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1 Introduction

Until now we have explored the intermittent problem, from which the multiplicative

process associated with log-normal distribution of probability, time series and Levy

flights theory as well as Pareto (inverse fractional power) distribution, etc have been

studied systematically. But 1/ f "noise", which is one of the important results of

these theories has been left. By definition, 1/ f noise is a signal or process with a

frequency spectrum such that the power spectral density (energy or power per Hz)

is inversely proportional to the frequency of the signal:

S( f ) ∝
1
f α

(1)

where f is the frequency and 0 < α < 2, with exponent α usually close to 1. For

instance, the statistics of the flooding of the Nile has been a popular example 1/ f

noise.

Actually, we will show in this note that the 1/ f noise is not noise but the

temporal signature of the self-similar properties of the critical state of self-organized

critical systems, whose spatial self-similarity results in the "fractal" structure that has

been given in the former notes. Turbulence is a phenomenon where self-similarity

is believed to occur in both space and time. So it plays an import role in our study

of plasma. For example, M. Endler indicated that a probability distribution function

of turbulence induced fluxes shows a long tail with 10% of the largest flux events

being responsible for 50% of the transport [1]. The common feature for thid kind of

systems is that the power-law temporal or spatial correlations extend over several

decades where naively one might suspect that the physics would vary dramatically.

This stimulates us to learn 1/ f distribution and 1/ f noise.
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In this note, we will investigate the general theory for 1/ f law, i.e. the self-

organized criticality in which 1/ f noise or flicker noise can be identified with the

dynamics of the critical state. We will study the flow of sand in models of "running"

sandpiles. In this model, at very short time scales, the flow is dominated by single

avalanches. These avalanches overlap at intermediate time scales; their interactions

lead to 1/ f noise in the flow. We will also introduce the conservation laws, showing

that scaling in this region is a consequence of them.

2 1/ f noise from 1/ f distribution

We have observed the 1/ f distribution in the former notes, for instance the log-

normal distribution with a large dispersion can be mimicked by a 1/x distribution

over a wide range of x [2]. This because the probability that the variable x/x̄ lies in

the interval d(x/x̄) is

g(x/x̄)d(x/x̄) =
exp
[
−(log x/x̄)2/2σ2

]
(2πσ2)1/2

d(x/x̄)
x/x̄

(2)

where x̄ is the mean and σ2 is the square of the dispersion of the distribution. Let

f = x/x̄, yielding the log gas a function log x like

log g( f ) = −log f − 1
2
[(log f )/σ ]2−

1
2

log(2πσ
2). (3)

Obviously, the distribution g( f ) is to be 1/ f for the case σ → ∞ as the last term is

a constant and negligible. Given σ2 = Nσ̄2 for multiplicative processes, which can

be described by the log normal distribution under mild conditions, the greater the

value of N, the greater the number of e-folds or decades over which the distribution

function mimics 1/ f distribution.

So the next question is how to get the 1/ f noise from such power law dis-

tribution. That such a scale-invariant distribution function of relaxation times

[ρ(τ)dτ = dτ/τ ] of random events leads to a 1/ f noise spectrum was first pointed

out by van der Ziel [3] and extended by Machlup. A purely random process gener-

ally has an autocorrelation of the form
〈
φ̃ (t1)φ̃ (t2)

〉
=
∣∣φ̃ (0)∣∣2 e−t/τ . The power

spectrum of such a process has the Lorentz shape by Fourier transform:

S(ω) ∝ τ/(1+ω
2
τ

2).
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If we have a large collection of different random processes, each with its own

correlation time τ , then the power spectrum of the whole ensemble depends on the

statistical distribution ρ(τ) of these correlation times. If These processes have not

been filtered, then our conjecture is that the weighting function is scale invariant:

ρ(τ)dτ ∝ dτ/τ .

This gives a power spectrum∫
τ2

τ1

Sτ(ω)ρ(τ)dτ ∝

∫
τ2

τ1

τ

1+ω2τ2
dτ

τ
=

tan−1ωτ

ω

∣∣∣∣τ2

τ1

. (4)

If the scale invariance extends over many orders of magnitude, i.e., if τ2/τ1 is a

large ratio, then the spectrum is 1/ω over a correspondingly large range.

