Noter 7 - Pencolation Basics II
\rightarrow Recall:
$\Rightarrow 2$ questions of interest:
(1) "why" - "Any relevance to Fluid flow" Cef^{\prime} J-TI (us $\rightarrow K u \rightarrow \infty$) Origens \rightarrow Broadkent and Hammersly Sats

- hydralogy Clike H.E. Husert) (posted)
- intererted in trengoort/flow thry porus media - water seepege in rock $\$$.
- miurascopic underpisnings of Darcy's Law and hozeny equation:
r Dermeabelity

$$
\frac{q}{i}=-\frac{k}{i} \nabla p
$$

flux

net flow thre rendom net work

Percolotion ar connection thro random maze $\operatorname{cof} \operatorname{Ain} \operatorname{Co})$

- Also, penculatión cluster distributian $n_{s}(p)$, stns (p) etc. is Messure of emergent order, and its statistical characterization
\Rightarrow simpler problem than avalanche distribcetion
\Rightarrow soo onginsilly 'definel' is terms of "percolatim cluster) of single toppling (BTld '8\%)
\Rightarrow prototypo of Many hody, shart range miteraction syetem with univarsality, serling etc.
(2) How do I know it when I see if? sper ifioally how identify it is a vimutation? (a.f $1 t$. e.)
\rightarrow Percalation is intrinsically
sotatic concent (i.e. shep sher sotatice concent (i.e. snap shot)
\rightarrow vuggest analyzing clustering distribution in an image
see Boffetty et, af, ported \rightarrow Fig 4 . Beantifully shows varticity clusteving in 20 furbulence. Appeqls to intuition from percollatum.
\rightarrow what of time?
- sequenco of clurter imager? With tromoport, should mairrest avalenches i.e. large clusters dischrirge auross the sytem
- to ber continued.

Now describe percolation by:

$$
A_{v}(x) \equiv q v g \# / \text { site of } \sigma \text {-clusters }
$$

popuktion denscty
and moments:

$$
\begin{aligned}
& \sum_{s} n_{s}(p) \rightarrow \text { op } p_{s} \text { lstion } \\
& \sum_{s} \sigma A_{s}(\varphi) \\
& \text { prob.bilcty of a chestor } \\
& \text { i.e. } W_{s}=\operatorname{Nos} \rightarrow \text { probebility that } \\
& \text { cluster to which } \\
& \text { an arbitrony rite }
\end{aligned}
$$ belongs, cuntains \checkmark sites.

and $\bar{s}_{\phi}=\sum_{\sigma} s w_{s}$ ars sibu
etc.
$\Delta / L \rightarrow 0$
Universclity \rightarrow scaling \rightarrow powar laws
Spevial focus on $\rho \sim p_{0}$
c.e nean perculation thverhold, antiocixste scalings ~ Lp-pe| ${ }^{\alpha}$, etc.
\rightarrow struuture of scalinges
\rightarrow relation between critical exponents.

Also - exactly solvable (slbeit trivisl) ID model

- Betho lattice/Cayley tree has z boinds, d dimension
e.g. Each rits has $z=3$ bonds,
 surface dense? (Pcircle
also solvabke?, d dimensions.
cire. where do rcalias con de from?
c.f, \rightarrow Staffer, Ahorany $2.4 \quad\left\{\begin{array}{l}\text { not disc. } \\ \text { hero }\end{array}\right.$
\Rightarrow extract general trends of $n s(p)$ scalings exploiting exact solutions.
\Rightarrow Toward a Scaling solutim for

$$
\text { Cluster Numbers }\left(n_{s}(p)\right)
$$

Recall: $\left.\quad N_{s}(p)=(1-p)^{2}\right)^{\frac{b}{s}}$

$$
\Rightarrow \sigma \rightarrow \infty \quad n_{0}(p) \sim e^{-c s}
$$

Fur Bethe lattice, need gen aralize:

of course: $C=c(p)$ (not a strict constant)

For Bethe lattice: $C(p)=\left(\phi-\phi_{Q}\right)^{2}$, m are generally
$C \sim\left|p-p_{c}\right|^{1 / \nabla}$

$$
\left(\begin{array}{l}
\sigma=1)^{2} \\
\text { Bethe }
\end{array}\right.
$$

Bethe)

