unity, and the process repeats. Conserva-
tion of phase volume by Hamiltonian system (described by
S) guarantees us that the Lyapunov exponents will have
different signs λ1 = −λ2 > 0. In case of chaotic orbit
the GALI2 decays exponentially (the deviation vectors get
stretched along the eigenvector of ∂F/∂x that corresponds to
positive Lyapunov exponent, therefor aligning and decreasing
the associated parallelogram area.), meanwhile for a regular
orbit of 2d system GALI2 decays as a power law (deviation
vectors collapse to the tangent surface of a torus which in
2d is 1-dimensional, hence also decreasing the associated
parallelogram area but at a much slower rate). This provides
a classification scheme of calculating the GALI2 for fixed
number of steps and evaluating if its value falls below the
pre-defined classification threshold.

B. α-stable distributions

This section discusses the concept of Levy stable (α-
stable) distributions and their relevance to stochastic dynamics.
Notion of distribution’s stability is motivated by the central
limit theorem and it’s generalizations. According to CLT, the
sum of mutually independent normally distributed random
variables is a normally distributed random variable, hence
the probability distribution law is preserved for such linear
combinations. Such property is denoted with d

= symbol.
Def.1. Let a, b, c ∈ R+, and ξ1, ξ2 be independent random

variables with same probability distribution P. If random
variable

ξ
d
= aξ1 + bξ2 + c,

also has probability distribution P, then P is called stable
distribution. Examples of stable probability distributions with
a closed form are Gaussian, Cauchy and Levy distributions.
The tails of the stable distributionare can be ”fat”, i.e. gov-
erned by the power law behavior. While providing intuitive
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Fig. 4. Examples of how GALI2 depends on number of iterations n
for trajectories of varying degree of stochasticity. Phase trajectories labeled
a, b, c correspond to plots b, d, f , respectively. The value of GALI2 after 50
iterations is a significant classification feature for determining if the trajectory
is chaotic (and can also be used as a measure of stochasticity).

[a] [d]

[b] [e]

[c] [f]

Fig. 5. Example of the GALI2 plot. Here Q = 1.

understanding of the concept, the Def.1 has a disadvantage of
not providing any systematic way of parametrizing the entire
class of stable distributions. Equivalent definition of stability
solves this problem:

Def.2. Random variable ξ is called stable if ξ d
= aξ1 +

b, where ξ1 is a random variable with distribution function
Fξ1(x) and characteristic function:

Fig. 6. GALI2 plot for Q = 6.6, corresponding to the first spike on the
fig. 10. Islands correspond to the accelerator modes. Magnification of the
island is shown at fig. 7

Fig. 7. Magnification of one of the islands from fig. 6

∫ ∞
−∞

exp(iux)dFξ1(x) =

=

{
exp(−|u|α(1− iβ tan πα

2 ((u)))) α 6= 1

exp(−|u|(1 + iβ 2
π ((u)) log |u|) α = 1

,

where α ∈ (0, 2] is the characteristic exponent (also called
index of stability), β ∈ [−1, 1] is the skeweness parameter,
a 6= 0 is a scale parameter (also denoted γ) and, b ∈ R is
the location parameter (also denoted δ). Several parameteri-
zations are used for describing stable distributions (different
ones denoted by values of k = 0, 1, ..); in simulations here
the so-called zero type (k = 0) parameterization is used,
corresponding to random variables ξ given by
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ξ
d
=

{
γ(ξ1 − β tan(πα2 )) + δ α 6= 1

γξ1 + δ α = 1
,

has characteristic function

S(α, β, γ, δ; 0) ={
exp(iuδ − γα|u|α(1 + iβ(−1 + |uγ|1−α(u) tan(πα2 )))) α 6= 1

exp(ıuδ − γ|u|(π+2iβ log(|uγ|)(u))
π ) α = 1

C. About accelerator modes

This section discusses the concept of accelerator modes on
am example of a standard map (S for the case p = 1):

Πn+1 = Πn +Q sin(ψn)

ψn+1 = ψn + Π

Such map permits ballistic propagation along Π and/or ψ
directions if

Q sin(ψa0 ) = 2πl Πa
0 = 2πm,

where m and l are integers. In such case,

pan = 2πln+ pa0

is called the accelerator mode. It is evident that it cor-
responds to ballistic transport since Π ∝ n and ψ ∝ n2.
The linear stability region of the accelerator mode can be
found by a standard procedure of finding the eigenvalues of
the associated with the map S Jacobian matrix (tangent map
∂S/∂x). For Standard Map the Jacobian matrix is∥∥∥∥1 Q cos(ψ)

1 1 +Q cos(ψ)

∥∥∥∥
and the corresponding characteristic equation is

λ2 − 2λ

(
1 +

1

2
Q cos(ψ)

)
+ 1 = 0.