We propose that if, in a system of interest, the distribution of relaxation times is

determined by a multiplicative process, then that distribution becomes log normal.

However, as discussed above, for a considerable range, a log normal ρ(τ) is

mimicked by 1/τ , as required by derivation of 1/ω above. For example, the Nile

has been observed to exhibit 1/ f noise. We would explain this by considering the

many stages through which a drop of rain at the source of a river must successfully

pass to reach the mouth of the river. First, atmospheric conditions must lead to rain

to create the drop and then wind, temperature, and ground porosity conditions must

allow the drop to continue downstream at each stage of the river. The resulting

log-normal distribution for the flow rate yields, in a natural fashion, a 1/ f noise in

the river level at the mouth.

3 Self-organized criticality

As we discussed above, there are similarly diverse temporal processes generically

exhibiting 1/ f noise. These phenomena lack natural length and time scales and

instead possess scale-invariant or self-similar features. The concept of fractals has

been successful in characterizing the geometrical aspects of scale-invariant systems,

while methods developed from the studies of critical phenomena may provide the

necessary analytical tools.

The concept of "self-organized criticality" (SOC) was proposed by Bak, Tang,

Wiesenfeld(BTW) [4] [5] as an explanation for the behaviour of a cellular-automata
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model (sandpile model) they developed. By definition, SOC is a property of (classes

of) dynamical systems that have a critical point as an attractor. Their macroscopic

behaviour thus displays the spatial and/or temporal scale-invariance characteristic

of the critical point of a phase transition, but without the need to tune control

parameters to precise values. It provides a connection between nonlinear dynamics,

the appearance of spatial self-similarity, and 1/ f noise in a natural and robust

way. Here, the self-organized means that dynamical systems with extended spatial

degrees of freedom in two or three dimensions, numerically speaking, naturally

evolves to the state without detailed specification of the initial conditions (i.e., the

critical state is an attractor of the dynamics). So the critical state in this theory

is different from that in static critical phenomena, in which scale invariance and

self-similarity are only exhibited at a few isolated, or critical, points in the parameter

space. For example, the Ferromagnet, described by Ginsburg/Landau theory

∂n
∂ t

= c∇
2
η−a′(T −Tc)η−b′η3

has a critical temperature Tc, so it’s a critical-point problem. However SOC describes

the systems exhibit self-similarity without any tuning of parameters. The authors

suggest that this self-organized criticality is the common underlying mechanism

behind the phenomena described above. To illustrate the basic idea of self-organized

criticality in a transport system, we will consider the sandpile model as well as

Schelling Segregation Model in the following parts.

3.1 Characteristics of the SOC

SOC was suggested to be the typical behavior of interacting many-body systems.

BTW claimed that, under very general conditions, dynamical systems organize

themselves into a state with a complex but rather general structure. The systems are

complex in the sense that no single characteristic event size exists: there is not just

one time and one length scale that controls the temporal evolution of these systems.

Although the dynamical response of the systems is complex, the simplifying aspect

is that the statistical properties are described by simple power laws. What’s more,

the claim by BTW was that this typical behavior develops without any significant

"tuning" of the system from the outside.

Phenomena in very diverse fields of science have been claimed to exhibit SOC

behavior, such as sandpiles, earthquakes, forest fires, electric breakdown, motion
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of magnetic flux lines in superconductors, dynamics of magnetic domains and

growing interfaces. However there does not exist a clear-cut and generally accepted

definition of what SOC is [6]. Nor does a very clear picture exist of the necessary

conditions under which SOC arises. Then what kind of systems will evolve into

a SOC dynamical state? A separation of time scales is required. The process

connected with the external driving of the system needs to be much slower than the

internal relaxation processes. The separation of time scales is intimately connected

with the existence of thresholds and metastability. The strong drive will not allow

relaxation from one configuration (metastability) to another.

Then the question becomes where SOC is to be found. Certainly, we will

expect SOC behavior in slowly driven, interaction-dominated threshold (SDIDT)

systems. SDIDT focuses on the two unique feature of such system:the interesting

behavior arises because many degrees of freedom are interacting; and the dynamics

of the system must be dominated by the mutual interaction between these degrees of

freedom, rather than by the intrinsic dynamics of the individual degrees of freedom.

