Phys 4C Fall 2019
Chapter 7 Solutions to Exercises

7.24. Pulling a frame

We could solve this exercise piecemeal, but let’s instead derive a single expression for
the force, which will take care of all the questions. Let ¢ be the total perimeter of the
rectangle, and let b be the length of the side that sweeps through the field. The current
in the frame is I = £/R, where & = d®/dt = Bbv, and where R = pl/A = pl/mr?.
So I = Bbv/(pl/nr?) = Bburr?/pl. The force on the trailing side of the frame is
F = IBb, and you can show with Lenz’s law and the right-hand rule that this force
is directed to the left; that is, it is a drag force. The force required to balance the
magnetic drag force therefore equals

B2p?vnr?

F= 491
i (491)

(You can check that this does indeed have units of force.) Since we are ignoring the
inertia of the frame, the applied force must be exactly equal to the magnetic force, in
magnitude. (If m = 0, then > F = ma implies that > F = 0.) For any particular F
that you pick, Eq. (491) can be solved for the velocity v that the frame will have. We
can now answer the various questions.

Eq. (491) implies that twice the force means twice the velocity. So a force of 2N will
pull the frame out in half the time, or 0.5 sec.

Keeping everything else the same, doubling p means halving F' (there is half as much
current). So a brass frame will be pulled out in 1 sec by a force of 0.5N.

Doubling the radius increases F' by a factor 22 = 4 (there is four times as much
current). So a 1 cm aluminum frame will be pulled out in 1 sec by a force of 4N. (We
effectively have four of the original frames stacked on top of each other, each of which
requires 1 N.)

7.25. Sliding loop

T (side view)
In Fig. 130 the y axis points into the page. We've arbitrarily chosen the current in the curre?t

wire to flow in the negative y direction (out of the page), but the sign doesn’t matter out of page
since all we care about is the magnitude of the emf. At the leading edge of the square h
loop, the magnitude of B is pol /27r, where r = \/h2 + (b/2)2. Only the z component b2

matters in the flux, and this brings in a factor of (6/2)/r. So \
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At the trailing edge, B, has the opposite sign. If the loop moves a small distance
v dt, there is additional positive flux through a thin rectangle with area b(v dt) at the
leading edge, and also less negative flux through a similar rectangle at the trailing
edge. Both of these effects cause the upward flux to increase. Therefore,
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The flux is increasing upward. So for our choice of direction of the current in the
wire, the induced emf is clockwise when viewed from above, because that creates a
downward field inside the loop which opposes the change in flux. For h = 0 (or in
general for h < b) € reduces to 2uglv/m. This is independent of b because the field at
the leading and trailing edges decreases with b, while the length of the thin rectangles
at these edges increases with b.

You can show that our result for £ has the correct units, either by working them out
explicitly, or by noting that £ has the units of B (which are the same as pol/27r)
times length squared divided by time, which correctly gives flux per time.

7.26. Sliding bar

(a) Let v be the instantaneous velocity of the bar. The area of the circuit increases
at a rate b(vdt)/dt = bv, so the induced emf is £ = d®/dt = Bbv. The current
is therefore I = £/R = Bbv/R. The general expression for the force on piece of
wire (the bar in our setup) is F' = IBb, which yields B?b?v/R here. So F = ma
gives (including the minus sign because the force opposes the motion, as you can
check with Lenz’s law and the right-hand rule)
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(You can check that 7" has units of time.) We see that the velocity decreases
exponentially, so technically the rod never stops moving (in an ideal world).
This exponential decay of v is a familiar result for forces that are proportional
to (the negative of) v.

(b) The total distance traveled in the limit t — oo is

o
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So the rod travels a finite distance in an infinite time.

(c) The initial kinetic energy of the rod is mwv3 /2. This must eventually show up as
heat in the resistor, so let’s check this. The instantaneous power dissipated in
the resistor is P = I?R, where I is given above as I = Bbv/R = (Bbvy/R)e /T,
The total energy loss in the resistor is therefore
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7.27. Ring in a solenoid

(a)

(c)

The magnetic field inside the solenoid is B(t) = ponl(t) = ponlycoswt. Fara-
day’s law applied to the given ring yields
d® ,dB

= —7r i 7T’I“2'LL0TLIOCA) sin wt. (497)

With the given positive direction of I, the right-hand rule gives the positive
direction of B as upward, and then also gives the positive direction of £ as
counterclockwise when viewed from above (as for I). The current in the loop is
Loop(t) = E/R = (7r? pondow/R) sin wt.

The force on a little piece of the ring is F(t) = lioop(t) dl x B. With positive I
counterclockwise and positive B upward, this force is radial and equals

g:

71 ponlyw mr2uin? Rwdl

R
The force is radially outward if this quantity is positive, inward if it is negative.
Since sinwtcoswt = (1/2)sin(2wt) we see that the force is maximum outward

when wt = 7/4 (plus multiplies of 7), and maximum inward when wt = 37/4
(plus multiplies of 7).

