Phys 4C Fall 2019
Chapter 2&5 Solutions to Exercises

2.76. Zero curl
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We are given F, = Gry, Fy, = 3x% — 3y%, E, = 0. S0 we have
ar, 0L,

V xE), = s =,
(¥ %8y, Ay Az '
_ aE, O0E,
() = 8z  dr 0,
: AF o
(VxE)., = ca;" - dﬁ; = 6z — 6z = 0. (222)

The divergence is
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The zerc here implies that the associated charge density is zero.
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Zero dipole curl

The dipole E field in Eq. {2.36) has no angular ¢ dependence, and also Ii{'}qE) component.
So we quickly see that only the gb component of the spherical-coordinate expression
for V x A in Eq. (I.3) in Appendix I survives. Using the values of F,. and Ey from
Eq. (2.36) we have
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REMARK: Let's look at what's going on physically in the special case of # = /2. Consider
the circulation of the field around the loop shown in Fig. 63, which consists of radial and
tangential segments. The tangential piece on the right is longer than the piece on the left,
being proportional to r. If the field fell off like 1/r, these effects would cancel in the line
integral., and there would be no net circulation from the tangential parts. But for our dipole,
the field falls off like 1/r®, so the contribution from the left piece dominates, vielding a net
counterclockwise circulation from the tangential pieces. This has the correct sign to cancel
with the clockwise circulation from the radial parts (which simply add; from Eq. (2.36) there
is a very small positive F. just above the # = 7/2 line, and a very small negative K, just
below). So it’s believable that things work out, although the above calculation is needed to
show quantitatively that the curl is exactly zero.
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Figure 63



2.78. Divergence of the curl

(a) In Cartesian coordinates the divergence of the curl is
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We have used the fact that partial differentiation commutes, for any function
with continuous derivatives.

{b) The derivation can be summed up by the relations,

A-ds—/(VxA_)vda—[V-{FxA}d-v. (226)
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The first equality is the statement of Stokes’ theorem, and the second is the
statement of Gauss's theorem (the divergence theorem) applied to the wvector
*V x A" The logic of the derivation is as follows. The line integral of A around
the curve €' in Fig. 2.52 is zero because the curve backtracks along itself. (We
can make the two “circles” of €' be arbitrarily close to each other, and they run
in opposite directions.) Stokes’ theorem then tells us that the surface integral of
V x A over 5 is also zero. The surface S is essentially the same as the closed
surface 8" consisting of S plus the tiny area enclosed by (. So the surface integral
of ¥ x A over 87 is zero. But 8" encloses the volume V. so Gauss’s theorem tells
us that the volume integral of V- (V x A) over V' is also zero. Since this result
holds for any arbitrary volume V', the integrand V- (V x A} must be identically
zero, as we wanted to show.?

This logic here basically boils down to the mathematical fact that the boundary
of a boundary is zero. More precisely, the volume integral of ¥V - (V x A) equals
(by Gauss) the surface integral of ¥V x A over the boundary S’ of the volume V/,
which in turn equals (by Stokes) the line integral of A over the boundary C' of
the boundary S’ of the volume V. But 8" has no boundary, so €' doesn’t exist.
That is, €' has zero length. The line integral over (' is therefore zero, which
means that the original volume integral of V- (V x A) is also zero.

In view of this, there actually wasn't any need to pick the curve ¢’ to be of the
specific stated form. We could have just picked a very tiny cirele. The first step
in the above derivation, namely that the line integral of A around the curve C'
is zero, still holds (but now simply because C' has essentially no length), so the
derivation proceeds in exactly the same way.

2 V- (W = A} were dillerent [rom zero al some point, then the integral over a small volume containing
this point would be nonzero. This is true because we can pick the volume to be small enough so that
Vo (V x A is essentially constant, so there is no possibility of cancelation.