If a system exhibits power laws without any apparent tuning then it is said to

exhibit self-organized criticality; SOC is a phenomenological definition rather than

a constructive one.

3.2 Sandpile model

The experiments on sandpile are a prime example of SOC. So we will introduce

SOC using sandpile model both in 1D and 2D.

3.2.1 Description of sandpile model using 1D case

Fig.1 shows a model of a one-dimensional sand pile of length N. The boundary

conditions are such that sand can leave the system at the right-hand side only. We

may think of this arrangement as half of a symmetric sand pile with both ends

open. The numbers zn represent height differences zn = h(n)−h(n+ 1) between

successive positions along the sand pile. The dynamics is very simple. From the

figure one sees that sand is added at the nth position by letting

zn→ zn + 1,

zn−1→ zn−1−1.
(5)
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Figure 1: One-dimensional "sand-pile automaton".

Suppose we start from scratch and build the pile by randomly adding sand, a

grain at a time. The pile will grow, and the slope will increase. Eventually, the slope

will reach a critical value (i.e., the critical value of height difference zc ); if more

sand is added it will slide off, i.e., one unit of sand tumbles to the lower level

zn→ zn−2,

zn±1→ zn±1 + 1.
(6)

Alternatively, if we start from a situation where the pile is too steep, the pile will

collapse until it reaches the critical state, such that it is just barely stable with respect

to further perturbations. The critical state is an attractor for the dynamics. The

quantity which exhibits 1/ f noise is simply the flow of the sand falling off the pile.

The model is a cellular automaton where the state of the discrete variable zn at

time t + 1 depends on the state of the variable and its neighbors at time t.

In this model the effect of a small local perturbation is communicated throughout

the system via the nearest-neighboring law. In the more general case of transport

(both in one and higher dimensions), the slope zn can be thought of as the pressure

(or energy, etc.), which builds up precisely to the point where the transport is

stationary. A lower slope will prevent transport, and with a higher slope the output

will exceed the input for a while until stationarity is restored.

In one dimension, the minimally stable state is critical in the restricted sense

that any small perturbation can just propagate infinitely through the system, while
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any lowering of the slope will prevent this. This is analogous to some other one-

dimensional critical phenomena, such as percolation where at the percolation thresh-

old particles can just percolate to infinity. Also, like other 1D systems, the critical

state has no spatial structure, and correlation functions are trivial.

3.2.2 two dimensions and power laws

For 2D case, there is a square grid of boxes and at each time step a particle is

dropped into a randomly selected box. When a box accumulates four particles, they

are redistributed to the four adjacent boxes via

z(x,y)→ z(x,y)−4,

z(x±1,y)→ z(x±1,y)−1,

z(x,y±1)→ z(x,y±1)−1,

(7)

where 1 ≤ x,y ≤ N like 1D case. Redistributions can lead to further instabilities

and avalanches of particles in which many particles may be lost from the edges

of the grid. One measure is given by the number of boxes that participate in the

redistributions.

The situation here is not like 1D case. One might expect that the system

approaches, through a self-organizing process, a critical state with a power-law cor-

relation function for physically observable quantities, including the power spectrum.

In analogy with the discussion for the one dimensional case, the slope (or "pressure")

will build up to the point where stationarity is obtained: this is assured by the sel f

organized critical state, but not the minimally stable state.

Suppose that we perturb the critical state locally, by adding one unit, or by

locally changing the slope. We expect the perturbation to grow over all length

scales. That is, a given perturbation can lead to anything from a shift of a single

unit to an avalanche. The lack of a characteristic length scale leads directly to a lack

of a characteristic time scale for the fluctuations. The physical quantity which is

transported in this model is the "slope."

We then measure the total number of slidings s induced by the single perturba-

tion. Note that this operationally defines a domain over which a given perturbation

is communicated. After each perturbation, the original static state is restored, and

another site is perturbed, and so on. Fig.2 shows a typical domain structure obtained
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from a number of single− site− induced perturbations. The dark sites are domains

affected by perturbing a single interior site. One sees that domains of a variety of

sizes exist, from a single site up to one that is comparable to the system size itself.

Figure 2: Typical domain structures resulted from several local perturbations for a

100×100 array. Each cluster is triggered by a single perturbation.