Noto now have two exponentisk

Oboresvey then:

$$
n_{s}(p) \sim \frac{1}{\sigma^{7}} \text { exp }\left[-\left|p-\lambda_{0}^{1 / \sigma}\right|^{1}\right]
$$

- definér effective clet-off on ranger of cluster sizes

$$
\text { i.e. } \quad x^{\pi}<x^{-} \sim\left(x-\lambda_{0}\right) j^{-10}
$$

only contributo to clesten
there

$$
\begin{aligned}
& n_{s}(p) \sim \sigma^{-T} \quad \frac{\text { scalety }}{\text { critu at }} \text { at } \\
& \$>S_{c \rightarrow 0} \rightarrow \text { ex ponatially rare. }
\end{aligned}
$$

\rightarrow Sco defiñer crass-over from
from criticisl cilusters \rightarrow contributo to
non-eritios \rightarrow don'l centribute
so: $\quad \operatorname{Dns}^{\prime}(3) \operatorname{S}^{-T}$ exp $\left[-\left(p-\left.A\right|^{\left.1 / N_{S}\right]}\right.\right.$
\rightarrow working model.

Now \rightarrow a limitation is validity for large clusters, only
\rightarrow improver by examining ratio

$$
V_{s}=n_{s}(\phi) / D_{s}\left(P_{0}\right)
$$

50

$$
\frac{V_{\sigma}(p) \sim \exp [-c s]}{} \frac{n_{s}\left(P_{c}\right) \sim 5^{-\gamma}}{}
$$

\rightarrow exceeding or male.
$\delta * A: \quad n_{s}\left(P_{c}\right) \sim \sigma^{-\gamma}<$
"You mist violate the offieral secrets Act if you now conclude sud wry rely this is whet theoretic pkysioistt do; make caleulationo it they are espy wrerpective of whether the assumptwis are comet or wrong."
Some cal culationc:

\rightarrow Fraction of sites.
belonging to infinite network.

For p
-site -empty
-ocunpied cochestor
finite chuotan

$$
-\sigma=\infty, \quad n_{s}=0
$$

i.e. in co fatize, \perp network,
$\# \infty$ networks/ leticesité $=0$

- Recall fraction of lattice sates in od network obtain el from subtracting from occupied sitar those belonging to finite cluster
~ $\underline{e}^{2} e_{0}$ using $P+\sum_{5} n_{r} s=p$ finite

$$
\therefore \text { at } p=p_{c}, \quad p=0 \text { above. }
$$

$$
\therefore \sum_{\substack{\sigma \\ \text { finder }}} n_{0} s=p_{0}
$$

Now, No s so need
$\mu>2$ for convergence,
(targe powers fur convergence.)

So, re-writing:

$$
\begin{aligned}
& f=p-\sum_{s} n_{s} s \\
&=\sum_{s}\left(n_{s}\left(p_{c}\right)-n_{s}(p)\right) w^{r}+o\left(p-p_{c}\right) \\
&=\sum_{s} s^{1-p}[1-\exp (-\underbrace{-s)]} \\
& \begin{array}{l}
\text { (larse } \\
\text { domensted) }
\end{array} \\
& \text { dontrib }
\end{aligned}
$$

50

$$
f=\int d s s^{1-\tau}[1-\exp (-c s)]
$$

$Z=C S$ and cintegration by parts:

$$
\begin{aligned}
f & \approx c \int s^{2-\tau} \exp (-c s) d s \\
& =c^{r-2} \frac{\left.r^{2-\tau} \exp (-z)\right]}{\Gamma}(B-\tau)
\end{aligned}
$$

and con integrete:

$$
f \sim c^{(x-2)}
$$

but $c \sim\left(p-p_{0}\right)^{1 / \sigma}$

$$
\begin{aligned}
p & \sim\left(p-p_{0}\right)^{(\tau-2) / \tau} \\
& =\left(p-p_{e}\right)^{(3} \\
\beta & \left.=\frac{\tau-2}{\sigma} \right\rvert\, \rightarrow
\end{aligned}
$$

