Phys 4C Fall 2019
Chapter 9 Solutions to Exercises

9.13.

9.14.

Displacement-current flux

The electric field between the plates equals o/¢q, so the displacement current is Jq =
eo(OE/0t) = do/dt. The flux through S’ is therefore ® = JgA = (do/dt)A, where A
is the area of each plate. Hence,
do d(cA) dQ

(I)_EA_ 7 _E_I’ (593)
as desired. We haven’t paid attention to signs, but if the right plate in Fig. 9.4 is
positive, and if the capacitor is discharging, then the displacement current points to
the right. (The E field between the plates points to the left, but it is decreasing, so
OE /0t points to the right.) The displacement-current flux therefore passes from left
to right through S’, just as the real-current flux passes from left to right through S.
The total flux through the closed volume bounded by S and S’ is zero, as it should
be, because a closed surface has no boundary, so the line integral of B around this
(non-existent) boundary is zero.

Sphere with a hole

Very close to the wire, the magnetic field is B = pol/2mwr. Therefore |, cB-ds =
(ol /27mr)(2mr) = pol. On the right-hand side of Maxwell’s equation, the term in-
volving J is zero because no current pierces the surface S (the sphere-minus-hole). To
calculate the term involving OE/0t, we know that the electric field at points on the
surface S is E = Q/4megR?, where @ is the point charge and R is the radius of the
sphere. Hence dE/dt = (dQ/dt)/4meqR2 = I /4megR?. Integrating this over the sur-
face of the sphere brings in a factor of 47 R?. Remembering the factor of ji9¢ out front,
the right-hand side of Maxwell’s equation equals poeg(I/4megR?)(4TR2) +0 = pol, in
agreement with the left-hand side.



9.15. Field inside a discharging capacitor

Written in terms of the displacement current, the integral law reads
/ B ds — uo/(.]d + 1) da. (594)
c s

Since s < b we can neglect the edge fields, in which case the displacement current Jg4 is
uniformly distributed in the gap. The integral of J4 over the area of the plates equals
the conduction current I in the wire (see Exercise 9.13). The fraction of [Jq-da=1
that is enclosed in a circle through P, centered on the axis, is 772 /mb?. The integral
law applied to this circle therefore gives (with the conduction current J = 0 inside the

capacitor)
2
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as desired. The similarity of this calculation to the calculation of the E field in Fig. 7.16
is the following. If we solve the problem straight from Maxwell’s equation, without
invoking the definition of the displacement current, we can write (with J = 0 inside
the capacitor)

OE dod
/ B-ds= Moéo/ “.da = 2mrB = ppco—r , (596)
g s ot dt

where ®g is the flux of the electric field through the given surface. This equation
is exactly analogous to Faraday’s law of induction, which we used in the example of
Fig. 7.16 (among many other places),

/E-ds:— a—B-da = ZWTEZ—@. (597)
. g Ot dt

The similarity arises because of the symmetry of the two “curl” Maxwell’s equations;
and also because there is no current J of real electric charges inside the capacitor in the
present problem, and likewise there is no current of real magnetic charges in Fig. 7.16
(or anywhere else) because magnetic monopoles don’t exist (as far as we know).



9.18.

9.19.

Associated B field

The wave is traveling in the —z direction, as shown by the sign in (z+ct); if ¢ increases,
then z must decrease to keep the same value of (z + ¢t). B is perpendicular to both
this direction and to E. So B must point in the +(% — §) direction. But since we
know that E x B points in the direction of the wave’s velocity, which is —z, we must
pick the “4” sign, as you can quickly verify with the right-hand rule. The magnitude
of B is 1/c times the magnitude of E, so the desired B field is

B = (Ey/c)(% — ) sin[(2m/\) (2 + et)]. (602)

With Ey = 20V /m, we have By = Ey/c = (20V/m)(3-103m/s) = 6.67-1078 T. The
amplitudes of the E and B waves are actually v/2 times Ey and By/c, respectively,
because the magnitude of the (X £ ¥) vectors is v/2.

