Phys 4C Fall 2019
Chapter 8 Solutions to Exercises

8.16.

8.17.

Voltages and energies

At ¢t = 0 the voltage across the capacitor is Vj cos(0) = Vj. So the voltage across the
inductor must be —Vj, because the net voltage change around the loop is zero. The
charge on the (top plate of the) capacitor is CV = CVj coswt. The clockwise current
is then I(t) = —dQ/dt = wCVysinwt. This is zero at t = 0, so none of the energy is
stored in the LI?/2 in the inductor. All of the energy is stored in the CV?/2 in the
capacitor. This energy equals CVZ/2.

When wt = 7/2 the voltage across the capacitor is Vpcos(7/2) = 0. So the voltage
across the inductor must also be zero. The current at wt = 7/2 is [ = wCVsin(n/2) =
wCVj. Since the voltage across the capacitor is zero, none of the energy is stored in
the CV?/2 in the capacitor. All of the energy (which we know equals CV{/2) is
stored in the LI?/2 in the inductor. As a double check, this energy is L(wC'V;)?/2 =
w?LC?VE/2. Using w = 1/V/LC, this becomes C'V}/2, as expected. The results are
summarized in this table:

AV, AV, | U U,
t=0 Vo | =Vo | CV{)/2 0
t=m/2w 0 0 0 CVE/2

Note: At t = 0 you can also work out the voltage across the inductor directly, to double
check that it equals —Vj. Using above form of I(t), the voltage across the inductor
is —L(dI/dt) = —w?LCVj coswt. With w = 1/y/LC, this becomes —V; cos wt, which
equals —V, at t = 0. However, it’s risky to trust this minus sign. The magnitude is
certainly correct, but it’s best to check the sign by thinking about things physically.
At t = 0 the current is zero but is increasing in the clockwise direction. The voltage
above the inductor must therefore be higher than the voltage below; this difference is
what causes the current to increase.

Amplitude after @ cycles

After Q cycles, the angle wt equals 27Q. But from Eq. (8.13) we know that Q = w/2a.
So after @ cycles, the angle wt equals 27 (w/2«) = 7(w/a). The time ¢ is therefore
given by t = m/a. The exponential factor e~** that appears in I(t) and V() therefore
equals e~ ™ as desired.



8.24.

8.25.

RC circuit with a voltage source
This exercise is a special case of the general RLC circuit we solved in Section 8.3. The
loop equation here is

Q(t)

RI(t) + ol & cos wit. (549)

Let us replace coswt with e??, and then guess an exponential solution of the form
I(t) = Ie™*. If Te™* satisfies the equation with an e** on the right side, then taking
the real part of the entire equation tells us that Re(/e!) satisfies the equation with
a coswt on the right side.

If I(t) = Ie™*, then Q(t), which is the integral of I(t), equals Ie™! /iw. (There is no
need for a constant of integration because we know that Q(t) oscillates around zero.)
So we obtain

Rt 4 10 g e ] £ (550)
e = &oe .
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Getting the ¢ out of the denominator, we can write Iin polar form as
~ Eo(R —1/iwC &
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where tan ¢ = 1/RwC. The actual current is then

I(t) = Re(le™?t) = Re <L ei“be“’t) ____b cos(wt + ¢).

VR F 1/w?C? VR + 1/w2C?
(552)

For large w, the amplitude of the current goes to & /R, and the phase ¢ goes to zero.
This makes sense, because the capacitor essentially isn’t there (that is, it behaves like
a short circuit) because the oscillations happen too quickly for any charge to build up
on the capacitor. So we simply have a resistor in series with the voltage source.

For small w, the amplitude of the current goes to zero, and the phase ¢ goes to m/2.
In this case, the charge (which has a maximum value of C&; on the capacitor) sloshes
back and forth very slowly, so the current is very small. The resistor essentially isn’t
there (the voltage drop IR across it is very small). So we simply have a capacitor in
series with the voltage source. And ¢ = 7/2 for such a circuit. (The current is ahead
of the voltage, because the current reaches its maximum while charge is building up on
the capacitor, and then a quarter cycle later the charge reaches its maximum. We are
taking @ to be the charge on the top plate of the capacitor, as we did in Section 8.3.)