In a sense, we are measuring the linear response of the system under infinitesimal

perturbations. The quantity being measured is the distribution function D(s) of

slide sizes. It revealed that

D(s) ≈ s−τ , τ ≈ 0.98≈ 1 f or D = 2 (8)

See Fig.3. At small sizes the curve deviates from the straight line because discrete-

ness effects of the lattice come into play. While the fact that the distributions begin

to deviate from a power law at large cluster sizes is a finite-size effect.

In order to understand the dynamics of the critical state, they also investigated

the temporal evolution of the clusters above. Imagine first the effect of a perturbation

at a single site on a static critical state. A local perturbation will spread to (some)

nearest-neighbor sites, then to next-nearest neighbors, and so on in a "domino"

effect, eventually dying out after a total time T , having induced a total of s slidings.

In general, T is less than s since the growth rate is usually greater than unity. Fig.4

shows the distribution of lifetimes D(T ) weighted by the average response s/T .
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Figure 3: Distribution of cluster sizes at criticality in two dimensions.

This quantity also has power-law behavior,

D(T ) ≈ T−α , α ≈ 0.43 f or D = 2. (9)

We now give the "sliding" a new meaning, namely a point of energy dissipation:

When a sliding event occurs, a unit of energy is dissipated. This will lead to 1/ f

noise for the power spectrum (S( f ) ≈ f−2+α ) discussed before. Hence, the state-

ment that the system must go to a critical state with power-law spatial correlations

and 1/ f noise is fully consistent with the numerical simulations. The 1/ f noise is

the temporal signature of the self-similar properties of the critical state.

Note that the curves for the lifetime distribution fit a power law only over a

decade or so, while the cluster size distributions fit for at least two decades. This

is due to the fact that the lifetime of a cluster is much smaller than its size, thus

limiting the range over which we have reliable data in Fig.4. What’s more, the

exponents τ and α representing the spatial and temporal evolution of the clusters,

respectively, can be related through "scaling relations"

α = 2−β = (γ + 1)τ−2γ (10)

where γ ≈ 0.57 for D = 2 and γ ≈ 0.71 for D = 3 if the perturbation grows with an

exponent γ within the clusters, i.e., s≈ T 1+γ .
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Figure 4: Distribution of lifetimes corresponding to Fig.3

3.2.3 How can SOC explain the 1/ f noise and fractals?

The speculation by BTW was as follows. A signal will be able to evolve through

the system as long as it is able to find a connected path of above threshold regions.

When the system is either driven at random or started out from a random initial state,

regions that are able to transmit a signal will form some sort of random network.

This network will be modified, or correlated, by the action of the internal dynamics

induced by the external drive. The dynamics stop every time the internal dynamics

have relaxed the system, so that all local regions are below threshold. The slow

external drive will eventually bring some region above threshold once again, and the

internal relaxation will restart. The result is a complicated, delicately interwoven

web of regions that are coupled dynamically. When we continue to drive the system

after this marginally stable SOC state has been reached, we will see flashes of action

as the external perturbation manages to spark off activity through different routes

of the system. The intricate nature of the combined operation of the external drive

and the internal relaxation of the threshold dynamics makes it natural to imagine

that the network of connected dynamical paths has some sparse percolation-like

geometry. It could well be that the structure of this dynamical network has a fractal

geometry; at least this was the suggestion of BTW. If the activated regions consist
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of fractals of various sizes, then the duration of the induced relaxation processes

traveling through these fractals can also be expected to vary greatly. It is well known

that many different-acting time scales can, under certain circumstances, leads to

1/ f noise. BTW imagined that this is precisely what happens in SOC systems.

3.3 Conservation laws and hydrodynamics model

As we can see, Eq.(7) is a nonlinear discretized diffusion equation (nonlinear because

of the threshold condition). The question that which possible principles governing

the behavior of SOC and how to relate it to our familiar dynamic model then arises.

The first thing comes to our mind is, of course, the conservation laws since the

particle number is conserved. The conservation laws, related to symmetries, is

deemed as the origin of self-similarity of the diffusing field [7]. These bring us to

the hydrodynamic theory/model of SOC, which is a continuum model and valid for

large scales, long time scales.

