Phys 4C Fall 2019
Chapter 2&3 Solutions to Exercises

2.50. Dividing the charge

The potential i3 constant over the surface of a given sphere, so we can pull the ¢
outside the integral in Eq. (2.32) and write the potential energy of a sphere as U =

(#/2) [ pdv = ¢q/2. So if the spheres of radii R, and Ry have charge ¢ and Q — g,
respectively, the sum ol the two potential energies is
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Minimizing this by setting the derivative with respect to g equal to zero yields
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Solving for g gives ¢ = QR /(R + Ky). So there is charge QR /(R + R3) on the first
sphere and charge QRo/( R + R2) on the second sphere.

The two terms in Eq. (146) (without the minus sign in front of the second term)
are simply the potentials of the two spheres. So the condition of minimum energy
is equivalent to the condition of equal potentials. Note that the second derivative,
d?U/d*>q = 1/R, + 1/ R, is positive, so the extremum is indeed a minimum of {7, not
a maximum. This is consistent with the special case where ) = Ha: equal division
of the charge involves half as much total energy as piling all of @) on one sphere, from
Eq. (145).

3.52. Aluminum capacitor
The capacitance is
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C = =3.910- 10 Y F = 3910 pF. (260)
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Dividing the surface charge

If oy is the surface density on the top face of the inner plate, and if g3 is the density
on the bottom face, then the magnitudes of the electric fields in the top and bottom
regions are ) = /ey and Ko = oa/ey. These follow from using Gauss’s law with
surfaces that pass through the interior of the middle plate where the field is zero.
The difference in potential between the middle and top plates is E1(0.051m), and the
difference in potential between the middle and bottom plates is E2(0.08m). Since
the top and bottom plates are at the same potential, we must have 5F; = 8F, —
Hheop = 8oy, Combining this with the given fact that oy + g2 = o, we quickly find
g = (8/13)o and oy = (5/13)o.

REMARK: Trom similar reasoning involving Gaussian surfaces with one side lving inside a
comductor, it follows that the density on the bottom face of the top plate is —ey, and the
density on the top face of the bottom plate is —o2. Assuming that there is zero net charge on
the outer two plates, this leaves af total of o1 + g2 = ¢ for the outer surfaces of these plates.
It must get divided evenly, because otherwise these two surfaces would create a nonzero field
between them, which would change the above fields and make the outer plates not be at the
same potential. Il any additional charge is dumped on the outer plates, it simply gets divided

evenly between their two outer surfaces,

Field just outside a capacitor

If the disks were infinitely large, the desired field would be zero. But with a finite R,
the repulsive field from the positive disk (which acts like an infinite plane, for points
infinitesimally close to it) is slightly larger than the attractive field from the negative
disk, which does’t quite act like an infinite plane.

Let’s find the field due to a disk with radius R and surface density o, at a general point
a distance z from the center of the disk along the axis. This can be found by slicing
up the disk into rings and finding the z component of the field due to the charge in
each ring. We obtain (the z/v/r? + 22 factor here gives the z component):
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As expected, if z < IR we obtain the standard o/2ey field from an infinite plane.
In the case of the negative disk in this problem, z equals the separation s. So the
difference in the magnitudes of the (oppositely pointing) fields from the two disks, at
a point just outside the positive disk, is as/2¢ VvV R? + 2. The net field therefore has
this magnitude and is directed away from the positive disk. In the (nusual) case at
hand where s < R, the net field is essentially equal to os/2¢p 2, which is s/ R times
the a/2¢; field from an infinite plane.



3.59. Coaxial capacitor

Neglecting end effects, we can assume that the charge +@ is nniformly distributed
along each cylinder. The field between the cylinders is that of a line charge with
density A = Q/L, so E = A 2weqr = @Q/2megLr. The magnitude of the potential
difference between the cylinders is then
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Since ' = Q/|Ag|, the capacitance is given by C' = 2reg L/ In(a/b). If a —b <€ b, then
we can use the Taylor series In(1 + €) = e to write
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So the capacitance becomes C' = 2meghL/(a — b). But 2xbl 1s the area A of the inner
cylinder, and a — b is the separation s between the cylinders. So the capacitance can
be written as €' = egA/s, which agrees with the standard result for the parallel-plate
capacitor.

3.66. Adding a capacitor

Let the two capacitors be labeled 1 and 2. If the initial charge on capacitor 1 is ),
then

Q=CV, (287)
where ', = 100 pF and V; = 100 volts. So @ = (10" F)(100V) = 10 *C. When
capacitor 2 is connected in parallel, the charge () is shared between the two capacitors,
that is, @ = 21 + Q5. But the voltages across the two capacitors are equal hecause
they are connected in parallel. This voltage is V7 = 30 volts. So we have Q; = C1 1
and ) = C, 1V}, Adding these relations gives

Q = (Cy + Cy) Vi, (288)

which is the statement thal capacitances in parallel simply add. Equating the right-
hand sides of Eqs. (287) and (288) gives
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C1(100V) = (C1 + Co)(30V) = Co =0 - :m = 233 pF. (289)
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The initial energy stored is

%QH = %(10—*‘ C)(100V) =5-107"J. (290)

The final encrgy stored is
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(The final energy is smaller than the mitial energy by the factor Vi/Vi.) Therefore,
3.5-107 7] of energy is lost. This much energy has to go somewhere before the system
can settle down to static equilibrinum. If it is not stored anywhere else (for instance, in
a weight lifted by a motor driven by the cwrrent from ' to (%) it will eventually be
dissipated in circuit resistance, no matter how small that resistance may be. (If the
circuit is superconducting, the current will keep sloshing back and forth. We'll talk
about LC' circuits in Chapter 8.)

Force and energy for two plates

From Eq. (1.49), the force per unit area on one of the plates is ¢ times the average
of the fields on either side of the plate. {Equivalently. it is o times the field from the
other plate.] This average field is F/2, where E is the field between the plates. But
I equals /ey, so o = epfs (it will be maore useful to write the field in terms of I than
o). The farce per unit area is therefore

F E . E i coF5? e
‘4 = U'Q' = L(_ﬂ f‘}-g _— F = ;1 5 - ; {JUUJ
Since F is given by ¢/s, we can write /' in terms of the potential as
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[f the charge is held constant as the plates come together, then the electric field
is independent of the separation, so we see from Iq. (305) that the force is also
independent of the separation. (Equivalently, ¢ is propartional to s in Fq. (306), so F
is independent of 5.} The total wark done by the electric force (which could be used to
lift an external object, ete.) is then W = F- 5 = (2.0-107% N){(0.03m) = 6- 10719 J.
Note that the work can be written symbolically as
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Since ey F?/2 is the energy density, the work does indeed equal the energy initially
stored in the field. Alternatively, the work can be written in terms of ¢ as (using
C' = ¢ud/s for a parallel-plate capacitor)
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which is the energy stored in the capacitor.
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What is the work done if the plates remain connected to the 10 volt battery? In this
case, since ¢ is constant, the force of Aepo? /257 in Eq. (306) grows like 1/s” as s goes
to zero. The integral of this diverges near zero, so the work is theoretically infinite.
However, eventually the battery won’t be able to supply the necessary charge to the
plates, so ¢ will inevitably decrease.