F(t) = sinwt - dl - pgnlycoswt = sinwt coswt. (498)

Since the force lies in the horizontal plane, it serves only to stretch/shrink the
ring (negligibly, if the ring is rigid).

7.35. M for two rings

From Eq. (6.53), the magnetic field along the axis of a ring of radius a, a distance b
from the center, is B = pgla?/2(a® + b*)3/2. For b >> a this can be approximated as
B = ppla?/2b3. In this limit we can also neglect the variation of B over the interior of
the other ring. The flux through the other ring is therefore ® = ma?B = ugmla*/2b3.
The mutual inductance is then ®/I = pgmra?/2b3.

7.37. Flux through two rings

Figure 137 shows a side view of the field due to the inner ring. (The dots are the
intersections of the rings with the plane of the paper.) The key point here is that the



flux through the outer ring comes not only from the field lines pointing upward in the
interior of the inner ring, but also from the field lines pointing downward in the region
between the rings. The latter flux partially cancels the former flux. The larger the
outer ring is, the larger this canceling effect is, and so the smaller the net flux is. The
field lines within the dotted curves yield a net flux of zero through the outer ring, so
it is only the lines in the central region that contribute to the net flux. The larger the
outer ring is, the smaller this central region is.

Net flux through outer ring
comes from this central region

ring 1

Figure 137

7.39. Small L

One way to wind resistance wire into a “non-inductive” coil is shown in Fig. 138. Of
course, the inductance is not exactly zero. The residual inductance is approximately
that of the long, narrow “hair-pin” configuration shown in Fig. 139. Technically, if

the wire is infinitely thin, then the self-inductance is actually infinite, due to the issue
discussed at the end of Section 7.8. But real wires have thickness, so the self-inductance J
of the hair pin will indeed be small.

Note that the configuration in Fig. 138 effectively consists of two solenoids with cur-

rents in opposite directions. So there is essentially no B field inside the cylinder. Figure 138
However, this is actually irrelevant, because the area relevant to the flux is not the

cross-sectional areas of all the circular loops. Rather, the area spanned by the wire  %— 3
in Fig. 138 is the hair-pin area in Fig. 139, which wraps around the surface of the ¢

cylinder. This area has nothing to do with the inside of the cylinder. Figure 139




7.41. Opening a switch

After the switch has been closed a while, the currents are steady and the inductor is
irrelevant. So 10V is the initial voltage across each of the branches of the circuit. The 30V
initial currents across the 150 Q2 and 502 resistors are therefore 0.067 A and 0.2 A,
respectively. They are both directed downward. Initially both A and B are at 10V 1500) E

with respect to ground. BelOV

Right after the switch is opened, we have the circuit shown in Fig. 140. The current
through the inductor cannot change abruptly (otherwise there would be an infinite
d®/dt and hence infinite £, which would cause the current to not change abruptly after
all). Therefore, the current through the circuit is 0.2 A in the clockwise direction. The
current does change abruptly in the 150 (2 resistor; it goes from 0.067 A downward to Figure 140
0.2 A upward. The potential at B with respect to ground is still Vg = (0.2A)(502) =

10V, but the potential of A is now V4 = —(0.2A)(15092) = —30V.

02 A 50Q
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The circuit in Fig. 140 is a simple RL circuit, so as time goes on, the current TovIN3

equals I(t) = Ipe~ /D)t where Iy = 0.2 A and where the time constant L/R equals NTL 2ms
(0.1H)/(2009Q) = 5-10~*s = 0.5 millisec. The potentials at A and B are propor- '
tional to I, so they decrease like e~ B/t After 0.5 millisec they have decreased by
a factor 1/e = 0.37, and after 1 millisec by 1/e? = 0.14. After 5 millisec the factor is Va
1/el® = 4.5.1075, which is negligible. The plots are shown in Fig. 141. We have only

plotted up to £ = 2 millisec, because the curves are essentially zero after that. Note -30V
the discontinuity in Vj4.

Figure 141



7.42. RL circuit

From Eq. (7.69) the current is I(t) = Io(1 — e~ F/)") where Iy = &/R. In the
problem at hand,
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=20s"1. (516)
So the time scale is L/R = 0.05s. The current reaches a value of (0.9)I when
et —01 = (20s)t=In10 = t=0.115s. (517)

At this time, the current is I = (0.9)(1200) = 1080 A, so the energy stored in the
magnetic field is

1 1

5L12 = 5(0.5 1073 H)(1080 A)? = 292]. (518)
The instantaneous power delivered by the battery is &I, but since I is changing we
must perform an integral to find the energy delivered by the battery between t = 0
and t = 0.115s:
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= 1008 J. (519)

From conservation of energy, apparently 1008J — 292J = 716J has been dissipated
in the resistor. The task of Problem 7.15 is to show that the energy delivered by
the battery does indeed equal the energy stored in the magnetic field plus the energy
dissipated in the resistor, at any general time ¢.