We note that the important constraint that the relaxation dynamics during an

avalanche does not change the number o f particles, while the driving operation

violates this conservation by adding particles randomly from the outside. Based

solely on the above condition, we conclude that the equation of motion must take

the form
∂h
∂ t

+∇ · j(h) = η(x, t).

The left-hand side of the equation represents the conservative (and deterministic)

relaxation that follows the addition of particles, while the right-hand side represents

the external sources and sinks in terms of a random input function η . As we said

before, the slope can be called "pressure" for generality. So we can rewrite the

conservation law for 1D case as

∂δP
∂ t

+
∂ Γ(δP)

∂x
−D0∂

2
x P = s̃ (11)

where δP is the deviation of the pressure from the self-organized critical state, s̃ is

the input noise and Γ(δP) is flux induced by δP. The last term on the left hand side

is coarse grains induced diffusion. Obviously, P is conserved so that δP evolves

via ∇ · Γ only. To obtain Γ, we need to examine the underlying symmetries of

the problem. Note that, with respect to the average flat surface, "bumps" move

downhill while "voids" move uphill as illustrated in Fig.5. We therefore have the
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Figure 5: δP is defined as a deviation from critical state

joint re f lection symmetry δP→−δP and x→−x remaining Γ unchanged. Then

we can assume Γ(∆P) has the form

Γ(δP) = ∑
n,m,p,q,r

An(δP)n +Bm(
∂δP
∂x

)m +Cp(
∂ 2δP
∂x2 )p +Dq,rδPq(

∂δP
∂x

)r + · · ·

The joint reflection symmetry ensure that n, p,q being even.

We are interested in the large-distance properties of the system, i.e., long

wavelength (hydrodynamic) limit k→ 0. We expect the fluctuations of δP to be

small if the surface is flat as initially assumed. Therefore higher-order terms in δP

and spatial derivative are ignored, yielding the smoothest contribution:

Γ(δP) = AδP2−B
∂δP
∂x

(12)

Here the negative sign before B is for convenience as diffusion equation. Here the

first term is the driving force; this term originates from the local transport dynamics

such as the nonlinear friction or the threshold dynamics. While the second term

is the linear current present in any diffusive process; B can be interpreted as the

surface tension for the sandpile for example. Thus the equation of motion becomes

∂δP
∂ t

+
∂

∂x

[
αδP2−D

∂δP
∂x

]
= s̃ (13)

Here α and D are just coefficients and D = D0 +B. It’s like the classic Burger’s

equation. For 2D case, we have similar result

∂δP
∂ t

+ ∂‖αδP2−D∂‖δP− γ∂⊥δP = s̃ (14)

where ‖ and ⊥ denote the direction that along slope and perpendicular slope,

respectively. The only difference is the extra damping term. So we will examine the

dynamics using 1D equation.
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Before we present a detailed analysis of Eq.(13), we emphasize that its most

important feature is the absence of a relaxation term of the form −δP/τ . Such a

term introduces a characteristic time τ , and a corresponding length l = (τ2/D)1/2,

and destroys scale invariance. It is the conservative nature of the deterministic

dynamics that rules out this term in Eq.(13). What’s more, the scale of δP is

mesoscale. The last but not least, ∂xαδP2 ∼ δP∂xδP indicates that the avalanche

with big driving force "moves" fast than the small one, i.e., the avalanches overlap,

and the resulting output signals can exhibit 1/f noise. Also, due to their overlap, in

this regime it is no longer possible to identify single avalanches.

We can use Eq.(13) to calculate the frequency spectrum, re-normalized nonlinear

scrambling of coupling time and lifetime of each mode/relaxation time, etc. For

this, let’s take its Fourier transform

−iωδPk,ω +Nk,ω +Dk2
δPk,ω = s̃k,ω (15)

where Nk,ω = ikα ∑k′,ω ′ δP−k′,−ω ′δPk+k′,ω+ω ′ . Using the "beat term" idea from

quasilinear theory, let

δP−k′,−ω ′δPk+k′,ω+ω ′ = δP−k′,−ω ′δP(2)
k+k′,ω+ω ′

where the beat term δP(2)
k+k′,ω+ω ′ satisfies[

−i(ω +ω
′)+ (k+ k′)2D0 +(k+ k′)2

γT
]