Find the wave

It is given that E L 2. And we know that E 1 v, where v o« —x here. So E must
point in the +y direction. Let’s pick +y. The other direction would simply change
the sign of Ey; the sign is arbitrary, since the trig function switches signs anyway. So
we have (a sine would work just as well)

E = yEq cos(kx + wt), (603)

where w = 27 = 6.28 - 108s7! and k = w/c = 2.09m~!. The sign inside the cosine is
a “4” because the wave is traveling in the negative z direction. Since E x B points in
the direction of v, which is —%, and since By = Ey/c, the B field must take the form,

B = —2(Eqy/c) cos(kx + wt). (604)



9.23. Field in a box

We immediately see that V - E = 0, because E, has no z dependence. And also
V- B = 0, because the 0B,/0r and 0B, /0y terms cancel. So two of Maxwell’s
equations are satisfied. For the other two, we can calculate the curls via the usual
determinant method,

X y Z
VxE=|0/0x 0/0y 0/0y |. (610)
E, E, E.

You can verify that the various derivatives are

VxE = k:EO( — X cos kxsin ky + ¥ sin kx cos ky) cos wt,
88—? = —wzEjcoskx cos ky sinwt,
VxB = —2kzBcoskxcoskysinwt,
aa—]? = wBy(xcoskzsinky — y sinkz cos ky) coswt. (611)

Therefore, V x E = —9B/0t gives kEy = wBy. And V x B = (1/c?)0E/0t gives
2kBy = wEy/c?. These two requirements quickly yield w = V2ck and Ey = /2¢By,
as desired. (Technically, w = —/2ck and Ey = —/2¢B, also work, but these relations
yield the same wave, as you can verify.)

The fields don’t depend on z, so to determine what they look like, let’s consider
the square cross section of the box in the zy plane. At all times, E is zero on the
boundary of the box where (z,y) = (£ /2k,+7/2k). At a given instant in time,
cos wt takes on a specific value, so E is proportional to z cos kx cos ky. This function is

maximum at the origin. The plot of E, o cos kx cos ky is basically a bump above the (/2k, m/2k)
xy plane (or a valley below the zy plane at times when coswt is negative). The bump y )
oscillates up and down according to coswt. The level curves of constant F, are given

by coskxcosky = C. You can show with a Taylor series that these level curves are ST I

circles near the origin. So the curves start off as circles and end up as squares. They
are shown roughly in Fig.149. Since E has only a z component, it points perpendicular
to the page.

B isn’t quite as clean, but it’s easy to get a handle on its values along the z and y
axes, and along the 45° lines, and also along the boundary of the box. Some sample
vectors at times when sinwt = 1 are shown in Fig. 150. All the vectors oscillate in Semeedeeaaa -
phase according to sin wt.

Figure 149
REMARK: That’s all that was required, but we can say a little more about the fields. For
small z and y, we can use cosf ~ 1 and sinf = 6 to obtain B ~ kBy(Xy — yz)sinwt. The
field lines associated with this B field are circles, because the vector B o (y, —z) is always y
perpendicular to the radial vector (z,y). Alternatively, since the tangent to the field line is L
in the direction of B, we can separate variables and integrate dy/dx = By/B, = —z/y to — \\
obtain z? 4 y* = C, where C is a constant. The B field goes to zero at the origin. —> \}(
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What do the B field lines look like for general & and y values? Again, since the tangent to
the field line is in the direction of B, we have the general relation,

d_y:&:_sinkxa.)sky. (612)

dx B, cos kx sin ky
Separating variables and integrating gives In(cos ky) = —In(coskz) + D, where D is a con-
stant. Exponentiating gives cos kx cosky = C, where C' = e is another constant. Small
values of C' yield near-squares close to the boundary of the box, and values close to 1 yield
the small near-circles close to the origin we found above. Note that the coskxcosky = C
curves of the B field lines are also the curves of constant F., which we found above and
plotted in Fig. 149. This can be traced to the fact that if E has only a z component, then
V x E is perpendicular to VFE,, as you can verify.

9.25. Microwave background radiation

As shown in Section 9.6, the average energy density U of a sinusoidal electromagnetic
wave is U = egE2 /2 = e E%,. So we have
U 410714 J/m?

