Phys 4C Fall 2019
Chapter 4 Solutions to Exercises

4.28.

4.30.

Parallel resistors

The two loop equations are

E-h—~H) = 0,
(L—LRi—LR: = O (352)

Adding these two equations quickly gives Is = £/ R (which corresponds to the loop
around the whole cirenit). Either equation then gives

StHg + RQ} £ R R
= = ‘here Rg=—r, 353}
wher T Rt Ry (353)
The current through the battery is I, so & = Iy R tells us that the effective resistance
is fef.

9. Keeping the same resistance

We have an R, resistor in series with the parallel combination of R, and (R, + Ra).
So we want
Ry(fy + Ru}

Ri+——————=Ry = (2R?+R\Ry)+ (R}+RiRy)=2R Ry+ R
L R + (R, + Ro) 0 = | 1Ro) + (RY + RiRy) 1Ro + Rj

= 3R{=Rj = R = ﬁ (354)

Automobile battery

If the voltage drop across the 0.5 resistor is 9.8V | then the current in the circuit
s IT=V/R=1{(9.8V)/(0.5Q)=19.6A. The voltage drop across the internal resistor
is then R;{19.6 A). But we know that this voltage drop is 123V — 9.8V = 2.5V,
Therefore, 2.5V = R;i(19.6 A) = R; = 0.128 (.



4.35. Resistances in a cube

(a)

In Fig. 91 the three vertices adjacent to A (which are labeled as “a”) are all
at the same potential (by symmetry under rotations around the A} diagonal),
g0 we can collapse them to one point. (Equivalently, if we connect them with
resistance-less wires, no current will low in these wires.) Likewise for the three
vertices adjacent to B (which are labeled as “b7). So the circuit is equivalent to
the second setup shown in Fig. 91 (the number of lines is still 12), which can be
simplified as indicated. The equivalent resistance is therefore 5R /6.

Alternatively, we can work in terms of currents. The input current I gets divided
evenly, by symmetry, into three fo/3 currents. It then divides into six Iy/6
currents, and then converges to three [o/3 currents, The total potential drop
across any of the possible paths from A to B is given by V = (I3 /3)R+ (I /6) R+
(1a/3)R = (5/6) 1y R. The effective resistance is then V/{; = bR/G.

In Fig. 92 there are four vertices (labeled as “¢”) that lie in the plane that is
equidistant from A and 3. These vertices are all at the same potential (halfway
between V4 and V), so we can collapse them to a point, (In the second setup
shown, there are only 10 lines because 2 of the original 12 lines were collapsed).
The circuit can then be simplified as shown, and the equivalent resistance is 31/4.

From symmetry, the two points marked as a in Fig. 93 are at the same potential,
so we can collapse them to a point. Likewise for the two b's. The circuit can then
be simplified as shown, and the equivalent resistance is 7/2/12. As expected, this
is smaller than the answer to part (b), which in turn is smaller than the answer
to part (a).

Note that the sum of the effective resistances across all 12 resistors is 12(7/12/12) =
TR = (8 — 1)R, where the & here is the number of corners in the cube. This is a
special case of the general result in Problem 4.9.
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4.38. Two light bulbs

4.39.

4.47.

(a) The power dissipated takes the form of V2 /R. Both bulbs have the same voltage
drop V', so if Bulb 1 is twice as bright as Bulb 2, it must have half the R. Bulb
2's resistance is therefore larger by a factor of 2. (The larger resistor is dimmer.)

(b) The power dissipated also takes the form of I?R. Both bulbs now have the same
current [, so if Bulb 2 has twice the resistance, as we found in part {a), then it
is twice as bright — the opposite of the case in part (a). (The larger resistor is
brighter.) Note that in part (a) we used the expression P = V?/R because both

bulbs (in parallel) had the same V', whereas now we are using the expression
P = I’ R because both bulbs (in series) have the same /.

We can also compare the total power dissipated in each case. If the resistances are
R and 2R, then in part (a) the total power dissipated is VZ/R+1V7?/2R = 3V?/2R.
In part (b) the total power is I°R + I?(2R) = 3I*°R, where I = V/3R. So the
power is V2/3R. This is 2/9 of the power in part (a). In units of VZ/R, the
powers in part (a) are 1 and 1/2, while in part (b) they are 1/9 and 2/9.