6.29. Motion in a B field

FirsT soruTion: The magnitude of the magnetic force is F' = qu B, so the magnitude
of the change in p during a short time dt is dp = F'di = quB di. The momentum itself
is p = ymw. Fig. 106(a) shows the r and p vectors at two nearby times. In Fig. 106(b)
the angle # is the same in the two triangles, because each p is perpendicular to the
corresponding r. So from similar triangles we have

dr il vdt  quBdt ) Ymu
| p| R p aB 4B
The time to complete one revolution is {b) dp
2anR 27 ymuv 2maym .
t = ==l =T, (418)
U v ql3 g3 P, P,
If B is uniform, then Eq. (417) actually proves that the particle travels in a circle,
because it gives the radius of curvature at any point as B = ~ymuv/qB3. Since v is
constant (because the magnetic force is always perpendicular to the velocity), we see I

that I? is constant, which means that the path is a circle.

dr

SECOND soLuTioN:  We can also caleulate R in a more mathematical way., The LS|
Lorentz-force law F = gv x B combined with Newton's third law F = dp/dt gives

d(~vymv) dv g ' Figure 106
T —gvxB = - 1 vxB. (419)
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Note that we are in fact allowed to take the ~ outside the derivative because we know

that the speed v is constant.

Assume that B is uniform. Let the motion be in the x-y plane, with the magnetic

field pointing in the z direction. Then v = (v;,v,.0) and B = (0,0, B). Sov x B =

B(wvy, —v:,0). The z and y components of Eq. (419) can then be written as
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Taking the derivative of the first of these equations, and then substituting in the value
of dv,/dt from the second, gives
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This is a simple-harmonic-oscillator type equation, for which the general solution takes
the form,

. B I
v (t) = Acos{wt + ¢), where w = ! s (422)
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The first of the equations in Eq. (420) then quickly gives v, (f) = —Asin{wt + ¢). A

and ¢ are arbitrary constants, determined by the initial conditions. However, if the
momentum p = ~ym is given, then v, and v, must each have an amplitude of p/ym.
Hence A = p/vym.

The period is 27 /w = 2mym /g B, in agreement with the result in part (a). Integrating
v, (f) and v,(t) to find @ and y gives (up to arbitrary additive constants, which only
affect the position of the center of the circle)

(z(t), y(t)) = ‘—4| (Sin[w{- + @), cos(wl + o]) (423)

This deseribes a circle with radius R = Afw = (p/ym)/(qB/ym) = p/qB, in agree-
ment with the result in part (a).

6.31. Field from three wires 21 !
At point Py at the center of the square, the magnetic fields due to wires A and C \ffr
in Fig. 107 cancel. The field due to B is p(21)/27(d/v2) = v2uol/nd, directed BN
diagonally down to the left, as shown. " # By
At point P at the lower right-hand corner, the field due to 13 is half of the field at P, I BR/ A5
so it is pol /v2 wd, directed diagonally down to the left, as shown. The field due to A ¢ st
is pof [ 27d, directed upward. The field due to C' is pol /27d, directed rightward. The Be
sum of these two fields is pof /2 wd, directed diagonally up to the right. The vector .
sum of all three fields is therefore zero at Ps. Figure 107

6.32. Oersted’s experiment

The compass needle initially points in the direction of the earth’s magnetic field, which
has strength 0.2 gauss (in the horizontal direction). In Oersted’s experiment, the wire
runs parallel to the initial orientation of the needle. If the needle ends up rotated by
45%, the magnetic field from the wire must be 0.2 gauss in the perpendicular direction.

In other words, we have a current-carrying wire that produces a magnetic field of
21077 T at a distance of about 2 em. Therefore,
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6.33.

G.36.

Force between wires

The magnetic field due to one of the wires in Fig. 5.1(b}, at the location of the other,

is

5 ol _ (47 - 1077 k&) (20 A)
2mr 27(0.05m)
The force per unit length on each wire is then /B = (20 A)(8-107°T) = 1.6-107* N/m,
and it is repulsive.