Bims = — = = 45-107°V?/m?> =  Fums = 0.067 V/m. (614
€ 885-10712 255 / fm. (614)

If the 1 kilowatt radiated by the transmitter is spread out over a sphere of radius R,
then the power density at radius R equals S = (10> W) /47 R2. The energy density is
then U = S/c. We therefore want

1 103W

¢ 4mR?
or 2.6 km. However, the power is undoubtedly emitted in at least a somewhat directed
manner, so the distance from an actual radio transmitter would be larger than this.

=4-100"J/m®* = R =2600 m, (615)

9.26. An electromagnetic wave

(a) The fields are
E = yFEpsin(kz + wt), and B = —z(Ey/c) sin(kx + wt). (616)

We immediately see that V - E = 0 (because the lone y component of E has
no y dependence) and V - B = 0 (because the lone z component of B has no z
dependence). So two of Maxwell’s equations are satisfied. For the other two, you
can verify that

OE

V x E = zkE cos(kx + wt), il ywEq cos(kx + wt),  (617)
V x B = yk(Ey/c) cos(kz + wt), 68—]? = —zw(Ey/c) cos(kx + wt).

Therefore, V x E = —9B/0t requires k = w/c. And (using poep = 1/c?) Vx B =
(1/c¢*)OE /0t requires k/c = (1/c*)w, which again says that k = w/c.



(b) The wavelength is

2r  2mc 2m(3-10%m/s)
A . ” 0051 0.19m (618)

As shown in Section 9.6, the average energy density of a sinusoidal electromag-
netic wave is €9 E3 /2, which equals

1 s2 (2
E2=": (8.85 10712
0-=0 2 ke m3

1
—€

; )(103\//m)2 —4.4-107%J/m®. (619)

The power density equals the energy density times the speed, so

1
S = 5eOEgc = (4.4-107°J/m*)(3-10%m/s) = 1300 J/(m?s). (620)

9.28. Poynting vector and resistance heating

The electric field inside the wire is given by E = J/o. Since the curl of E is zero,
we can draw a thin rectangular loop along the surface to show that the electric field
right outside the wire is also E = J/o (and it points in the direction of the current,
of course). The magnetic field right outside the wire points tangentially with the
usual magnitude of B = pol/27R, where R is the radius of the wire. E and B are
perpendicular, and you can show with the right-hand rule that the Poynting vector
S = E x B/ points radially into the wire. So the direction is correct; the energy
in the wire increases, consistent with the fact that it heats up. The magnitude of S

equals
g tpp_tIml  _JI
o poo2rR 2mRo

(623)

To obtain the power flux into the wire through the surface, we must multiply by 27 R¢,
where ¢ is the length of a given section of the wire. So the total energy flow per time
into a length ¢ of the wire is

T gepe= Lo UL, _p L _pol_pp

Pe=5-2mRt = 2nRo o o cA A ’

(624)

where R is the resistance of the length £ of the wire. We have used the fact that the
resistivity p is given by p = 1/0. As desired, Py equals the rate of resistance heating
in the length ¢ of the wire. P, can also be written as I(IR) = IV, of course, where V'
is the voltage drop along the length £ of the wire.

Alternatively, we never actually had to use the J/o form of E. A quicker method is:

1

I
Pr=S-2rRl = —EX onpi— 1R =1V, (625)
o 27R



9.30. Comparing the energy densities

If E(t) = Eg coswt, then O0E /0t = —wEqsinwt, so the amplitude of the B field given
in Eq. (9.46) is By = (eguo7/2)(wEp). The ratio of the magnetic energy density to the
electric energy density is therefore

D L ()

210 _ 2po 2 0 _ fio€or*w? — (ﬂ)z (631)
coE? 6_0E§ 4 T/’

D) 2

where we have used w = 27/T and 1/pgeo = c?. As desired, this result is small if

the period T much larger than r/c, which is (half) the time it takes light to travel
across the capacitor disks. As in Problem 9.6, we have ignored the high-order feedback
effects between F and B. These effects are negligible if the current doesn’t change too
quickly.