δP(2)
k+k′,ω+ω ′ =−iα(k+k′)δPk′,ω ′δPk,ω

Then we can reach

Nk,ω = ikα ∑
k′,ω ′

δP−k′,−ω ′
−i(k+ k′)αδPk′,ω ′δPk,ω

−i(ω +ω ′)+ (k+ k′)2γT

≡ k2
γT δPk,ω

where we neglected D0 relative to γT . The long wavelength and slow perturbation

limit indicate that k,ω → 0, which gives

γT = α
2

∑
k′,ω ′
|δPk′,ω ′ |2

k′2γT

ω ′2 +(k′2γT )2 (16)

γT itself sets lifetime of interaction. Plugging it into Eq.(15) yields the final expres-

sion

γT = α
2

∑
k′,ω ′

|s̃k′,ω ′ |2

(k′2γT )3
1

[1+(ω ′/k′2γT )2]2
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Now we can replace the sum by integral and assume s̃ is white noise, i.e., |s̃k′,ω ′ |2 =
s2

0 which generates

γT =
[
c1α

2s2
0/3
]1/3

k−1
min (17)

where c1 is an integral constant. We can see that γT depends explicitly on the cut-off

scale and grows with the increase of scale of interest γT ∼ γT0δ l. And (δx2)∼ γT t,

γT ∼ k−1
min, thus δx2 ∼ tk−1

min ∼ δx t, δx∼ t, which indicates that δP pulse propagates

ballistically rather than diffusively.

4 Schelling Segregation Model

In 1969, Thomas C. Schelling developed a simple but striking model of racial

segregation [8]. His model studies the dynamics of racially mixed neighborhoods,

showing how local interactions can lead to surprising aggregate structure. In partic-

ular, it shows that relatively mild preference for neighbors of similar race can lead

in aggregate to the collapse of mixed neighborhoods, and high levels of segregation.

It is about the segregation that can result from discriminatory individual behavior.

It examines some of the individual incentives, and perceptions of difference, that

can lead collectively to segregation. The basic model is as follows: Suppose there

is some area that both blacks and whites would prefer to occupy as long as the

ratio of opposite color to one’s own color does not exceed some limit-tolerance;

Assume that anyone whose limiting ratio is exceeded by the prevailing mixture will

go elsewhere following some rules, for example, a dissatisfied member moves to the

nearest point that meets his minimum demand. Nobody in this model anticipates

the movements of others. So we also need an order of moving; arbitrarily let the

discontented members move in turn. The result is segregation forms. The initial

distribution of the two populations and the rates at which they move in or out will

determine which one of the two colors eventually occupies and which one evacuates.

For example, suppose there are two types of agents: X and O. The two types

of agents might represent different races, ethnicity, economic status, etc. Two

populations of the two agent types are initially placed into random locations of a

neighborhood represented by a grid. After placing all the agents in the grid, each

cell is either occupied by an agent or is empty as Fig.6. The threshold (tolerance) t is

one that will apply to all agents in the model, even though in reality everyone might
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have a different threshold they are satisfied with. Note that the higher the threshold,

the higher the likelihood the agents will not be satisfied with their current location.

Let’s assume a threshold t of 30%. This means every agent is fine with being in

the minority as long as there are at least 30% of similar agents in adjacent cells.

The picture in Fig.6 (left) shows a satisfied agent because 50% of X’s neighbors

are also X (50% > t). The next X (right) is not satisfied because only 25% of its

neighbors are X (25% < t). Notice that in this example empty cells are not counted

when calculating similarity. When an agent is not satisfied, it can be moved to any

vacant location in the grid. Any algorithm can be used to choose this new location.

For example, a randomly selected cell may be chosen, or the agent could move to

the nearest available location. The new configuration may cause some agents which

were previously satisfied to become dissatisfied! All dissatisfied agents must be

moved in the same round. After the round is complete, a new round begins, and

dissatisfied agents are once again moved to new locations in the grid. These rounds

continue until all agents in the neighborhood are satisfied with their location and

clusters form.

You can experiment with a number of parameters and see how the model behaves

in the following website Schelling’s Model of Segregation.

Figure 6: Occupation of an area by two agent types whose threshold is 30%.
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