The eigenvalues λ1,2 are given by

λ = 1 +
1

2
Q cos(ψ)±

((
1 +

1

2
Q cos(ψ)

)2

− 1

)1/2

Linearly stable region Re(λ1,2) < 0 corresponds to

−2 > Q cosψ > −4

so the accelerator mode is stable for

2πl < Q < [4 + (2πl)2]1/2

Classical example of the Standard Maps’ phase space with
Q = 6.28 ≈ 2π is shown on fig. 8.

The ballistic trajectories of the accelerator mode correspond
to the regular surfaces inside the island visible on fig. 9. Due
to the stickiness of the island, the surrounding trajectories are

Fig. 8. GALI2(50) plot for Q = 6.28 ≈ 2π. Islands correspond to
acceleration mode. See magnification of the island on fig. 9

dragged along by accelerator modes trajectories, and therefor
affecting their transport. Such interpretation can be verified
directly by calculating the dependence of the scaling exponent
µnum (See section IV-B for more details) on the initial
conditions [Π0,Ψ0]. As the order l of the accelerator mode
increases, the region of stability shrinks and the associated
phase space islands become smaller.

Fig. 9. GALI2(50) plot for Q = 6.28 ≈ 2π. Islands correspond to
acceleration mode.

IV. SIMULATIONS

A. Calculating diffusion Dnum

The numerically simulated coefficient of diffusion was
defined as

Dnum =
〈(∆Π)2〉

n

,
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where the 〈...〉 brackets denote the ensemble average (aver-
aging was conducted over 3142 evenly distributed initial con-
ditions (Π, ψ) ∈ [0, 2π]×[0, 2π]. The calculated dependence of
Dnum/(Q

2) for three different iteration numbers n is presented
on a figure. The quasilinear approximation for a Diffusion
coefficient of a Standard Map yields DQL = K2/2, however
for superdiffusive case 〈(∆Π)2〉 ∝ tµ, where µ ∈ [0, 2].
The case of µ = 2 is associated with accelerator modes and
corresponds to the case of ballistic transport.

Fig. 10. Calculated values of Dnum/(Q2) for n = 1000 iterations. The
increments across Q-axis δQ = 0.1. The values of Q corresponding to peaks
are listed in the table I

TABLE I
Q VALUES ASSOCIATED WITH ACCELERATOR MODES, SEE FIG. 10

Q α β γ δ
6.6 - - - -

12.7 - - - -
19 - - - -

25.2 - - - -
31.5 - - - -
37.8 - - - -
44 - - - -

B. Calculating scaling exponent µnum

The scaling exponent µ can be obtained from fitting the
log〈(∆Π)2〉 on log(n) dependence. Comparison between two
types of diffusion, Q = 6.6 associated with accelerator mode
and Q = 10 as a reference case with a fully chaotic space is
shown on fig. 11.
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Fig. 11. This picture illustrates the technique of measuring the scaling
exponent µnum. One can calculate the evolution of the 〈∆Π2〉 (here 〈...〉
corresponds to averaging over ensemble of initial conditions. For this calcu-
lation, the ensemble of 3142 evenly distributed initial conditions [Π, ψ] =
[0, 2π] × [0, 2π] was used) and fits it to exponential law 〈∆Π2〉 ∝ nµ

by linearly fitting the log-graph, hence obtaining the polynomial coefficient
µnum log(n). For example Q = 10.0 correspond to fully chaotic regime
and exhibits normal diffusion scaling with µnum ≈ 1.0, and Q = 6.6
(max of fig. 10 associated with accelerator mode) exhibits superdiffusion with
µnum ≈ 1.78

Fig. 12. Map showing dependence of µnum(5000) on initial conditions
for Q = 6.28
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