i.) first relstion between resling exponato
(i) what wo seek

$$
D_{0}(5) \text {. }
$$

(2) How does mean cluster sizo dioerse? Revall: $\quad \bar{s} \sim \sum_{s} s^{2} n_{s} / \sum_{s} s n_{s}$
but $p \rightarrow p_{c}, \sum_{s} s n_{s}=p_{c}$
30

$$
\begin{aligned}
\bar{s} & =\sum_{s} s^{2} n_{s} / p_{c} \\
& \sim \int d s s^{2} n_{s} \\
& \sim \int d s s^{2-T} e^{-c s} d s
\end{aligned}
$$

$$
\bar{s} \sim c^{3-\mu} \int z^{2-\varphi} e^{-z} d z
$$

$\overbrace{\text { Finsto }}^{6}$
$\bar{J} \sim 0^{\tau-3}$

$$
\sim\left(p-p_{0} x^{T-3}\right)^{\top}
$$

$$
\sim\left|p-p_{0}\right|
$$

For

$$
\begin{gathered}
B>0, \quad \tau>0 \\
2<\tau<3
\end{gathered}
$$

(co oingle eluster neglected)
$\sigma \rightarrow$ scaling of e

$$
c \sim(p-n)^{1 / 5}
$$

determines Solo.
Con relater all else to those b of course, need ∇_{j}, v from]
simulation o, etc.
lie. consider general case:

$$
\begin{aligned}
M_{i} & =\sum_{s} s^{k} n_{s} \\
& \sim \sum_{s} s^{k-\tau} e^{-c s} \\
& \sim \int d s s^{k-T} \operatorname{exw}(-c s) d s \\
& \sim e^{\tau-1-k} \int d z z^{k-\tau} e^{-z}
\end{aligned}
$$

se

$$
\begin{aligned}
M & \sim c^{\tau-1-k} \cdot(x-1-\pi) / \sigma \\
& \sim\left(0-p_{0} i(x)\right.
\end{aligned}
$$

exponent $\sim(\pi-1-k) / \sigma$

Caveat: - Not rigorus. Find the

- yet, captures essence of scaling game.

AA Quick Look at More Genera/ Denivat in
"If you have read this for thru the book, it is presumably too later for you to return it for a re-fund".

Mane general formulation:
\rightarrow stretched exponential version of previdir

$$
\begin{gathered}
r_{s}(p)=F(z) \\
z=\left(p-p_{6}\right) s \\
n_{s}(p) \sim s^{-T} f\left[\left(p-p_{0}\right) s^{\sigma}\right]\left\{\begin{array}{l}
p \sim 1 \\
s>1
\end{array}\right.
\end{gathered}
$$

$F(z)$ is $T B D$ from computation.

$$
\rightarrow \quad n_{3} \sim s^{-T} f\left[\left(-\infty_{0}\right) 5^{\sigma}\right]
$$

now behaves well, all cares
check!

$$
\begin{aligned}
\bar{J} & \sim \sum s^{2} n_{s} \\
& \sim \mid p-p_{0}(\tau-3) / T \\
& \sim\left|p-p_{0}\right|-(3-\tau) / \tau=\left(p-p_{0}\right\rangle
\end{aligned}
$$

Q

$$
\begin{array}{ll}
\text { Exponents- } \beta_{j, \gamma} \gamma & \beta \leftrightarrow p \\
\text { universal } & \gamma \leftrightarrow \bar{s}
\end{array}
$$

- indeperdent lattice stratus some RG evidence for γ.
\rightarrow Can extend the fin to correlation lengths, perimeters (i nD) etc.
\rightarrow Cluster perimeter can be fractal. (40.514, is)

General Measage:

- Lage scale emegerf behavior occurs in syotemos with 10 cel interaction
- syotens can self-arganizo hicsarihy of clustere, dioersent at cuticality.
- Univerpality + oc-loisg \rightarrow Nower laws
- acelens theory is eolly useful phenamendasy which lishs sc.lein (critizel) expenents,
- propertier dercribed by ofciling expeneater i.e. the answer?
\Rightarrow Emergent critizal behavion $l_{c} \rightarrow \infty \quad$ bes5:

Tronspart Shenemeng exost which are not epthel by randiom walth models
$K_{y} \gg$ is good example.
\rightarrow Now, return to $\mathrm{Ku} \rightarrow \infty$ magnetic problem.