= 8+ 10T (427)

Field at different radii

The radius is 2 em, so 1/4 of the cross-sectional area, and hence current (so 2000 A),
is enclosed within » = 1 em. The current enclosed in both the r =2 cm and » = 3 ¢m
cases is 3000 A. So we have
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These fields are 400, 800, and 533 gauss, respectively.

6.39. Constant magnitude of B

If 1. is the current inside radius 7, then Ampere’s law gives

B-2rr=ul, = B= (438)

If we want [3 to be independent of r, then we need [, to be proportional to r. [, is
found by integrating the current density J{r):

L= /J da = J(r') - (2mrr! dr'). (139)
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It is easiest to guess and check the form of J(r"). IF J{r') is proportional to 1,/¢', then
it takes the form of J(r') = a/r’, so

L= / (afr")(2mr" dr") = 2mwarr, {440
Ju
as desired. The field is then

B 0T e (441)



G.41.

The above “1/r" result for the current density is the same result that holds for the
charge density in the case ol the electric field due to a charged cylinder or sphere. In
both of these cases the electric field is independent of v if the density p is proportional
to 1/v.

Note that even though the current density diverges at » = 0, the actual current does
not. There is a finite amount of current in any cross section with radius r, and it is
given (by construction) by [, = 2war. Any ring (at any radius) with thickness dr
contains the same amount of current, df = 27acdr.

We can also solve this exercise by using the differential form of Ampere’s law, ¥V x
B = upJ. Since B points tangentially and has a uniform value, it can be written as
B = Byf. Equation F.2 in Appendix I then gives
1d(rBa), Bo. ,
VxB=-———7=—12. (442)
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Setting this equal to peJz gives J = By /{(por), consistent with the 1/¢ dependence
we found above. The factor of By/pg here equals the o from above.

Integral of A, flux of B
Using Stokes’ theorem, along with B = ¥V x A, we have
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/ A-ds = / Vx A-da= / B.da=®, (444)
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as desired. This relation is similar to Ampere’s law because the differential form of
that law, ppJ =V x B, takes the same form as the above B = ¥V x A relation.



6.42.

Finding the vector potential

Since B = V x A, we want

('):ﬁl; ;j:;ly _o, r)A, r"J._—‘lJ 4§, c")(Ay _ ('3:4_9. = B (445)
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From inspection, a few choices for A that satisfy these equations are A = (0, Byz, 0),
or (—Boy, 0,0), or (—Boy/2, Bpax/2,0). In general, any vector of the form (—ay, b, 0)
works if @ + b = By, And even more generally, adding on any vector with zero curl
also works.

3. Vector potential inside a wire

Since area is proportional to 72, the eurrent contained within a radius r is [, = I?‘zf?ﬁ.

The magnitude of the magnetic field at radius r is then
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2rr Eﬁ-rg !

and it points in the positive 8 direction. The 8 vector equals (—y/r, 2:/r, 0] because
this vector has length 1 and has zero dot product with the radial vector {x,y,0). So
the Cartesian components of B are

iy poly . @ pplr R—
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The magnetic field associated with the potential A = Apz(x? + y?) is
aA. JA.
B=VxA=%_°"—9%_° =2A0y%x — 24,x7. (44R)
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This agrees with the B in Eq. (447) if Ay = —pol /473,
Alternatively, in evlindrical coordinates we have A = Ayzr?. From Eq. (F.2) in

Appendix F the associated magnetic field is B =V x A = —[(")Az;’('}w-)é = —24,r6.

Comparing this with the B in Eq. {446), which points in the positive 8 direction., we
find Ag = —pol/4nrZ, as above.

Since Ay is negative, A points in the direction opposite to the current (which points
in the positive z direction). You might be wondering how this can be, in view of the
fact that Eq. (6.44) seems to say that A points in the same direction as J. The answer
is that we can add an arbitrary constant to the A in Fe. (6.44), and it will still vield
the same value of B = V x A, Adding on a sufficiently large vector pointing in the
negative z direction will make A point opposite to J.