Light bulb

The normal current for a 60 watt, 120 volt light bulbis I = P/V = (60 W)/(120V) =
0.5A. The resistance of the filament is then R = V/I = (120V)/(0.5A) = 240Q.
(This could also be obtained from P = V2/R = R = V?/P.) We want to have
the same current, 0.5 A, when the bulb is connected in series with an impedance of
iwL, across 240 volts. (We want the same current because the resistor has a fixed
resistance, so the power is determined by the current flowing through it; and the
power when operating normally is 60 watts.) The magnitude of the total impedance

is |Z| = \/R? + (wL)?, so the current will equal 0.5 A if
Vv Vv 240V
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(553)




8.32.

(Ohm’s law works with |Z|; see Eq. (8.77).) Solving for wIL gives wL = 240/3 Q =
416 Q. And since w = 2mv = 27(60s71) = 377s~ !, we have L = (416Q)/(377s71) =
1.10 H.

Finding L

The setup is shown in Fig. 143, We can quickly determine the amplitude of the current
(or the rms value, depending on what the voltmeter is calibrated to read; the final
value of L won’t depend on the choice). The frequency is w = 27(1000s~ 1) = 6283571,
so the Vi = Iy|Z| statement for the capacitor alone yields

I
155V = % — Iy = (15.5V)(6283s ")(107°F) = 0.0974 A. (570)

Since the elements are in series, this is the current through all of the components in

the circuit. The Vy = Iy|Z| statement for the whole circuit then tells us that (ignoring
the units)

10.1
Iy = Vo go9ma= 0 — wL—1/wC = +97.6Q.
2| V(352 + (WL — 1/wC)?

(571)
Note that there are two roots. We therefore have

1 97.6
:2—Czlz— = 0.0253+0.0155 = L =0.041H or 0.0098H. (572)
w w

L
So L could be 41 mH or 9.8 mH. The amplitude of the voltage across the inductor alone
is Ipwl, which gives 25.1V and 6.0V for the two possibilities. If we then measure the
voltage across the inductor and obtain 25.4 V, the second possibility is ruled out, and
we have reasonably good agreement with the computed value of 25.1V.
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Figure 143



8.35. RC circuit

(a)

The total impedance is

1

1
Z=R—-— =20000 — = (2000 — 26507) Q2. 578
wC BT D105 ) i) (578)
The magnitude is | Z] = V20002 + 26502 = 3320 Q2.
The rms voltage is V = 120V, so the rms current is
V 120V
== = =0.036 A. 379
|Z] 33200 (579)

The power dissipated (across just the resistor, of course) is
P =TI?R=(0.036 A)*(2000 Q) = 2.6 W. (580)

There is no need for a factor of 1/2 since we are using rms values. We can
alternatively use the P = VI cos ¢ expression (where these are the rms values).
Here V =120V, I = 0.036 A, and tan ¢ = 2650,/2000 which yields cos ¢ = 0.60.
These quantities yield P = 2.6 W, as desired.

A voltmeter connected across the resistor will read
Vr=1R = (0.036 A)(2000Q)) =72V (rms). (581)
A voltmeter connected across the capacitor will read

Vo = % — (0.036 A)(26500) =95V (rms). (582)

The amplitudes of the voltages associated with the above rms values are 102V
and 134V. The voltages across the resistor and capacitor are 90° out of phase,
with the resistor ahead of the capacitor. (Remember, in general we have V,
ahead of Vi ahead of Viz.) So the pattern will be an ellipse, as shown in Fig. 146.
If the plates are connected in the natural way as shown, then the ellipse is traced
out counterclockwise. To see why, consider an instant when the current through
the resistor is maximum downward, in which case the right plate of the tube is
at a higher potential (so the electrons are deflected that way). The charge on
the capacitor is 90° out of phase with the current, so there is no charge on the
capacitor at this moment. The voltage across the capacitor is therefore zero, so
the electrons are at the point A in the figure.

A quarter cycle later, the top plate of the capacitor will have maximum charge, in
which case the top plate of the tube is at a higher potential (so the electrons are
deflected that way). And the current is zero at this moment, so the voltage across
the resistor is zero. The electrons are therefore at point B in the figure. We see
that the curve on the screen passes point B a quarter cycle after point A. So
the curve is traced out counterclockwise. On the other hand, if the connections
are made in the reverse manner for either of the elements, then the curve would
be traced out clockwise. If both connections are reversed, then the trace reverts
back to counterclockwise. Without being told which way the connections are
made, there is no way to know the direction of the trace.
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Figure 146