Maximum power

The R; and R resistors are in series, so the current in the circuit is [ = /(R + R;).

The power dissipated in the R resistor is therefore P = IR = £2R/(R+ R;)?. Taking

the derivative with respect to & and setting the result equal to zero gives
(R+Ri)*-1—R-2(R+ R;) ki — R

= - - = R =F;. 365
R+ Ry ®R+RP (e

This is indeed a maximum, because dP/dR = 0 for R < R;, and dP/dR < 0 for
R = R;. Equivalently, the second derivative is negative at & = R;, as vou can check.

It makes sense that a maximum exists for some finite value of R, because P = 0
both at R = 0 (because P = [*R, with [ finite and R zero) and at R = oo (because
P =V?/R, with V finite and R infinite).

Consider a different question, “Given a fixed external resistance R, what value of the
internal resistance R; yields the maximum power delivered to the external resistor
R?" In view of the above expression for the power, the answer is simply f; = 0. This
makes sense; we want the largest possible current passing through the given external
resistor.

Discharging a capacitor

From Eq. (4.44) the current is I{t) = (Vy/R)e /€. The power dissipated in the
resistor is P = I’R = [:L”[flfffjf." 2/RC g the total energy dissipated is

o a7 S VL BE  srvnenl™ Lo ,
= / Pdt = / ] E_—Zf...’ RO dt = — 0 C—.}f;HL - CVE, {d?l}
5 Jy B R 2 g &Y -

which is the initial energy in the capacitor, as desired.

Suppose we have a 1 microfarad capacitor charged to 100 volts. The initial charge
is Q = CV = (100°F)(100V) = 1071C. From Eq. (4.43) the charge decreases



4.48.

according to Q(f) = Que /' where 15 = RC is the time constant. Since the charge
of an electron is 1.6-10~ ¥ C, we will have roughly one electron left when 1.6-107 'Y C =
(1074 C)e~t/t — t = —#3In(1.6- 10~'%) = 34¢;. So if the time constant were, say, 1
second (which would mean R = 10° Q2 here), we would be down to roughly one electron
in a little over hall a minute. For a 1 k) resistor, the time would be 0.034 s,

Charging a capacitor

The total work done by the battery is ()3€. where ()¢ is the final charge on the
capacitor. This is true because the battery transfers a charge (¢ through a constant
potential difference of £.

The final energy of the capacitor is (r¢/2 = Q;€/2, because the final potential ¢
across the capacitor equals the voltage £ across the battery. (There is no current
flowing after a long time, so there is no voltage drop across the resistor.)

The energy dissipated in the resistor is the integral of the power, that is, [ RI*dt.
From the solution to Problem 4.17, we have I{{) = (£/R)e % ¢, Therefore,

R A e EERO. _sype|™  EPRC T8 0
/ RI*dt = R / grliaig i = = =
0

1o R? R 2 e B 22 2
(375)
where we have used Qf = C'E. The canservation-of-energy statement is then
.. : . Q| Q€ }
wbalw!'_}' = L'r;apen.::itur- b Eresistor = C(?FE = (3'6)

2 2

which is indeed true.

REMARK: [t is also possible to use the general formulas for Q(¢) and [{{) from Problem 4.17
to show that energy is conserved at all times (not just ¢+ — =0}, as we know it must be.
But we can show this in a quicker manner by demonstrating that the conservation-ol-energy
statement is equivalent to the Kirchhoff loop equation, & — @/C — RI = 0. We can do this
either by differentiating the former to obtain the latter, or by integrating the latter to obtain
the former. Let's take the first of these routes. The conservation-ol-energy statement at any
intermediate time is

2 t
£Q(t) = Q,(f] +/ RI? dt. (377)
= 0
Differentiating with respect to ¢ gives (using d@Q/dt = I and canceling a factor of [)
LdQ) QdQ 5 .0 N
- =5 +RI" = &= S +RI, :
T &= 5 +RL (378)

which is the Kirchhoft loop equation, as desired. If vou want to go in the reverse direction,
just multiply by [ and then integrate with respect to ¢ (using the fact that @ = 0 at ¢t = 0}.



